The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Test Materials
2.3. Experimental Design
2.4. Measurement Items and Methods
2.5. Statistical Analysis
3. Results
3.1. Effects of Intercropping Patterns on the Aboveground Growth of Winter Rapeseed at Different Growth Stages
3.2. Effects of Intercropping on Root Characteristics of Winter Rapeseed at Different Growth Stages
3.3. Effects of Intercropping Patterns on Winter Rapeseed Yield Components and Yield
3.4. Correlation Analysis of Various Indicators During Winter Rapeseed Maturity
4. Discussion
4.1. Effect of Intercropping Density on Winter Rapeseed Growth, Root Characteristics, and Yield
4.2. Effect of Slope on Winter Rapeseed Growth, Root Characteristics, and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, B.; Geng, P. New quality productivity of agriculture: Theoretical context, basic core and improvement path. Agric. Econ. Issues 2024, 4, 13–26. [Google Scholar]
- Zou, X.; Zhu, X.; Chen, C.; Liu, W. Soil and water conservation benefits of agroforestry system. Yunnan Univ. (Nat. Sci. Ed.) 2020, 42, 382–392. [Google Scholar]
- Pan, K.; Guo, L.; Chen, X.; Xu, L.; Tang, J. Research progress on service functions of agroforestry ecosystem. J. Ecol. Rural Environ. 2022, 38, 1535–1544. [Google Scholar]
- Luo, H.; Wu, T.; Meng, X.; Liu, P.; Xu, Y.; Lin, Z. Impact of forest-drug complex management model on soil ecology. World For. Res. 2024, 37, 37–42. [Google Scholar]
- Wang, W.; Huang, G.; Ren, Y.; Liu, C.; Jin, Y.; Liu, C.; Tang, J. Plant growth and biomass dynamics of rubber-Rauwolfia-Cinnamomum cassia composite forest. J. Cent. South Univ. For. Technol. 2023, 43, 116–126. [Google Scholar]
- Surki, A.; Nazari, M.; Fallah, S.; Iranipour, R. Improvement of the soil properties, nutrients, and carbon stocks in different cereal–legume agroforestry systems. Int. J. Environ. Sci. Technol. 2020, 18, 123–130. [Google Scholar] [CrossRef]
- Huang, J.; Pan, J.; Zhou, L.; Yuan, S.; Lin, W. Effects of light deficit on crop productivity in rubber-crop agroforestry system. Chin. J. Eco-Agric. 2020, 28, 680–689. [Google Scholar]
- Souza, D.D.E.F.; Oliveira, S.D.N.D.J.; Santos, D.C.R.C.; Ferreira, O.D.V.E.; Silva, D.L.T.R.; Paula, D.T.M.; Alves, N.D.J.; Oliveira, D.R.S.J.; Rodrigues, M.D.I.J.; Martins, R.B.W. Physical and chemical soil quality and litter stock in agroforestry systems in the Eastern Amazonia. Agric. Ecosyst. Environ. 2025, 382, 109479. [Google Scholar] [CrossRef]
- Xie, T.; Shan, L.; Zhang, P. Litter decomposition characteristics of poplar-maize composite system under different water conditions. Acta Ecol. Sin. 2022, 42, 8041–8049.4. [Google Scholar]
- Fitra, Y.A.A.; Oakley, S.; Prayogo, C.; Sari, R.R.; Saputra, D.D.; Ishaq, R.M.; Wicaksono, S.K.; Suprayogo, D. Soil Water in Different Management Systems of Coffee-Pine Agroforestry and Its Relation to Coffee Bean Yields. IOP Conf. Ser. Earth Environ. Sci. 2024, 1299, 012009. [Google Scholar] [CrossRef]
- Kun, Á.; Simon, B.; Zalai, M.; Kolozsvári, I.; Bozán, C.; Jancsó, M.; Körösparti, J.T.; Kovács, G.P.; Gyuricza, C.; Bakti, B. Effect of Mulching on Soil Quality in an Agroforestry System Irrigated with Reused Water. Agronomy 2023, 13, 1622. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; He, H. Effects of phosphate fertilization and intercropping on plant growth, nitrogen and phosphorusuptake of millet and soybean across three soil types. J. Soils Sediments 2025, 25, 1150–1164. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, L.; Liu, Q.; Li, Z.; Liu, C.; Yuan, J.; Liao, J.; Luo, L.; Yu, C.; Feng, Y. Effects of tomato-Sedum alfredii Hance intercropping on crop production and Cd remediation as affected by soil types. Environ. Sci. Pollut. Res. 2024, 31, 3696–3706. [Google Scholar] [CrossRef] [PubMed]
- Kokila, A.; Nagarajaiah, C.; Hanumanthappa, C.D.; Shivanna, B.; Sathish, K.; Mahadevamurthy, M. Effect of Tree Canopy Cover on Soil Moisture Dynamics in Different Agroforestry Systems under Semi-arid Condition. Int. J. Environ. Clim. Change 2024, 14, 485–495. [Google Scholar] [CrossRef]
- Huo, G. Interspecific Water Relationship and Influencing Mechanism of Apple-Rapeseed Complex System in the Loess Hilly Region; Northwest Agriculture and Forestry University: Xianyang, China, 2021. [Google Scholar]
- Narteh, E.T.; Adutwum, A.A.; Oppong, H.T.; Nketiah, J.B.; Pinamang, P.A.; Kwame, A.T.; Evans, D.; Vincent, L.; Olivia, A.; Ama, S.E.; et al. Rubber and plantain intercropping: Effects of different planting densities on soil characteristics. PLoS ONE 2019, 14, e0209260. [Google Scholar]
- Huang, N.; Li, Y.X.; Liu, Y.H.; Tang, J.N.; Ji, Y.; Zhao, C.; Li, J. Effects of stand structure on ecological benefits and tree growth of Haloxylon ammodendron plantations: A meta-analysis. Land Degrad. Dev. 2024, 35, 4406–4418. [Google Scholar] [CrossRef]
- Tkach, V.; Tarnopilska, O.; Luk’yanets, V.; Musienko, S.; Kobets, O.; Rumiantsev, M.; Bondarenko, V. Density optimization of pine plantations in the Left-Bank Steppe in ukraine. Folia For. Pol. 2024, 66, 104–117. [Google Scholar]
- Lee, J.-G.; Lee, D.-H.; Jung, J.-Y.; Lee, S.-G.; Han, S.H.; Kim, S.; Kim, H.-J. The Effects of Stand Density Control on Carbon Cycle in Chamaecyparis obtusa (Siebold and Zucc.) Endl. Forests. Forests 2023, 14, 217. [Google Scholar] [CrossRef]
- Biloa, B.J.; Monique, A.; Giweta, H.M.; Fiaboe, M.K.K.; Samuel, N.N.; Mandah, V.P.; Essobo, D.J.; Onana, A.; Cargele, M. Influence of cocoa farm age and slope, and shade rate on cocoa soils fertility. Environ. Chall. 2025, 19, 101115. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Hu, X.; Zhong, J.; Yang, K.; Zhao, Z.; Li, T. Response of loess with different slopes and vegetation coverage to rainfall infiltration. J. Soil Water Conserv. 2024, 38, 113–121. [Google Scholar]
- Xiao, Z.; Ai, Q.; Jin, Z.; Zhang, B.; Wang, Y.; Zhu, Y. Study on the growth rhythm and dynamic changes of essential oil in Cinnamomum camphora dwarf forest. J. Jiangxi Agric. Univ. 2021, 43, 834–841. [Google Scholar]
- Jin, Z.; Zhang, B.; Ai, Q.; Xiao, Z.; Wang, Y.; Zhang, H.; Chen, S.; Lu, Q.; Wang, Z. Necessity and feasibility analysis of research on camphor tree. J. Nanchang Inst. Technol. 2020, 39, 1–13. [Google Scholar]
- Lu, J.; Ren, T.; Li, X.; Cong, R.; Lu, Z.; Zhang, Y.; Liu, S.; Liao, S.; Zhu, J. Precision regulation strategy for rapeseed nutrients =Strategy and efficient fertilization technology system. J. Huazhong Agric. Univ. 2023, 42, 18–25. [Google Scholar]
- Wang, J.; Zhang, J.; Yue, J.; Fu, Z.; Yin, R.; Chen, Y. Effects of sodium chloride stress on photosynthetic pigments and chlorophyll fluorescence parameters of camphor tree seedlings. J. Anhui Agric. Univ. 2017, 44, 617–622. [Google Scholar]
- Luo, X.; Lu, X.; Zhang, H.; Han, X.; Xie, R. Effect of planting density of camphor dwarf forest on rill morphological characteristics on red soil slope. Chin. J. Soil Water Conserv. 2024, 22, 77–85. [Google Scholar]
- Yao, Y.; Zhou, J.; An, L.; Kafle, G.; Chen, S.; Qiu, L. Role of soil in improving process performance and methane yield of anaerobic digestion with corn straw as substrate. Energy 2018, 151, 998–1006. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Y.; Sun, W.; Zhang, Q.; Diao, M.; Sun, J. Extreme soil salinity reduces N and P metabolism and related microbial network complexity and community immigration rate. Environ. Res. 2024, 264, 120361. [Google Scholar] [CrossRef]
- Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Analysis; Shanghai Science and Technology Press: Shanghai, China, 1978; pp. 511–514. [Google Scholar]
- Liu, X.; Yang, Y.; Wu, B.; Lv, C.; Wei, H.; Gao, P.; Zhang, H.; Dai, Q.; Chen, Y. Effects of Nitrogen Application on Crop Production and Nitrogen Use in Rice–Wheat Rotation. Agronomy 2025, 15, 1047. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, W.; Wang, L.; Xu, M.; Qin, S.; Lu, J.; Gao, Y.; Li, S.; RAZA, A.; Zhang, Y.; et al. Effects of planting density on soybean photosynthesis, yield and stem lodging resistance under corn-soybean strip intercropping. Chin. Agric. Sci. 2021, 54, 4084–4096. [Google Scholar]
- Wang, K.; Na, E.; Zhang, R.; Gao, S.; Liu, J. Carbon, nitrogen and phosphorus stoichiometry and nutrient reabsorption characteristics of Pinus sylvestris var. mongolica in sandy land under different densities. J. Ecol. 2021, 40, 313–322. [Google Scholar]
- Li, Q.; Liu, Z.; Jinze, G. Impacts of stand density on tree crown structure and biomass: A global meta-analysis. Agric. For. Meteorol. 2022, 326, 109181. [Google Scholar] [CrossRef]
- Li, D.; Yang, Z.; Yan, P.; Ling, T.; Qin, F.; Li, P. Effects of stand density on canopy structure and understory herbs in Masson pine plantation community. J. Southwest For. Univ. 2024, 44, 60–68. [Google Scholar]
- Lott, J.E.; Ong, C.K.; Black, C.R. Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agri For. Meteorol. 2009, 149, 1140–1151. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Xu, J.; Xu, D.; Cheng, F.; Zhang, C.; Wu, B.; Gong, Y.; He, Y.; Wei, S.; et al. Effects of different strip intercropping patterns on cotton growth, development and productivity. Chin. Agric. Sci. 2024, 57, 4444–4458. [Google Scholar]
- Xiang, H.; Zheng, D.; He, N.; Li, W.; Wang, M.; Wang, S. Research progress on the physiological response of plants to low temperature stress and the effect of exogenous abscisic acid on stress alleviation. Acta Pratacult Sin. 2021, 30, 208–219. [Google Scholar]
- Wang, H.; Xiang, Y.; Li, W.; Shi, H.; Wang, X.; Zhao, X. Estimation of aboveground biomass of winter rapeseed based on multispectral remote sensing of unmanned aerial vehicle. Trans. Chin. Soc. Agric. Mach. 2023, 54, 218–229. [Google Scholar]
- Li, X.; Wang, Z.; Bao, X.; Yang, S.; Wang, P.; Wang, C.; Wu, J.; Liu, X.; Tian, X.; Wang, Y.; et al. Long-term increased grain yield and soil fertility from intercroping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Han, B.; Xiao, Z.; Fu, S.; Wang, L. Study on carbon storage of poplar-agricultural composite system with different densities. J. Anhui Agric. Univ. 2014, 41, 130–135. [Google Scholar]
- Cui, J.; Li, S.; Baoyin, B.; Guo, D.; Zhang, L.; Gu, Y. Maize/Soybean Intercroping with Straw Return Increases Crop Yield by Influencing the Biological Characteristics of Soil. Microorganisms 2024, 12, 1108. [Google Scholar] [CrossRef]
- Wang, J.; Bi, H.; Sun, Y.; Duan, H.; Peng, R. Analysis of canopy shading range of single apple trees of different tree ages. Chin. J. Soil Water Conserv. 2018, 16, 47–54. [Google Scholar]
- Duan, Z.; Liu, T.; Zhang, Y.; Jiao, C.; Luan, P.; Yang, T.; Shi, Y.; Tian, Y.; Zhang, W.; Li, L. Effects of distance between trees on photosynthetic characteristics and yield of wheat in intercropped jujube and wheat. J. Wheat Crops 2017, 37, 1445–1452. [Google Scholar]
- Wang, L.; Dai, Y.; Zhang, J.; Meng, P.; Sun, S.; Li, H.; Wan, X. Effects of water and light conditions on photosynthesis and growth of soybean in walnut-soybean agroforestry system. For. Sci. 2020, 56, 188–196. [Google Scholar]
- Lu, X.; Yang, B.; Zhang, H.; Zhang, J.; Wang, Q.; Jin, Z. Inversion of essential oil yield of dwarf camphor tree leaves based on multispectral remote sensing of UAV. Trans. Chin. Soc. Agric. Mach. 2023, 54, 191–197, 213. [Google Scholar]
- Zhao, J.; Fan, H.; Zhang, J.; Xiao, Z.; Zhang, H.; Xiao, C.; Wu, C.; Jin, Z. Effects of slope position on biomass spatial allocation and essential oil yield of Cinnamomum camphora dwarf forest. J. Cent. South Univ. For. Technol. 2020, 40, 9–13. [Google Scholar]
- Zeng, X.; Li, J.; Xu, M.; Gao, J.; Sun, N. Fertility status of red soil dryland and the influence of fertilization and utilization methods. Soil Bull. 2006, 3, 434–437. [Google Scholar]
- Liu, Y.; Liu, Y.; Lan, Z.; Tie, N.; Zhang, M.; Wang, C.; Luo, Q.; Zhang, C. Effects of different irrigation methods on growth, photosynthetic characteristics and soil water transport of Pinus sylvestris var. mongolica. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 135–143. [Google Scholar]
- Eduardo, C.; Míriam, P.; Jaime, C.; Javier, G.D.D.; Carla, F.; Lluís, C. Close-to-nature management effects on tree growth and soil moisture in Mediterranean mixed forests. For. Ecol. Manag. 2023, 549, 121457. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, X.; Ren, W.; Che, Z.; Ren, L. Research on technical measures for green manure crop rotation and fallow in rain-fed farmland in semi-arid areas. Arid Land Resour. Environ. 2024, 38, 123–132. [Google Scholar]
- Quan, W.; Jiu, G.; Meng, Z.; Zhang, B.; Rao, Y.; Xiao, H. Nitrogen Reduction Combined with Organic Materials Can Stabilize Crop Yield and Soil Nutrients in Winter Rapeseed and Maize Rotation in Yellow Soil. Sustainability 2022, 14, 7183. [Google Scholar] [CrossRef]
- Lu, H.; Xu, J.; Li, G.; Ma, N.; Su, G.; Zhang, Y. Dynamic trends and laws of soil physicochemical properties and understory plant diversity in different growth and development stages of Eucalyptus grandis forest. J. For. Sci. 2024, 37, 82–91. [Google Scholar]
- Zhu, Y.; Zhai, B.; Sun, M.; Luo, L.; Wang, Y.; Du, S. Soil physicochemical properties and stoichiometric characteristics of Robinia pseudoacacia and Pinus tabulaeformis plantations with different densities in the Loess Hilly Region. J. Soil Water Conserv. 2023, 30, 160–167. [Google Scholar]
- Lou, Q.; Chen, H.; Ding, G.; An, N. Effects of afforestation density on understory vegetation and soil properties of Masson pine plantations. J. West For. Sci. 2022, 51, 139–145+163. [Google Scholar]
- Farooq, T.H.; Kumar, U.; Yan, Y.; Arif, M.S.; Shakoor, A.; Tayyab, M.; Rathod, P.H.; Altaf, M.M.; Wu, P. Receptiveness of soil bacterial diversity in relation to soil nutrient transformation and canopy growth in Chinese fir monoculture influenced by varying stand density. Trees 2022, 36, 1149–1160. [Google Scholar] [CrossRef]
- Zhou, H.; Xiong, J.; Wu, J.; Zheng, X.; Huang, H.; Chen, H.; Yu, X. Root spatial distribution and underground competition in a typical betel nut-elephant grass complex system in central Hainan. J. Trop. Crops 2023, 44, 1030–1038. [Google Scholar]
- Ruan, Y.; Ou, Z.; Luo, M.; Yang, T.; Zhou, Z.; Hu, G. Effects of rainfall level and planting pattern on slope runoff and sediment production in the metamorphic rock area of Dabie Mountains. Bull. Soil Water Conserv. 2024, 44, 68–74. [Google Scholar]
- Huo, G.; Zhao, X.; Gao, X.; Wang, S.; Pan, Y. Soil water use and competition in the jujube-agriculture complex system in the Loess Hilly Region. J. Nat. Resour. 2017, 32, 2043–2054. [Google Scholar]
- Nguyen, X.H.; Pham, A.H. Assessing soil erosion by agricultural and forestry production and proposing solutions to mitigate: A case study in Son La Province, Vietnam. Appl. Environ. Soil Sci. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, Y.; Yuan, X.; Li, Y.; Wang, K. Ecological stoichiometric characteristics of Cynodon dactylon and its seedlings on different slopes in the Three Gorges drawdown zone. Acta Ecol. Sin. 2023, 43, 4798–4811. [Google Scholar]
- Wang, B.; Liu, G. Effect of topography on soil nutrient loss in the loess hilly region. J. Soil Eros. Soil Water Conserv. 1999, 2, 19–23. [Google Scholar]
- Zhidan, W.; Xuan, W.; Tieliang, W. Effects of Imazethapyr on Soybean Root Growth and Soil Microbial Communities in Sloped Fields. Sustainability 2022, 14, 3518. [Google Scholar] [CrossRef]
- Nong, G.; Lu, P.; Wang, L.; Wu, Q. Study on the distribution characteristics of wheat root system in sloping cultivated land on the Loess Plateau. Soil Water Conserv. Res. 2013, 20, 92–98. [Google Scholar]
- Yang, Z.; Liu, Y.; Chen, M.; Wang, X.; Ye, C.; Li, X.; Chen, W.; Yang, Y.; Wang, B.; Li, C.; et al. Influence of Coupling Effects between Gravel Soil Porosity and Cement Grout Weight on Diffusion Laws and Morphologies of Penetration Grouting. Appl. Sci. 2022, 12, 7601. [Google Scholar] [CrossRef]
- Tu, A.; Nie, X.; Li, Y.; Li, H. Experiment and simulation of water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng. 2021, 39, 1243–1249. [Google Scholar]
- Lü, W.; Xiao, F.; Zhang, S.; Zheng, W.; Huang, T.; Xiao, X.; Li, Y.; Wu, Y.; Han, D.; Xiao, G.; et al. Effects of seed and fertilizer application methods on rapeseed yield and fertilizer utilization efficiency in red dryland soil. Acta Agron. Sin. 2020, 46, 1790–1800. [Google Scholar]
- Zhang, J.; Cai, D.; Yang, S.; Chen, X.; Chen, J. Effects of different slopes on soil fertility characteristics in Danjiangkou Reservoir area. Chin. Soil Fertil. 2021, 2, 32–38. [Google Scholar]
- Tang, J.; Yang, Q.; Liang, J.; Wang, H.; Yue, X. Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-sheltercultivation: A three-year sloping fields experiment. Agri. Water Manag. 2024, 291, 108635. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, C.; Liu, Y.; Wang, T.; Deng, J.; Li, Z.; Hu, Y. Effects of tillage measures and rainfall intensity on erosion of red soil sloping farmland in southern China. J. Soil Water Conserv. 2019, 33, 49–54. [Google Scholar]
- Chen, X.; Yang, J.; Tang, C.; Zheng, T.; Li, L. Effects of rainfall intensity and slope on surface runoff and intersoil flow in red soil sloping farmland. Trans. Chin. Soc. Agric. Eng. 2017, 33, 141–146. [Google Scholar]
Deal with | Slope | Intercropping | Winter Rapeseed Plant Spacing × Row Spacing (m) | Camphor Coppice Plant Spacing × Row Spacing (m) | Winter Rapeseed Planting Density Plants/ha |
---|---|---|---|---|---|
S1D1 | 5° | Low-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.5 m × 1.5 m | 850,000 plants |
S1D2 | 5° | Intercropping system of dwarf camphor tree forest and winter rapeseed in medium stand density | 0.1 m × 0.1 m | 1.0 m × 1.5 m | 800,000 plants |
S1D3 | 5° | High-stand-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.0 m × 1.0 m | 700,000 plants |
S1CK | 5° | Winter rapeseed monoculture | 0.1 m × 0.1 m | / | 1 million plants |
S2D1 | 10° | Low-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.5 m × 1.5 m | 850,000 plants |
S2D2 | 10° | Intercropping system of dwarf camphor tree forest and winter rapeseed in medium stand density | 0.1 m × 0.1 m | 1.0 m × 1.5 m | 800,000 plants |
S2D3 | 10° | High-stand-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.0 m × 1.0 m | 700,000 plants |
S2CK | 10° | Winter rapeseed monoculture | 0.1 m × 0.1 m | / | 1 million plants |
S3D1 | 15° | Low-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.5 m × 1.5 m | 850,000 plants |
S3D2 | 15° | Intercropping system of dwarf camphor tree forest and winter rapeseed in medium stand density | 0.1 m × 0.1 m | 1.0 m × 1.5 m | 800,000 plants |
S3D3 | 15° | High-stand-density dwarf camphor tree forest–winter rapeseed intercropping system | 0.1 m × 0.1 m | 1.0 m × 1.0 m | 700,000 plants |
S3CK | 15° | Winter rapeseed monoculture | 0.1 m × 0.1 m | / | 1 million plants |
Experimental Treatment | Number of Effective Siliques per Plant/Piece | Number of Single Corner Grains/Piece | Thousand-Grain Weight/g | Theoretical Yield/(kg·hm−2) | Actual Yield/(kg·hm−2) | |
---|---|---|---|---|---|---|
S1 | CK | 84.25 ± 4.16 Ab | 16.91 ± 0.66 Aa | 3.68 ± 0.24 Aa | 5242.7 ± 285.33 Aa | 2984.98 ± 135.48 Aa |
D1 | 90.33 ± 5.09 Aa | 17.28 ± 0.81 Aa | 3.73 ± 0.12 Aa | 4948.8 ± 250.12 Aa | 2704.52 ± 115.62 Ab | |
D2 | 97.38 ± 12.06 Aa | 17.84 ± 1.43 Aa | 3.74 ± 0.13 Aa | 5197.7 ± 304.88 Aa | 2751.31 ± 99.48 Aab | |
D3 | 107.33 ± 5.85 Aa | 17.74 ± 1.06 Aa | 3.78 ± 0.22 Aa | 5038.1 ± 201.11 Aa | 2568.98 ± 138.21 Ab | |
S2 | CK | 80.16 ± 5.54 Ab | 16.63 ± 0.28 Aa | 3.66 ± 0.31 Aa | 4879.0 ± 278.92 Aa | 2858.46 ± 147.12 ABa |
D1 | 94.16 ± 3.78 Aa | 15.81 ± 2.03 Aa | 3.71 ± 0.18 Aa | 4694.5 ± 266.41 Aa | 2686.54 ± 126.88 Aa | |
D2 | 96.33 ± 7.15 Aa | 16.22 ± 1.67 Aa | 3.75 ± 0.23 Aa | 4687.4 ± 300.77 ABa | 2586.49 ± 103.44 Ba | |
D3 | 101.12 ± 10.83 Aa | 17.04 ± 1.14 Aa | 3.76 ± 0.21 Aa | 4535.1 ± 213.17 Aa | 2404.71 ± 98.12 Aa | |
S3 | CK | 72.33 ± 5.9 Ab | 16.06 ± 1.93 Ab | 3.64 ± 0.32 Aa | 4680.6 ± 318.46 Ba | 2687.52 ± 88.37 Ba |
D1 | 80.12 ± 5.71 Aa | 16.36 ± 1.22 Aa | 3.61 ± 0.15 Aa | 4423.6 ± 222.65 Ba | 2481.4 ± 128.18 Aa | |
D2 | 88.33 ± 7.04 Aa | 17.02 ± 1.11 Aa | 3.65 ± 0.66 Aa | 4588.6 ± 289.71 Ba | 2389.6 ± 110.64 Ba | |
D3 | 95.06 ± 9.53 Aa | 17.08 ± 1.12 Aa | 3.71 ± 0.23 Aa | 4316.5 ± 190.84 Ba | 2255.07 ± 102.11 Bb | |
Significant analysis | ||||||
Slope | ns | ns | ns | * | * | |
Density | * | * | * | ns | * | |
S × D | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Lu, X.; Zhang, H.; Wan, H.; Zhang, Y.; Feng, X. The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China. Plants 2025, 14, 1374. https://doi.org/10.3390/plants14091374
Luo X, Lu X, Zhang H, Wan H, Zhang Y, Feng X. The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China. Plants. 2025; 14(9):1374. https://doi.org/10.3390/plants14091374
Chicago/Turabian StyleLuo, Xin, Xianghui Lu, Haina Zhang, Haolong Wan, Yue Zhang, and Xiaoying Feng. 2025. "The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China" Plants 14, no. 9: 1374. https://doi.org/10.3390/plants14091374
APA StyleLuo, X., Lu, X., Zhang, H., Wan, H., Zhang, Y., & Feng, X. (2025). The Effects of Stand Density on the Growth of Winter Rapeseed in an Agroforestry Intercropping System in the Red Soil Slopes of Southern China. Plants, 14(9), 1374. https://doi.org/10.3390/plants14091374