LcSHMT4 from Sheepgrass Improves Tolerance to Cadmium and Manganese and Enhances Cd and Mn Accumulation in Grains
Abstract
1. Introduction
2. Results
2.1. Analysis of SHMT4 Sequence
2.2. Cd and Mn Tolerance of Yeast Strains Expressing LcSHMT4
2.3. Expression of LcSHMT4 Under Cd and Mn Stresses
2.4. Localization of LcSHMT4 at the Mitochondria
2.5. Cd and Mn Tolerance of Rice Overexpressing LcSHMT4
2.6. LcSHM4 Regulates the Expression of Genes Encoding Cd and Mn Transporters
3. Discussion
4. Materials and Methods
4.1. Cultivation of Sheepgrass Seedlings
4.2. Isolation of LcSHMT4 and Bioinformatics Analysis
4.3. Yeast Transformation and Heavy Metal Tolerance and Accumulation in Transformed Strains
4.4. Expression Analysis of LcSHMT4
4.5. Localization of LcSHMT4
4.6. Plant Transformation and Heavy Metal Tolerance and Content Analyses
4.7. Expression of Genes Encoding Cd–Mn Transporters in Rice
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, A.; Tariq, S.; Zaman, J.U.; Perales, A.I.M.; Mubashir, M.; Luque, R. Recent trends and challenges with the synthesis of membranes: Industrial opportunities towards environmental remediation. Chemosphere 2022, 306, 135634–135656. [Google Scholar] [CrossRef]
- Qin, J.D.; Zhang, Y.H.; Yi, Y.L.; Fang, M.L. Carbonation treatment of gasification fly ash from municipal solid waste using sodium carbonate and sodium bicarbonate solutions. Environ. Pollut. 2022, 299, 118906–118915. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.J.; Sun, J.; She, J.Y.; Yin, M.L.; Fang, F.; Xiao, T.F.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotox. Environ. Saf. 2020, 196, 110529–110538. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, S.; Wang, F.H.; Wang, H.; Hu, Z.L.; Chai, T.Y. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response. J. Hazard. Mater. 2019, 374, 1–10. [Google Scholar] [CrossRef]
- Manzoor, R.; Zhang, T.W.; Zhang, X.J.; Wang, M.; Pan, J.F.; Wang, Z.M.; Zhang, B. Single and combined metal contamination in coastal environments in China: Current status and potential ecological risk evaluation. Environ. Sci. Pollut. Res. 2018, 25, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Li, X.; Yu, L.; Wang, T.Q.; Wang, J.N.; Liu, T.T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Rcy. 2022, 181, 106261–106274. [Google Scholar] [CrossRef]
- Chai, T.Y.; Chen, Q.; Zhang, Y.X.; Dong, J.; An, C.C. Cadmium resistance in transgenic tobacco plants enhanced by expressing bean heavy metal-responsive gene PvSR2. Sci. China Ser. A C 2003, 46, 623–630. [Google Scholar] [CrossRef]
- Wang, R.N.; Nie, L.C.; Zhang, S.S.; Cui, Q.; Jia, M.F. Research progress on plant resistance to heavy metal stress. Acta Hortic. Sin. 2019, 46, 157–170. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681–733. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, F.; Wu, F.B.; Mao, W.H.; Zhang, G.P.; Zhou, M.X. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol. Bioch. 2010, 48, 663–672. [Google Scholar] [CrossRef]
- Shemin, D. The biological conversion of 1-serine to glycine. J. Biol. Chem. 1946, 162, 297–307. [Google Scholar] [CrossRef] [PubMed]
- García-Cañaveras, J.C.; Lancho, O.; Ducker, G.S.; Ghergurovich, J.M.; Xu, X.C.; da Silva-Diz, V.; Minuzzo, S.; Indraccolo, S.; Kim, H.; Herranz, D. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 2021, 35, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, K.H.; Sandoval, F.J.; Santiago, K.; Roje, S. One-carbon metabolism in plants: Characterization of a plastid serine hydroxymethyltransferase. Biochem. J. 2010, 430, 97–105. [Google Scholar] [CrossRef]
- Ravanel, S.; Cherest, H.; Jabrin, S.; Grunwald, D.; Surdin-Kerjan, Y.; Douce, R.; Rébeillé, F. Tetrahydrofolate biosynthesis in plants: Molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2001, 98, 15360–15365. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zhou, Z.L.; Tang, J.; Yao, G.F.; Hu, K.D.; Zhang, H. Study on the function of serine hydroxymethyltransferase gene family in sweet potato, tomato and Arabidopsis. J. Hefei Univ. Technol. 2022, 45, 1705–1717. [Google Scholar]
- Li, T.; Deng, Z.C.; Liu, T.; Xue, J.; Li, W.; Guo, Y.F. Identification of tobacco SHMT gene family and analysis of expression induced by abiotic stresses. Mol. Plant Breed. 2024, 4, e12943. [Google Scholar]
- Chen, J. Cloning and Functional Analysis of Cadmium Tolerance Related Genes OsSHM4 in Rice and PP2A-4C in Arabidopsis Thaliana; Nanjing Agricultural University: Nanjing, China, 2019. [Google Scholar]
- Hu, X.F.; Wang, D.; Ren, S.; Feng, S.; Zhang, H.Z.; Zhang, J.Z.; Qiao, K.; Zhou, A.M. Inhibition of root growth by alkaline salts due to disturbed ion transport and accumulation in Leymus chinensis. Environ. Exp. Bot. 2022, 200, 104907. [Google Scholar] [CrossRef]
- Liu, G.S.; Qin, D.M.; Liu, H. Practical Techniques for Growing Sheepgrass; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Xue, X.C.; Han, Y. Study on heavy metal pollution present situation of surface water and polluted sediments in Qinling, ann river mining area. Environ. Prot. Sci. 2013, 39, 1–10. [Google Scholar]
- Zhang, H.L.; Zhao, Y.R.; Wang, Z.W.; Liu, Y. Distribution characteristics bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems. Chemosphere 2021, 278, 130407. [Google Scholar] [CrossRef]
- Liu, T.; Wang, S.S.; Chen, Y.N.; Luo, J.Q.; Hao, B.H.; Zhang, Z.C.; Yang, B.; Guo, W. Bio-organic fertilizer promoted phytoremediation using native plant Leymus chinensis in heavy metals contaminated saline soil. Environ. Pollut. 2023, 327, 121599. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, Y.X.; Li, D.F.; Shan, Q.H.; Hu, Z.L.; Chai, T.Y.; Zhou, A.M.; Qiao, K. Synergistic role of phenylpropanoid biosynthesis and citrate cycle pathways in heavy metal detoxification through secretion of organic acids. J. Hazard. Mater. 2024, 476, 135106. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.W.; Hu, X.F.; Wu, J.; Tan, G.Y.; Feng, S.; Zhou, A.M. Overexpression of Leymus chinensis vacuole transporter NRAMP2 in rice increases Mn and Cd accumulation. Plant Stress 2024, 11, 100344. [Google Scholar] [CrossRef]
- Yan, M.Y.; Li, W.; Zhou, Z.Y.; Pan, T.; Li, L.B.; Chai, M.J.; Feng, Z.; Yu, S.X. Genome-wide identification of the Serine hydroxymethyltransferase gene revealed the function of GhSHMT11s involved in plant growth development and salt stress tolerance in cotton. Ind. Crop Prod. 2024, 222, 119687. [Google Scholar] [CrossRef]
- Qiao, K.; Tian, Y.B.; Hu, Z.L.; Chai, T.Y. Wheat cell number regulator CNR10 enhances the tolerance, translocation, and accumulation of heavy metals in plants. Environ. Sci. Technol. 2018, 53, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tang, S.J.; Li, W.; Zhang, S.B.; Wang, J.L.; Pan, D.F.; Lin, Z.L.; Ma, X.; Chang, Y.N.; Liu, B. Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe. Proc. Natl. Acad. Sci. USA 2023, 120, e2308984120. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.X.; Cheng, L.Q.; Chen, S.Y.; Qi, D.M.; Yang, W.G.; Gao, L.J.; Xin, B.Y.; Liu, G.S. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis. Acta Prataculturae Sin. 2021, 30, 105–115. [Google Scholar]
- Cheng, L.; Li, X.; Huang, X.; Ma, T.; Liang, Y.; Ma, X.Y.; Peng, X.J.; Jia, J.T.; Chen, S.Y.; Chen, Y. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1, confers salt tolerance in transgenic Arabidopsis. Plant Physiol. Bioch. 2013, 70, 252–260. [Google Scholar] [CrossRef]
- Zhang, L.X.; Su, M.; Ma, T.; Ma, X.Y.; Yan, X.Q.; Peng, X.J.; Chen, S.Y.; Cheng, L.Q.; Liu, G.S. Cloning and analysis of the Δ1-pyrroline-5-carboxylatesynthetase (LcP5CS1) from Leymus chinensis. Acta Prataculturae Sin. 2013, 22, 197–204. [Google Scholar]
- Li, X.X.; Yang, W.G.; Liu, S.; Li, X.Q.; Jia, J.T.; Zhao, P.C.; Cheng, L.Q.; Qi, D.M.; Chen, S.Y.; Liu, G.S. LcFIN2, a novel chloroplast protein gene from sheepgrass, enhances tolerance to low temperature in Arabidopsis and rice. Physiol. Plantarum 2019, 166, 628–645. [Google Scholar] [CrossRef]
- Mishra, P.; Jain, A.; Takabe, T.; Tanaka, Y.; Negi, M.; Singh, N.; Jain, N.; Mishra, V.; Maniraj, R.; Krishnamurthr, S.L. Heterologous expression of serinhydroxymethyltransferase3 from rice confers tolerance to salinity stress in E-coli and Arabidopsis. Front. Plant Sci. 2019, 10, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Luo, Y.; Pan, X.; Wang, C.; Liao, W. Genome-wide identification of SHMT family genes in cucumber (Cucumis sativus L.) and functional analyses of CsSHMTs in response to hormones and abiotic stresses. 3 Biotech 2022, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Chen, L.J.; Chen, F.Q.; Ma, H.L. Genome-wide identification of SHMT family genes in alfalfa (Medicago sativa) and its functional analyses under various abiotic stresses. BMC Genom. 2024, 25, 781. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotox. Environ. Saf. 2009, 72, 1687–1693. [Google Scholar] [CrossRef]
- Waszczak, C.; Carmody, M.; Kangasjärvi, J.; Merchant, S.S. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef]
- Chen, K.S.; Lai, H.Y. Sulfur mitigates cadmium toxicity in lettuce via phytochelatins and the AsA-GSH cycle. J. Agri. Food Chem. 2025, 73, 26658–26668. [Google Scholar] [CrossRef]
- Liu, B.W.; Wang, B.Z.; Chen, T.L.; Zhang, M.R. Hydrogen sulfide mitigates manganese-induced toxicity in Malus hupehensis plants by regulating osmoregulation, antioxidant defense, mineral homeostasis, and glutathione ascorbate cycle. Horticulturae 2025, 11, 133. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, Z.D.; Cao, W.J.; Khan, D.; Ikram, M.; Yang, K.B.; Chen, L.M.; Li, K.Z. Co-overexpression of AtSHMT1 and AtFDH induces sugar synthesis and enhances the role of original pathways during formaldehyde metabolism in tobacco. Plant Sci. 2021, 305, 110829. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.Y.; Salt, D.E.; Zhao, F.J. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain. New Phytol. 2020, 226, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Guan, J.; Chai, T.Y.; Qiao, K. A biofortification tool enhances iron and manganese tolerance and accumulation in plants. J. Sci. Food Agric. 2025, 105, 8296–8306. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.Y.; Huang, R.; Wang, L.J.; Wang, G.H.; Miao, Y.; Rao, I.; Liu, G.D.; Chen, Z.J. SgNramp1, a plasma membrane-localized transporter, involves in manganese uptake in Stylosanthes guianensis. Front. Plant Sci. 2022, 13, 1027551. [Google Scholar] [CrossRef]
- Stonebloom, S.; Burch-Smith, T.; Kim, I.; Meinke, D.; Mindrinos, M.; Zambryski, P. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc. Natl. Acad. Sci. USA 2009, 106, 17229–17234. [Google Scholar] [CrossRef]
- Kane, C.D.; Jasoni, R.L.; Peffley, E.P.; Thompson, L.D.; Green, C.J.; Pare, P.; Tissue, D. Nutrient solution and solution pH influences on onion growth and mineral content. J. Plant Nutr. 2006, 29, 375–390. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Shin, R.; Eide, D.J.; Schachtman, D.P. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 2003, 133, 126–134. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, H.J.; Kim, S.A.; Lee, J.; Guerinot, M.L.; An, G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol. Biol. 2010, 73, 507–517. [Google Scholar] [CrossRef]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.D.; Huang, S.; Yamaji, N.; Zhang, W.W.; Ma, J.F.; Zhao, F.J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 2020, 43, 2476–2491. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Masuda, H.; Bashir, K.; Inoue, H.; Tsukamoto, T.; Takahashi, M.; Nakanishi, H.; Aoki, N.; Hirose, T.; Ohsugi, R.; et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 2010, 62, 379–390. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.H.; Yi, H.Y.; Gong, J.M. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J. 2012, 72, 400–410. [Google Scholar] [CrossRef]
- Zou, W.L.; Chen, J.G.; Meng, L.J.; Chen, D.D.; He, H.H.; Ye, G.Y. The rice cation/H+ exchanger family involved in Cd tolerance and transport. Int. J. Mol. Sci. 2021, 22, 8186. [Google Scholar] [CrossRef]
- Song, W.Y.; Yamaki, T.; Yamaji, N.; Ko, D.; Jung, K.H.; Fujii-Kashino, M.; An, G.; Martinoia, E.; Lee, Y.; Ma, J.F. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. USA 2014, 111, 15699–15704. [Google Scholar] [CrossRef] [PubMed]
- Miyadate, H.; Adachi, S.; Hiraizumi, A.; Tezuka, K.; Nakazawa, N.; Kawamoto, T.; Katou, K.; Kodama, I.; Sakurai, K.; Takahashi, H.; et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 2011, 189, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, Y.; Bashir, K.; Nakanishi, H.; Nishizawa, N.K. OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signal. Behav. 2012, 7, 763–766. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, J.; Di, G.; Lin, Y.; Mu, L.; Zhuang, X.; Zhang, D.; Han, W.; Chai, T.; Zhou, A.; Qiao, K. LcSHMT4 from Sheepgrass Improves Tolerance to Cadmium and Manganese and Enhances Cd and Mn Accumulation in Grains. Plants 2026, 15, 91. https://doi.org/10.3390/plants15010091
Wang J, Di G, Lin Y, Mu L, Zhuang X, Zhang D, Han W, Chai T, Zhou A, Qiao K. LcSHMT4 from Sheepgrass Improves Tolerance to Cadmium and Manganese and Enhances Cd and Mn Accumulation in Grains. Plants. 2026; 15(1):91. https://doi.org/10.3390/plants15010091
Chicago/Turabian StyleWang, Jianli, Guili Di, Yuanyuan Lin, Linlin Mu, Xu Zhuang, Dongmei Zhang, Weibo Han, Tuanyao Chai, Aimin Zhou, and Kun Qiao. 2026. "LcSHMT4 from Sheepgrass Improves Tolerance to Cadmium and Manganese and Enhances Cd and Mn Accumulation in Grains" Plants 15, no. 1: 91. https://doi.org/10.3390/plants15010091
APA StyleWang, J., Di, G., Lin, Y., Mu, L., Zhuang, X., Zhang, D., Han, W., Chai, T., Zhou, A., & Qiao, K. (2026). LcSHMT4 from Sheepgrass Improves Tolerance to Cadmium and Manganese and Enhances Cd and Mn Accumulation in Grains. Plants, 15(1), 91. https://doi.org/10.3390/plants15010091

