Effect of Culture Medium Composition on In Vitro Regeneration, Acclimatization, and Production Cost of Dendrobium phalaenopsis Sa-Nook ‘Thailand Black’ Plants
Abstract
1. Introduction
2. Results
2.1. Shoot Induction
2.2. Shoot Growth
2.2.1. First Phase
2.2.2. Second Phase
2.3. Acclimatization Under Greenhouse Conditions
2.4. The Production Costs
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Culture Medium
4.3. Induction of Adventitious Shoots
4.4. Shoot Growth
4.4.1. First Phase
4.4.2. Second Phase
4.5. Culture Incubation Conditions
4.6. Acclimatization
4.7. Production Cost
4.8. Experimental Design and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wraith, J.; Norman, P.; Pickering, C. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species. Ambio 2020, 49, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, P.; Kumaria, S.; Tandon, P. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. S. Afr. J. Bot. 2016, 104, 232–243. [Google Scholar] [CrossRef]
- Tikendra, L.; Potshangbama, A.M.; Amoma, T.; Deyb, A.; Nongdam, P. Understanding the genetic diversity and population structure of Dendrobium. S. Afr. J. Bot. 2021, 138, 364–376. [Google Scholar] [CrossRef]
- Longchar, T.B.; Deb, C.R. Optimization of in vitro propagation protocol of Dendrobium heterocarpum Wall. Ex. Lindl. and clonal genetic fidelity assessment of the regenerates: An orchid of horticultural and medicinal importance. S. Afr. J. Bot. 2022, 149, 67–78. [Google Scholar] [CrossRef]
- Hou, B.; Luo, J.; Zhang, Y.; Niu, Z.; Xue, Q.; Ding, X. Iteration expansion and regional evolution: Phylogeography of Dendrobium officinale and four related taxa in southern China. Sci. Rep. 2017, 7, 43525. [Google Scholar] [CrossRef]
- Adhikari, H.; Pant, B. In vitro seed germination and seedling growth of the orchid Dendrobium primulinum Lindl. Afr. J. Plant Sci. 2019, 13, 324–331. [Google Scholar] [CrossRef]
- De, L.C. Technological advancements, innovation and entrepreneurship development in orchids. J. Agric. Technol. 2023, 10, 109–120. [Google Scholar]
- Salman, T.; Aos, A.; Permana, A. Value chain management of orchid businesses: A case study of the indonesian orchid association of west java. Agrar. J. Agribus. Rural. Dev. 2024, 10, 90–104. [Google Scholar] [CrossRef]
- Tiwari, P.; Sharma, A.; Bose, S.K.; Park, K.I. Advances in orchid biology: Biotechnological achievements, translational success, and commercial outcomes. Horticulturae 2024, 10, 152. [Google Scholar] [CrossRef]
- Setiari, N.; Purwantoro, A.; Moeljopawiro, S.; Semiarti, E. Micropropagation of Dendrobium phalaenopsis orchid through overexpression of embryo gene AtRKD4. J. Agric. Sci. 2018, 40, 284–294. [Google Scholar] [CrossRef]
- Yi, S.; Liao, Y.; Huang, M.; Zhang, Z.; Niu, J.; Lu, S.; Yin, J. Violet Angel: A new Dendrobium phalaenopsis cultivar. HortScience 2022, 57, 1518–1519. [Google Scholar] [CrossRef]
- Flora, F. Dendrobium Sa-Nook ‘Thailand Black’. 2023, [Online]. Available online: https://club.global.flowers/en/dendrobium/34262-dendrobium-sa-nookthailand-black (accessed on 22 November 2024).
- Deb, C.R.; Rout, G.R.; Mao, A.A.; Nandi, S.K.; Singha, R.K.N.; Vijayan, D.; Langhu, T.; Kikon, Z.P.; Pradhan, S.; Tariq, M.; et al. In vitro propagation of some threatened plant species of India. Curr. Sci. 2018, 114, 567–575. [Google Scholar] [CrossRef]
- Asghar, S.; Ahmad, T.; Hafiz, I.A.; Yaseen, M. In vitro propagation of orchid (Dendrobium nobile) var. ‘Emma white’. Afr. J. Biotechnol. 2011, 10, 3097–3103. [Google Scholar] [CrossRef]
- Moreno-Bermúdez, L.J.; García, L.R.; La, M.; Padrón, Y.; Hernández-Pérez, M.M.; Fernández, Y.; Rivero, L.; Posada-Pérez, L. Protocolo para la propagación in vitro de Dendrobium phalaenopsis Fitzg. a partir de semilla botánica. Biot. Veg. 2021, 21, 149–157. [Google Scholar]
- Arafa, A.M.; El-Attar, A.B.; Hassan, M.M.; El-Sayed, S.A. Effect of MS medium strength and growth regulators (TDZ & Kin) on Dendrobium nobile orchid in vitro regeneration. Plant Cell Biotech. Mol. Biol. 2021, 22, 99–118. Available online: https://ikprress.org/index.php/PCBMB/article/view/7162 (accessed on 22 December 2024).
- Pathak, J.; Maharjan, S.; Rijal, G.; Maharjan, A.; Thapa-Magar, M.S. In vitro propagation of Dendrobium chryseum Rolfe. J. Plant Resour. 2022, 20, 130–138. [Google Scholar] [CrossRef]
- Liu, X.; Sun, L.; Nie, T.; Chen, Y.; Yin, Z. In vitro rapid propagation technology system of Dendrobium moniliforme (L.) Sw., a threatened orchid species in China. Plant. Biotechnol. Rep. 2023, 17, 369–378. [Google Scholar] [CrossRef]
- Kaladharan, S.; Rengasamy, A.; Chinnaiyan, R.; Mariappan, M.; Thiruppathi, S.K. In vitro asymbiotic seed germination and micropropagation of Dendrobium heyneanum Lindl. an endemic orchid of Western Ghats, India. Plant Cell Tissue Organ Cult. 2024, 157, 31. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Dobránszki, J.; Cardoso, J.C.; Zeng, S. Dendrobium micropropagation: A review. Plant Cell Rep. 2015, 34, 671–704. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Luna, A.; Davies, F.; Egilla, J. Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tissue Organ Cult. 2001, 66, 17–24. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Hossain, M.M.; Sharma, M.; Dobranszki, J.; Cardoso, J.C.; Zeng, S. Acclimatization of in vitro-derived Dendrobium. Hortic. Plant J. 2017, 3, 110–124. [Google Scholar] [CrossRef]
- Frausto, J.K.A.; Ojeda, Z.M.C.; Alvarado, G.O.G.; García, Z.E.A.; Rodríguez, F.H.; Rodríguez, P.G. Inducción de brotes a partir de varas florales de la orquídea Phalaenopsis spp. (Blume) in vitro. Rev. Mex. Cienc. Agrícolas 2019, 10, 1207–1218. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Dinh, S.T.; Ninh, T.T.; Nong, H.T.; Dang, T.T.T.; Khuat, Q.V.; Dang, A.T.P.; Ly, M.T.; Kirakosyan, R.N.; Kalashnikova, E.A. In vitro propagation of the Dendrobium anosmum Lindl. collected in Vietnam. Agronomy 2022, 12, 324. [Google Scholar] [CrossRef]
- Subrahmanyeswari, T.; Verma, S.K.; Gantait, S. One-step in vitro protocol for clonal propagation of Dendrobium ‘Yuki White’, a high value ornamental orchid hybrid. S. Afr. J. Bot. 2022, 146, 883–888. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M. Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: A candidate biodiesel plant. Ind. Crops Prod. 2012, 39, 62–68. [Google Scholar] [CrossRef]
- Dey, M.; Bakshi, S.; Galiba, G.; Sahoo, L.; Panda, S.K. Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech. 2012, 2, 233–240. [Google Scholar] [CrossRef]
- Dinani, E.T.; Shukla, M.R.; Turi, C.E.; Sullivan, J.A.; Saxena, P.K. Thidiazuron: From urea derivative to plant growth regulator. In Thidiazuron: Modulator of Morphogenesis In Vitro; Springer: Singapore, 2018; pp. 1–37. [Google Scholar] [CrossRef]
- Pourebad, N.; Motafakkerazad, R.; Kosari-Nasab, M.; Akhtar, F.N.; Movafeghi, A. The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia albums. Plant Cell Tissue Organ Cult. 2015, 122, 331–339. [Google Scholar] [CrossRef]
- Lin, W.; Li, Y.; Liang, J.; Liu, Y.; Chen, P.; He, B.; Huang, J.; Guo, L.; Lan, L. Establishment of Dendrobium wilsonii Rolfe in vitro regeneration system. Sci. Hortic. 2024, 324, 112598. [Google Scholar] [CrossRef]
- Díaz, L.P.; Namur, J.J.; Bollati, S.A.; Arce, O.E.A. Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Rev. Colomb. Biotecnol. 2010, 12, 27–40. [Google Scholar]
- Paul, P.; Joshi, M.; Gurjar, D.; Shailajan, S.; Kumaria, S. In vitro organogenesis and estimation of β-sitosterol in Dendrobium fimbriatum Hook: An orchid of biopharmaceutical importance. S. Afr. J. Bot. 2017, 113, 248–252. [Google Scholar] [CrossRef]
- Kang, H.; Kang, K.W.; Kim, D.H.; Sivanesan, I. In vitro propagation of Gastrochilus matsuran (Makino) Schltr., an endangered epiphytic orchid. Plants 2020, 9, 524. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.E. Micropropagación de Phragmipedium kovachii, con fines de conservación genética. Rev. Agrotec. Amaz. 2021, 1, 45–61. [Google Scholar] [CrossRef]
- Castillo-Pérez, L.J.; Alonso-Castro, A.J.; Fortanelli-Martínez, J.; Carranza-Álvarez, C. Micropropagation of Catasetum integerrimum Hook (Orchidaceae) through seed germination and direct shoot regeneration from pseudobulbs and roots. In Vitr. Cell. Dev. Biol.-Plant 2022, 58, 279–289. [Google Scholar] [CrossRef]
- Kang, I.; Sivanesan, I. In vitro propagation of variegated Cymbidium lancifolium Hooker. Plants 2025, 14, 2551. [Google Scholar] [CrossRef]
- Alves, d.S.M.R.; Augusto, d.S.C.; Felix, d.R.J.; Ventura, d.A.L.; Curitiba, E.M. Comparison of economic efficiency between in vitro and field methods for vegetative propagation of Coffea canephora. Aust. J. Basic. Appl. Sci. 2015, 9, 1–7. [Google Scholar]
- Chiachung, C. Cost analysis of plant micropropagation of Phalaenopsis. Plant Cell Tissue Organ Cult. 2016, 126, 167–175. [Google Scholar] [CrossRef]
- Jimarez-Montiel, M.J.; Robledo-Paz, A.; Ordaz-Chaparro, V.M.; Trejo-Tellez, L.I.; Molina-Moreno, J.C. Protocol for the reduction of costs in habanero chili (Capsicum chinense Jacq.) micropropagation. Phyton 2018, 87, 94–104. [Google Scholar] [CrossRef]
- Pożoga, M.; Olewnicki, D.; Jabłońska, L. In vitro propagation protocols and variable cost comparison in commercial production for Paulownia tomentosa × Paulownia fortunei hybrid as a renewable energy source. Appl. Sci. 2019, 9, 2272. [Google Scholar] [CrossRef]
- Suárez, I.E.; Yepez, J.E.; López, C.M. Effect of different substrates on adaptation of arrow cane (Gynerium sagitatum Aubl.) micropropagated plants. Temas Agrar. 2020, 25, 77–84. [Google Scholar] [CrossRef]
- Henao-Ramírez, A.M.; Palacio-Hajduk, D.H.; Urrea-Trujillo, A.I. Cost analysis of cacao (Theobroma cacao L.) plant propagation through the somatic embryogenesis method. Revis. Bionatura 2022, 7, 2. [Google Scholar] [CrossRef]
- Pożoga, M.; Olewnicki, D.; Latocha, P. A temporary immersion system as a tool for lowering planting material production costs using the example of Pennisetum × advena ‘Rubrum’. Agriculture 2024, 14, 1177. [Google Scholar] [CrossRef]
- Knudson, L. A new nutrient solution for orchid seed germination. Amer. Orchid. Soc. Bull. 1946, 15, 214–217. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Park, Y.; Sungwoo, J.; Yousef, J. Time-driven activity-based costing systems for marketing decisions. Stud. Bus. Econ. 2019, 14, 191–207. [Google Scholar] [CrossRef]
- SAS, Institute Inc. The SAS System for Windows. 2023. Available online: https://www.sas.com/es_mx/software/on-demand-for-academics.html (accessed on 22 December 2024).


| NAA | BA | TDZ | SUR | SFE | SE |
|---|---|---|---|---|---|
| (µM) | (%) | (%) | |||
| 0 | 0 | 0 | 100.00 a | 62.86 bc | 2.06 abc |
| 0 | 2.22 | 0 | 100.00 a | 57.14 c | 1.63 c |
| 0 | 4.44 | 0 | 100.00 a | 94.29 a | 1.99 abc |
| 0 | 8.88 | 0 | 100.00 a | 94.29 a | 2.09 abc |
| 0 | 0 | 2.27 | 100.00 a | 71.43 bc | 1.90 bc |
| 0 | 0 | 4.54 | 100.00 a | 77.14 bc | 1.79 bc |
| 0 | 0 | 9.08 | 100.00 a | 74.29 bc | 2.55 a |
| 2.69 | 0 | 0 | 100.00 a | 80.00 bc | 1.87 bc |
| 2.69 | 2.22 | 0 | 100.00 a | 74.29 bc | 1.99 abc |
| 2.69 | 4.44 | 0 | 100.00 a | 85.71 b | 1.77 bc |
| 2.69 | 8.88 | 0 | 100.00 a | 100.00 a | 2.37 ab |
| 2.69 | 0 | 2.27 | 100.00 a | 100.00 a | 2.34 ab |
| 2.69 | 0 | 4.54 | 100.00 a | 91.43 ab | 2.08 abc |
| 2.69 | 0 | 9.08 | 100.00 a | 91.43 ab | 2.00 abc |
| NAA | BA | TDZ | SUR | SFE | SE | SL | NRS |
|---|---|---|---|---|---|---|---|
| (µM) | (%) | (%) | (mm) | ||||
| 0 | 0 | 0 | 100.00 a | 100.00 a | 2.35 cd | 15.89 a | 6.42 abc |
| 0 | 2.22 | 0 | 100.00 a | 100.00 a | 2.40 cd | 17.88 a | 8.25 a |
| 0 | 4.44 | 0 | 100.00 a | 100.00 a | 2.60 cd | 14.95 ab | 7.03 ab |
| 0 | 8.88 | 0 | 100.00 a | 100.00 a | 2.30 cd | 15.37 a | 8.47 a |
| 0 | 0 | 2.27 | 100.00 a | 100.00 a | 3.20 bc | 9.72 c | 4.54 cd |
| 0 | 0 | 4.54 | 100.00 a | 100.00 a | 3.50 bc | 10.21 c | 3.88 de |
| 0 | 0 | 9.08 | 100.00 a | 100.00 a | 5.20 a | 9.70 c | 2.02 e |
| 2.69 | 0 | 0 | 100.00 a | 100.00 a | 2.50 cd | 14.83 ab | 8.28 a |
| 2.69 | 2.22 | 0 | 100.00 a | 100.00 a | 2.20 cd | 14.30 ab | 8.00 a |
| 2.69 | 4.44 | 0 | 100.00 a | 100.00 a | 2.00 d | 14.35 ab | 7.91 a |
| 2.69 | 8.88 | 0 | 100.00 a | 100.00 a | 3.00 bc | 16.32 a | 8.15 a |
| 2.69 | 0 | 2.27 | 100.00 a | 100.00 a | 3.25 bc | 11.40 bc | 6.97 abc |
| 2.69 | 0 | 4.54 | 100.00 a | 100.00 a | 3.00 bc | 11.48 bc | 4.85 bcd |
| 2.69 | 0 | 9.08 | 100.00 a | 100.00 a | 3.80 b | 11.43 bc | 3.38 de |
| NAA | BA | TDZ | SUR | SFE | SE | SL | NRS |
|---|---|---|---|---|---|---|---|
| (µM) | (%) | (%) | (mm) | ||||
| 0 | 0 | 0 | 100.00 a | 100.00 a | 2.65 ghi | 47.6 ab | 7.1 ab |
| 0 | 2.22 | 0 | 100.00 a | 100.00 a | 3.16 fgh | 39.6 cde | 5.3 cd |
| 0 | 4.44 | 0 | 100.00 a | 100.00 a | 2.91 ghi | 35.2 de | 5.0 cde |
| 0 | 8.88 | 0 | 100.00 a | 100.00 a | 2.53 hi | 43.0 bc | 5.1 cde |
| 0 | 0 | 2.27 | 100.00 a | 100.00 a | 5.13 bc | 40.4 cd | 6.7 ab |
| 0 | 0 | 4.54 | 100.00 a | 100.00 a | 5.46 b | 48.9 a | 5.3 cde |
| 0 | 0 | 9.08 | 100.00 a | 100.00 a | 8.54 a | 39.9 cd | 4.5 de |
| 2.69 | 0 | 0 | 100.00 a | 100.00 a | 3.20 fg | 29.0 f | 5.5 cd |
| 2.69 | 2.22 | 0 | 100.00 a | 100.00 a | 2.62 ghi | 37.6 cde | 7.4 a |
| 2.69 | 4.44 | 0 | 100.00 a | 100.00 a | 2.40 i | 40.5 cd | 6.0 bc |
| 2.69 | 8.88 | 0 | 100.00 a | 100.00 a | 3.61 ef | 38.9 cde | 4.8 de |
| 2.69 | 0 | 2.27 | 100.00 a | 100.00 a | 4.27 de | 36.6 de | 4.5 de |
| 2.69 | 0 | 4.54 | 100.00 a | 100.00 a | 4.61 cd | 34.2 ef | 4.2 e |
| 2.69 | 0 | 9.08 | 100.00 a | 100.00 a | 5.56 b | 37.0 de | 4.9 cde |
| NAA | BA | TDZ | SUR | NS | NR | NL | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| (µM) | (%) | 0 | 90 | RC (%) | 0 | 90 | RC (%) | |||
| 0 | 0 | 0 | 52.0 e | 0.30 bcd | 7.1 ab | 7.5 bcd | 5.9 | 3.8 a | 2.4 ab | −37.0 |
| 0 | 2.22 | 0 | 60.0 de | 0.25 cd | 5.3 cd | 7.1 cd | 32.8 | 3.1 a | 1.6 c | −48.7 |
| 0 | 4.44 | 0 | 24.0 f | 0.00 d | 5.0 cde | 7.4 bcd | 48.0 | 3.6 a | 1.6 c | −55.1 |
| 0 | 8.88 | 0 | 64.0 cde | 0.39 bcd | 5.1 cde | 6.5 de | 27.1 | 3.3 a | 1.4 c | −57.3 |
| 0 | 0 | 2.27 | 68.0 bcde | 0.29 cd | 6.7 ab | 7.2 cd | 8.9 | 3.2 a | 1.9 bc | −41.4 |
| 0 | 0 | 4.54 | 84.0 abcd | 0.35 bcd | 5.3 cde | 6.3 de | 19.5 | 3.0 a | 1.6 bc | −47.0 |
| 0 | 0 | 9.08 | 96.0 a | 0.91 a | 4.5 de | 5.8 e | 29.2 | 3.4 a | 1.9 bc | −43.8 |
| 2.69 | 0 | 0 | 84.0 abcd | 0.81 abc | 5.5 cd | 8.8 a | 60.9 | 3.3 a | 1.4 c | −56.4 |
| 2.69 | 2.22 | 0 | 84.0 abcd | 0.76 abc | 7.4 a | 8.6 ab | 16.4 | 3.0 a | 3.1 a | 4.4 |
| 2.69 | 4.44 | 0 | 72.0 abcde | 0.60 abc | 6.0 bc | 8.0 abc | 34.5 | 3.2 a | 1.8 bc | −45.1 |
| 2.69 | 8.88 | 0 | 80.0 abcd | 0.55 abcd | 4.8 de | 6.8 cde | 42.8 | 3.0 a | 1.9 bc | −37.0 |
| 2.69 | 0 | 2.27 | 92.0 ab | 0.59 abcd | 4.5 de | 6.3 de | 40.1 | 3.4 a | 1.8 bc | −45.2 |
| 2.69 | 0 | 4.54 | 88.0 abc | 0.51 abcd | 4.2 e | 5.7 e | 37.8 | 3.2 a | 1.8 bc | −43.0 |
| 2.69 | 0 | 9.08 | 88.0 abc | 0.88 ab | 4.9 cde | 5.8 e | 18.9 | 3.4 a | 1.7 bc | −49.4 |
| NAA | BA | TDZ | RL (mm) | LL (mm) | SL (mm) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| (µM) | 0 | 90 | RC (%) | 0 | 90 | RC (%) | 0 | 90 | RC (%) | ||
| 0 | 0 | 0 | 42.3 ab | 42.7 a | 0.8 | 55.6 a | 53.5 a | −3.8 | 47.6 ab | 49.6 a | 4.1 |
| 0 | 2.22 | 0 | 37.3 bcd | 23.9 fg | −36.0 | 45.6 b | 37.2 de | −18.4 | 39.6 cde | 46.7 ab | 17.9 |
| 0 | 4.44 | 0 | 42.9 a | 22.1 g | −48.5 | 41.7 bc | 28.2 f | −32.4 | 35.2 de | 43.6 bc | 23.9 |
| 0 | 8.88 | 0 | 39.6 abc | 30.8 cd | −22.3 | 41.7 bc | 35.1 e | −15.8 | 43.0 bc | 46.6 ab | 8.4 |
| 0 | 0 | 2.27 | 31.6 ef | 25.3 fg | −19.9 | 42.0 bc | 42.6 bcd | 1.6 | 40.4 cd | 41.1 cd | 1.8 |
| 0 | 0 | 4.54 | 30.6 f | 26.2 efg | −14.5 | 45.9 b | 45.9 b | 0.1 | 48.9 a | 49.8 a | 1.9 |
| 0 | 0 | 9.08 | 31.4 ef | 26.6 def | −15.6 | 45.5 b | 44.5 bc | −2.2 | 39.9 cd | 44.0 bc | 10.2 |
| 2.69 | 0 | 0 | 33.2 def | 22.6 fg | −31.8 | 31.8 d | 26.9 f | −15.4 | 29.0 f | 31.3 f | 7.7 |
| 2.69 | 2.22 | 0 | 30.9 f | 30.4 cde | −1.5 | 41.6 bc | 37.1 de | −11.0 | 37.6 cde | 38.7 cde | 3.1 |
| 2.69 | 4.44 | 0 | 31.1 f | 24.4 fg | −21.6 | 41.0 bc | 38.3 cde | −6.4 | 40.5 cd | 40.8 cd | 0.8 |
| 2.69 | 8.88 | 0 | 36.3 cde | 31.7 bc | −12.5 | 44.3 bc | 39.9 bcde | −9.9 | 38.9 cde | 39.7 cde | 2.1 |
| 2.69 | 0 | 2.27 | 35.2 cdef | 33.0 bc | −6.1 | 39.5 c | 35.7 e | −9.8 | 36.6 de | 37.4 de | 2.4 |
| 2.69 | 0 | 4.54 | 36.3 cde | 35.8 b | −1.3 | 42.7 bc | 38.3 cde | −10.4 | 34.2 ef | 34.4 ef | 0.6 |
| 2.69 | 0 | 9.08 | 33.9 def | 30.4 cde | −10.2 | 46.4 b | 41.6 bcde | −10.3 | 37.0 de | 39.5 cde | 6.7 |
| NAA | BA | TDZ | Direct Costs | Indirect Costs | DM | Total Cost | NPL | Cost per Plant |
|---|---|---|---|---|---|---|---|---|
| (µM) | (USD) | (USD) | (USD) | (USD) | (USD) | |||
| 0 | 0 | 0 | 275.23 | 142.10 | 23.81 | 441.14 | 198.94 | 2.22 b |
| 0 | 2.22 | 0 | 275.26 | 142.10 | 23.81 | 441.17 | 240.80 | 1.83 bc |
| 0 | 4.44 | 0 | 275.29 | 142.10 | 23.81 | 441.20 | 91.56 | 4.82 a |
| 0 | 8.88 | 0 | 275.35 | 142.10 | 23.81 | 441.26 | 231.98 | 1.90 bc |
| 0 | 0 | 2.27 | 276.16 | 142.10 | 23.81 | 442.07 | 391.72 | 1.13 def |
| 0 | 0 | 4.54 | 277.09 | 142.10 | 23.81 | 443.00 | 483.84 | 0.92 ef |
| 0 | 0 | 9.08 | 278.94 | 142.10 | 23.81 | 444.85 | 906.85 | 0.49 g |
| 2.69 | 0 | 0 | 275.24 | 142.10 | 23.81 | 441.15 | 352.80 | 1.25 de |
| 2.69 | 2.22 | 0 | 275.27 | 142.10 | 23.81 | 441.18 | 297.92 | 1.48 cd |
| 2.69 | 4.44 | 0 | 275.30 | 142.10 | 23.81 | 441.21 | 246.33 | 1.79 bc |
| 2.69 | 8.88 | 0 | 275.36 | 142.10 | 23.81 | 441.27 | 397.60 | 1.11 def |
| 2.69 | 0 | 2.27 | 276.17 | 142.10 | 23.81 | 442.08 | 516.95 | 0.86 ef |
| 2.69 | 0 | 4.54 | 277.10 | 142.10 | 23.81 | 443.01 | 490.00 | 0.90 ef |
| 2.69 | 0 | 9.08 | 278.95 | 142.10 | 23.81 | 444.86 | 548.80 | 0.81 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zavala-Hernández, J.T.; Robledo-Paz, A.; González-Hernández, V.A.; Gutiérrez-Espinosa, M.A.; Mata-Rosas, M. Effect of Culture Medium Composition on In Vitro Regeneration, Acclimatization, and Production Cost of Dendrobium phalaenopsis Sa-Nook ‘Thailand Black’ Plants. Plants 2026, 15, 88. https://doi.org/10.3390/plants15010088
Zavala-Hernández JT, Robledo-Paz A, González-Hernández VA, Gutiérrez-Espinosa MA, Mata-Rosas M. Effect of Culture Medium Composition on In Vitro Regeneration, Acclimatization, and Production Cost of Dendrobium phalaenopsis Sa-Nook ‘Thailand Black’ Plants. Plants. 2026; 15(1):88. https://doi.org/10.3390/plants15010088
Chicago/Turabian StyleZavala-Hernández, José Trinidad, Alejandrina Robledo-Paz, Víctor A. González-Hernández, María Alejandra Gutiérrez-Espinosa, and Martín Mata-Rosas. 2026. "Effect of Culture Medium Composition on In Vitro Regeneration, Acclimatization, and Production Cost of Dendrobium phalaenopsis Sa-Nook ‘Thailand Black’ Plants" Plants 15, no. 1: 88. https://doi.org/10.3390/plants15010088
APA StyleZavala-Hernández, J. T., Robledo-Paz, A., González-Hernández, V. A., Gutiérrez-Espinosa, M. A., & Mata-Rosas, M. (2026). Effect of Culture Medium Composition on In Vitro Regeneration, Acclimatization, and Production Cost of Dendrobium phalaenopsis Sa-Nook ‘Thailand Black’ Plants. Plants, 15(1), 88. https://doi.org/10.3390/plants15010088

