Aluminum Alleviation of Iron Deficiency Chlorosis Is Conserved in Wild Rice Relative Oryza rufipogon and in Maize
Abstract
1. Introduction
2. Results
2.1. Al Excess and Fe Deficiency Reduce Root Elongation in Oryza rufipogon
2.2. Al Excess Limits Shoot Development in Oryza rufipogon Independently of Fe
2.3. Al Excess Alleviates Fe Deficiency Chlorosis in Oryza rufipogon
2.4. Al Excess Decreases the Expression of Fe Deficiency Marker Genes in Oryza rufipogon Roots
2.5. Al Excess Reduces Maize Root Length Independently of Fe Deficiency Without Affecting Root Biomass
2.6. Al Excess Alleviates Fe Deficiency Chlorosis in Maize
2.7. Al Excess Mitigates Fe Deficiency-Induced Reduction in Photosynthesis in Maize
2.8. Al Excess Decreases the Expression of Fe Deficiency Marker Genes in Maize Roots
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Growth Measurements
4.3. Chlorophyll Measurements
4.4. Gene Expression Analyses
4.5. Determination of Gas Exchange Parameters
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Food and Agriculture—Statistical Yearbook 2025; FAO: Rome, Italy, 2025; ISBN 978-92-5-140174-3.
- Bin Rahman, A.N.M.R.; Zhang, J. Trends in Rice Research: 2030 and Beyond. Food Energy Secur. 2023, 12, e390. [Google Scholar] [CrossRef]
- Fornasiero, A.; Feng, T.; Al-Bader, N.; Alsantely, A.; Mussurova, S.; Hoang, N.V.; Misra, G.; Zhou, Y.; Fabbian, L.; Mohammed, N.; et al. Oryza Genome Evolution through a Tetraploid Lens. Nat. Genet. 2025, 57, 1287–1297. [Google Scholar] [CrossRef]
- Callaway, E. Domestication: The Birth of Rice. Nature 2014, 514, S58–S59. [Google Scholar] [CrossRef] [PubMed]
- Menguer, P.K.; Sperotto, R.A.; Ricachenevsky, F.K. A Walk on the Wild Side: Oryza Species as Source for Rice Abiotic Stress Tolerance. Genet. Mol. Biol. 2017, 40, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lou, Y.; Han, Y.; Shi, J.; Wang, Y.; Wang, W.; Ming, F. Al Toxicity Leads to Enhanced Cell Division and Changed Photosynthesis in Oryza rufipogon L. Mol. Biol. Rep. 2011, 38, 4839–4846. [Google Scholar] [CrossRef]
- Magudeeswari, P.; Balakrishnan, D.; Surapaneni, M.; Krishnam Raju, A.; Rao, Y.V.; Pranay, G.; Valarmathi, P.; Bhadana, V.P.; Neelamraju, S.; Sundaram, R.M. Exploring Stable Low Soil Phosphorous Stress Tolerance in Rice Using Novel Allele Recombination From Oryza rufipogon. Plant Breed, 2024; early view. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Sec 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African Maize-Based Foods: Technological Perspectives to Increase the Food and Nutrition Security Impacts of Maize Breeding Programmes. Glob. Food Secur. 2018, 17, 48–56. [Google Scholar] [CrossRef]
- Santpoort, R. The Drivers of Maize Area Expansion in Sub-Saharan Africa. How Policies to Boost Maize Production Overlook the Interests of Smallholder Farmers. Land 2020, 9, 68. [Google Scholar] [CrossRef]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.; Glahn, R.P. Assessment of Concentrations of Iron and Zinc and Bioavailable Iron in Grains of Early-Maturing Tropical Maize Varieties. J. Agric. Food Chem. 2003, 51, 3688–3694. [Google Scholar] [CrossRef]
- Agarwal, M.; Rampure, M.; Todkar, A.; Sharma, P. Ethanol from Maize: An Entrepreneurial Opportunity in Agrobusiness. Biofuels 2019, 10, 385–391. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Palacios-Rojas, N.; Hossain, F.; Muthusamy, V.; Menkir, A.; Dhliwayo, T.; Ndhlela, T.; San Vicente, F.; Nair, S.K.; Vivek, B.S.; et al. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2020, 10, 1392. [Google Scholar] [CrossRef]
- Pita-Barbosa, A.; Ricachenevsky, F.K.; Flis, P.M. One “OMICS” to Integrate Them All: Ionomics as a Result of Plant Genetics, Physiology and Evolution. Theor. Exp. Plant Physiol. 2019, 31, 71–89. [Google Scholar] [CrossRef]
- Ricachenevsky, F.K.; De Araújo Junior, A.T.; Fett, J.P.; Sperotto, R.A. You Shall Not Pass: Root Vacuoles as a Symplastic Checkpoint for Metal Translocation to Shoots and Possible Application to Grain Nutritional Quality. Front. Plant Sci. 2018, 9, 412. [Google Scholar] [CrossRef] [PubMed]
- Wairich, A.; Lima-Melo, Y.; Menguer, P.K.; Ortolan, F.; Ricachenevsky, F.K. Iron, Cold Iron, Is Master of Them All: Iron Crosstalk with Zinc, Copper, Phosphorus, and Nitrogen Homeostasis. J. Exp. Bot. 2025, 76, 4787–4803. [Google Scholar] [CrossRef] [PubMed]
- DeLoose, M.; Clúa, J.; Cho, H.; Zheng, L.; Masmoudi, K.; Desnos, T.; Krouk, G.; Nussaume, L.; Poirier, Y.; Rouached, H. Recent Advances in Unraveling the Mystery of Combined Nutrient Stress in Plants. Plant J. 2024, 117, 1764–1780. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Salt, D.E. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. Mol. Plant 2016, 9, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
- Von Uexküll, H.R.; Mutert, E. Global Extent, Development and Economic Impact of Acid Soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Ginocchio, R.; De La Fuente, L.M.; Sánchez, P.; Bustamante, E.; Silva, Y.; Urrestarazu, P.; Rodríguez, P.H. Soil Acidification as a Confounding Factor on Metal Phytotoxicity in Soils Spiked with Copper-Rich Mine Wastes. Environ. Toxicol. Chem. 2009, 28, 2069–2081. [Google Scholar] [CrossRef]
- Ma, J.F. Plant Root Responses to Three Abundant Soil Minerals: Silicon, Aluminum and Iron. Crit. Rev. Plant Sci. 2005, 24, 267–281. [Google Scholar] [CrossRef]
- Yamamoto, Y. Aluminum Toxicity in Plant Cells: Mechanisms of Cell Death and Inhibition of Cell Elongation. Soil Sci. Plant Nutr. 2019, 65, 41–55. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.-W.; Pan, J.-L.; Huang, Z.-B.; Li, Y.-Z. Physiological Characterization of Maize Tolerance to Low Dose of Aluminum, Highlighted by Promoted Leaf Growth. Planta 2015, 242, 1391–1403. [Google Scholar] [CrossRef]
- Peixoto, H.P.; Da Matta, F.M.; Da Matta, J.C. Responses Of The Photosynthetic Apparatus To Aluminum Stress In Two Sorghum Cultivars. J. Plant Nutr. 2002, 25, 821–832. [Google Scholar] [CrossRef]
- Yang, Z.-B.; Rao, I.M.; Horst, W.J. Interaction of Aluminium and Drought Stress on Root Growth and Crop Yield on Acid Soils. Plant Soil 2013, 372, 3–25. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Nadira, U.A.; Cao, F.; He, X.; Zhang, G.; Wu, F. Physiological and Molecular Analysis on Root Growth Associated with the Tolerance to Aluminum and Drought Individual and Combined in Tibetan Wild and Cultivated Barley. Planta 2016, 243, 973–985. [Google Scholar] [CrossRef]
- Silva, C.O.; Brito, D.S.; Da Silva, A.A.; Do Rosário Rosa, V.; Santos, M.F.S.; De Souza, G.A.; Azevedo, A.A.; Dal-Bianco, M.; Oliveira, J.A.; Ribeiro, C. Differential Accumulation of Aluminum in Root Tips of Soybean Seedlings. Braz. J. Bot. 2020, 43, 99–107. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.-H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.-W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef]
- Rahman, R.; Upadhyaya, H. Aluminium Toxicity and Its Tolerance in Plant: A Review. J. Plant Biol. 2021, 64, 101–121. [Google Scholar] [CrossRef]
- Mahender, A.; Swamy, B.P.M.; Anandan, A.; Ali, J. Tolerance of Iron-Deficient and -Toxic Soil Conditions in Rice. Plants 2019, 8, 31. [Google Scholar] [CrossRef]
- Becker, M.; Asch, F. Iron Toxicity in Rice—Conditions and Management Concepts. Z. Pflanzenernähr. Bodenk 2005, 168, 558–573. [Google Scholar] [CrossRef]
- Atta, S.K.; Mohammed, S.A.; Van Cleemput, O.; Zayed, A. Transformations of Iron and Manganese under Controlled Eh, Eh-pH Conditions and Addition of Organic Matter. Soil Technol. 1996, 9, 223–237. [Google Scholar] [CrossRef]
- Chen, C.; Hall, S.J.; Coward, E.; Thompson, A. Iron-Mediated Organic Matter Decomposition in Humid Soils Can Counteract Protection. Nat. Commun. 2020, 11, 2255. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Cai, H.; Zhou, W.; Xu, F. H2O2 Mediates Nitrate-induced Iron Chlorosis by Regulating Iron Homeostasis in Rice. Plant Cell Environ. 2018, 41, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Melzer, M.; Zheng, S.; Benke, A.; Stich, B.; Von Wirén, N. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize. Front. Plant Sci. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, X.; Jia, X.; Liu, L.; Cao, H.; Qin, W.; Li, M. Iron Deficiency Leads to Chlorosis Through Impacting Chlorophyll Synthesis and Nitrogen Metabolism in Areca catechu L. Front. Plant Sci. 2021, 12, 710093. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, W.F.C.; Lisboa, A.B.P.; Lima, J.E.; Ricachenevsky, F.K.; Del-Bem, L. Ferrous Iron Uptake via IRT1 / ZIP Evolved at Least Twice in Green Plants. New Phytol. 2023, 237, 1951–1961. [Google Scholar] [CrossRef]
- Lee, S.; Chiecko, J.C.; Kim, S.A.; Walker, E.L.; Lee, Y.; Guerinot, M.L.; An, G. Disruption of OsYSL15 Leads to Iron Inefficiency in Rice Plants. Plant Physiol. 2009, 150, 786–800. [Google Scholar] [CrossRef]
- Inoue, H.; Kobayashi, T.; Nozoye, T.; Takahashi, M.; Kakei, Y.; Suzuki, K.; Nakazono, M.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Rice OsYSL15 Is an Iron-Regulated Iron(III)-Deoxymugineic Acid Transporter Expressed in the Roots and Is Essential for Iron Uptake in Early Growth of the Seedlings. J. Biol. Chem. 2009, 284, 3470–3479. [Google Scholar] [CrossRef]
- Curie, C.; Panaviene, Z.; Loulergue, C.; Dellaporta, S.L.; Briat, J.-F.; Walker, E.L. Maize Yellow Stripe1 Encodes a Membrane Protein Directly Involved in Fe(III) Uptake. Nature 2001, 409, 346–349. [Google Scholar] [CrossRef]
- De Oliveira, B.H.N.; Wairich, A.; Turchetto-Zolet, A.C.; Fett, J.P.; Ricachenevsky, F.K. The Mitochondrial Iron-Regulated (MIR) Gene Is Oryza Genus Specific and Evolved before Speciation within the Oryza sativa Complex. Planta 2020, 251, 94. [Google Scholar] [CrossRef] [PubMed]
- Wairich, A.; De Oliveira, B.H.N.; Arend, E.B.; Duarte, G.L.; Ponte, L.R.; Sperotto, R.A.; Ricachenevsky, F.K.; Fett, J.P. The Combined Strategy for Iron Uptake Is Not Exclusive to Domesticated Rice (Oryza sativa). Sci. Rep. 2019, 9, 16144. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, W.; Chen, X.; Zhu, H.; Fu, X.; Yu, F. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize. Front. Plant Sci. 2022, 13, 878809. [Google Scholar] [CrossRef] [PubMed]
- Kenzhebayeva, S.; Atabayeva, S.; Sarsu, F.; Abekova, A.; Shoinbekova, S.; Omirbekova, N.; Doktyrbay, G.; Beisenova, A.; Shavrukov, Y. Organ-Specific Expression of Genes Involved in Iron Homeostasis in Wheat Mutant Lines with Increased Grain Iron and Zinc Content. PeerJ 2022, 10, e13515. [Google Scholar] [CrossRef]
- Nam, H.-I.; Shahzad, Z.; Dorone, Y.; Clowez, S.; Zhao, K.; Bouain, N.; Lay-Pruitt, K.S.; Cho, H.; Rhee, S.Y.; Rouached, H. Interdependent Iron and Phosphorus Availability Controls Photosynthesis through Retrograde Signaling. Nat. Commun. 2021, 12, 7211. [Google Scholar] [CrossRef]
- Guo, M.; Ruan, W.; Zhang, Y.; Zhang, Y.; Wang, X.; Guo, Z.; Wang, L.; Zhou, T.; Paz-Ares, J.; Yi, K. A Reciprocal Inhibitory Module for Pi and Iron Signaling. Mol. Plant 2022, 15, 138–150. [Google Scholar] [CrossRef]
- Saenchai, C.; Bouain, N.; Kisko, M.; Prom-u-thai, C.; Doumas, P.; Rouached, H. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling. Front. Plant Sci. 2016, 7, 396. [Google Scholar] [CrossRef]
- Qiu, G.-W.; Zheng, W.-C.; Yang, H.-M.; Wang, Y.-Y.; Qi, X.; Huang, D.; Dai, G.-Z.; Shi, H.; Price, N.M.; Qiu, B.-S. Phosphorus Deficiency Alleviates Iron Limitation in Synechocystis Cyanobacteria through Direct PhoB-Mediated Gene Regulation. Nat. Commun. 2024, 15, 4426. [Google Scholar] [CrossRef]
- Tiziani, R.; Pranter, M.; Valentinuzzi, F.; Pii, Y.; Luigimaria, B.; Cesco, S.; Mimmo, T. Unraveling Plant Adaptation to Single and Combined Nutrient Deficiencies in a Dicotyledonous and a Monocotyledonous Plant Species. Plant Sci. 2023, 335, 111793. [Google Scholar] [CrossRef]
- Alves, J.D.S.; Menguer, P.K.; Lima-Melo, Y.; Fiorentini, V.H.R.; Ponte, L.R.; Olsson, R.V.; Sasso, V.M.; De Palma, N.; Tabaldi, L.A.; Brunetto, G.; et al. Aluminum Alleviates Iron Deficiency Chlorosis by Interfering with Phosphorus Homeostasis in Rice (Oryza sativa L.). Plant Physiol. Biochem. 2025, 220, 109427. [Google Scholar] [CrossRef]
- Stein, J.C.; Yu, Y.; Copetti, D.; Zwickl, D.J.; Zhang, L.; Zhang, C.; Chougule, K.; Gao, D.; Iwata, A.; Goicoechea, J.L.; et al. Genomes of 13 Domesticated and Wild Rice Relatives Highlight Genetic Conservation, Turnover and Innovation across the Genus Oryza. Nat. Genet. 2018, 50, 285–296. [Google Scholar] [CrossRef]
- Moreno-Alvarado, M.; García-Morales, S.; Trejo-Téllez, L.I.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C. Aluminum Enhances Growth and Sugar Concentration, Alters Macronutrient Status and Regulates the Expression of NAC Transcription Factors in Rice. Front. Plant Sci. 2017, 8, 73. [Google Scholar] [CrossRef]
- Ofoe, R.; Thomas, R.H.; Asiedu, S.K.; Wang-Pruski, G.; Fofana, B.; Abbey, L. Aluminum in Plant: Benefits, Toxicity and Tolerance Mechanisms. Front. Plant Sci. 2023, 13, 1085998. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, M.; Liu, X.; Mao, Q.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium Is Essential for Root Growth and Development of Tea Plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- Therby-Vale, R.; Lacombe, B.; Rhee, S.Y.; Nussaume, L.; Rouached, H. Mineral Nutrient Signaling Controls Photosynthesis: Focus on Iron Deficiency-Induced Chlorosis. Trends Plant Sci. 2022, 27, 502–509. [Google Scholar] [CrossRef]
- Ponte, L.R.; Alves, J.D.S.; Lima-Melo, Y.; Menguer, P.K.; Boulanger, H.G.; Giehl, R.F.H.; Calixto, C.P.G.; Margis-Pinheiro, M.; Ricachenevsky, F.K. Abscisic Acid, Stress and Ripening (ASR) Proteins Play a Role in Iron Homeostasis in Rice (Oryza sativa L.). Plant Physiol. Biochem. 2025, 223, 109882. [Google Scholar] [CrossRef] [PubMed]
- Wairich, A.; Wember, L.S.; Gassama, L.J.; Wu, L.; Murugaiyan, V.; Ricachenevsky, F.K.; Margis-Pinheiro, M.; Frei, M. Salt Resistance of Interspecific Crosses of Domesticated and Wild Rice Species. J. Plant Nutr. Soil Sci. 2021, 184, 492–507. [Google Scholar] [CrossRef]
- Neelam, K.; Thakur, S.; Neha; Yadav, I.S.; Kumar, K.; Dhaliwal, S.S.; Singh, K. Novel Alleles of Phosphorus-Starvation Tolerance 1 Gene (PSTOL1) from Oryza rufipogon Confers High Phosphorus Uptake Efficiency. Front. Plant Sci. 2017, 8, 509. [Google Scholar] [CrossRef]
- Wairich, A.; De Oliveira, B.H.N.; Wu, L.-B.; Murugaiyan, V.; Margis-Pinheiro, M.; Fett, J.P.; Ricachenevsky, F.K.; Frei, M. Chromosomal Introgressions from Oryza meridionalis into Domesticated Rice Oryza sativa Result in Iron Tolerance. J. Exp. Bot. 2021, 72, 2242–2259. [Google Scholar] [CrossRef]
- Wairich, A.; Aung, M.S.; Ricachenevsky, F.K.; Masuda, H. You Can’t Always Get as Much Iron as You Want: How Rice Plants Deal with Excess of an Essential Nutrient. Front. Plant Sci. 2024, 15, 1381856. [Google Scholar] [CrossRef]
- Wang, P.; Yamaji, N.; Inoue, K.; Mochida, K.; Ma, J.F. Plastic Transport Systems of Rice for Mineral Elements in Response to Diverse Soil Environmental Changes. New Phytol. 2020, 226, 156–169. [Google Scholar] [CrossRef]
- Vogan, P.J.; Sage, R.F. Water-use Efficiency and Nitrogen-use Efficiency of C3 -C4 Intermediate Species of Flaveria Juss. (Asteraceae). Plant Cell Environ. 2011, 34, 1415–1430. [Google Scholar] [CrossRef]
- Sage, R.F.; Pearcy, R.W.; Seemann, J.R. The Nitrogen Use Efficiency of C3 and C4 Plants: III. Leaf Nitrogen Effects on the Activity of Carboxylating Enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol. 1987, 85, 355–359. [Google Scholar] [CrossRef]
- Gerlich, S.C.; Walker, B.J.; Krueger, S.; Kopriva, S. Sulfate Metabolism in C4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis. Plant Physiol. 2018, 178, 565–582. [Google Scholar] [CrossRef]
- Jobe, T.O.; Zenzen, I.; Rahimzadeh Karvansara, P.; Kopriva, S. Integration of Sulfate Assimilation with Carbon and Nitrogen Metabolism in Transition from C3 to C4 Photosynthesis. J. Exp. Bot. 2019, 70, 4211–4221. [Google Scholar] [CrossRef]
- Krone, R.; Gerlich, S.; Mertens, M.; Koprivova, A.; Westhoff, P.; Kopriva, S. C4 Plants Respond to Phosphate Starvation Differently than C3 Plants. Plant Physiol. 2025, 198, kiaf327. [Google Scholar] [CrossRef]
- Magalhaes, J.V.; Piñeros, M.A.; Maciel, L.S.; Kochian, L.V. Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils. Front. Plant Sci. 2018, 9, 1420. [Google Scholar] [CrossRef] [PubMed]
- Famoso, A.N.; Clark, R.T.; Shaff, J.E.; Craft, E.; McCouch, S.R.; Kochian, L.V. Development of a Novel Aluminum Tolerance Phenotyping Platform Used for Comparisons of Cereal Aluminum Tolerance and Investigations into Rice Aluminum Tolerance Mechanisms. Plant Physiol. 2010, 153, 1678–1691. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, C.; Cui, B.; Wang, N.; Zhao, Z.; Zhou, L.; Huang, K.; Ding, J.; Du, H.; Jiang, W.; et al. Transcriptomic Responses to Aluminum (Al) Stress in Maize. J. Integr. Agric. 2018, 17, 1946–1958. [Google Scholar] [CrossRef]
- Silva, S.; Pinto, G.; Dias, M.C.; Correia, C.M.; Moutinho-Pereira, J.; Pinto-Carnide, O.; Santos, C. Aluminium Long-Term Stress Differently Affects Photosynthesis in Rye Genotypes. Plant Physiol. Biochem. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Arsenault, J.-L.; Poulcur, S.; Messier, C.; Guay, R. WinRHlZOTM, a Root-Measuring System with a Unique Overlap Correction Method. Hortscience 1995, 30, 906. [Google Scholar] [CrossRef]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. ISBN 978-0-12-182048-0. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of Housekeeping Genes as Internal Control for Studying Gene Expression in Rice by Quantitative Real-Time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alves, J.d.S.; Lima-Melo, Y.; Wairich, A.; Sasso, V.M.; Nascimento, V.L.; Sperotto, R.A.; Tabaldi, L.A.; Brunetto, G.; Ricachenevsky, F.K. Aluminum Alleviation of Iron Deficiency Chlorosis Is Conserved in Wild Rice Relative Oryza rufipogon and in Maize. Plants 2026, 15, 159. https://doi.org/10.3390/plants15010159
Alves JdS, Lima-Melo Y, Wairich A, Sasso VM, Nascimento VL, Sperotto RA, Tabaldi LA, Brunetto G, Ricachenevsky FK. Aluminum Alleviation of Iron Deficiency Chlorosis Is Conserved in Wild Rice Relative Oryza rufipogon and in Maize. Plants. 2026; 15(1):159. https://doi.org/10.3390/plants15010159
Chicago/Turabian StyleAlves, Jover da Silva, Yugo Lima-Melo, Andriele Wairich, Vic Martini Sasso, Vitor L. Nascimento, Raul Antonio Sperotto, Luciane Almeri Tabaldi, Gustavo Brunetto, and Felipe Klein Ricachenevsky. 2026. "Aluminum Alleviation of Iron Deficiency Chlorosis Is Conserved in Wild Rice Relative Oryza rufipogon and in Maize" Plants 15, no. 1: 159. https://doi.org/10.3390/plants15010159
APA StyleAlves, J. d. S., Lima-Melo, Y., Wairich, A., Sasso, V. M., Nascimento, V. L., Sperotto, R. A., Tabaldi, L. A., Brunetto, G., & Ricachenevsky, F. K. (2026). Aluminum Alleviation of Iron Deficiency Chlorosis Is Conserved in Wild Rice Relative Oryza rufipogon and in Maize. Plants, 15(1), 159. https://doi.org/10.3390/plants15010159

