Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland
Abstract
:1. Introduction
2. Results
2.1. Plant Biomass and Stoichiometric Responses to Long-Term N and Lime Application
2.2. Plant Stoichiometric and Nutrient Uptake Responses to Long-Term N and Lime Application
2.3. Soil Properties and Microbial Responses
2.3.1. Soil pH and SOC
2.3.2. Microbial Biomass Carbon and Enzyme Activity
2.3.3. Multivariate Analysis of Plant, Soil, and Microbial Properties
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Plant and Soil Sampling and Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Tong, R.; Ma, C.; Lou, C.; Yuan, W.; Zhu, N.; Wang, G.G.; Wu, T. Leaf nitrogen and phosphorus stoichiometry of the halophytes across China. Front. Plant Sci. 2023, 14, 1276699. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Pendall, E.; Morgan, J.A.; Blumenthal, D.M.; Carrillo, Y.; LeCain, D.R.; Follett, R.F.; Williams, D.G. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 2012, 196, 807–815. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Vargová, V.; Kanianska, R.; Kizeková, M.; Šiška, B.; Kováčiková, Z.; Michalec, M. Changes and Interactions between Grassland Ecosystem Soil and Plant Properties under Long-Term Mineral Fertilization. Agronomy 2020, 10, 375. [Google Scholar] [CrossRef]
- Li, W.; Xie, L.; Zhao, C.; Hu, X.; Yin, C. Nitrogen Fertilization Increases Soil Microbial Biomass and Alters Microbial Composition Especially Under Low Soil Water Availability. Microb. Ecol. 2023, 86, 536–548. [Google Scholar] [CrossRef]
- Ford, H.; Roberts, A.; Jones, L. Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland. Sci. Total Environ. 2016, 542, 203–209. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Zhang, Y.; Yang, J.; Smith, M.D.; Knapp, A.K.; Eissenstat, D.M.; Han, X. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Glob. Change Biol. 2019, 25, 2958–2969. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Xiao, T.; Hou, F. Different responses of soil C:N:P stoichiometry to stocking rate and nitrogen addition level in an alpine meadow on the Qinghai-Tibetan Plateau. Appl. Soil Ecol. 2021, 165, 103961. [Google Scholar] [CrossRef]
- Buthelezi, K.; Buthelezi-Dube, N. Effects of long-term (70 years) nitrogen fertilization and liming on carbon storage in water-stable aggregates of a semi-arid grassland soil. Heliyon 2021, 8, e08690. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.B.; Dong, C.C.; Yao, X.D.; Wang, W. Effects of nitrogen addition on plant biomass and tissue elemental content in different degradation stages of temperate steppe in northern China. J. Plant Ecol. 2018, 11, 730–739. [Google Scholar] [CrossRef]
- Caires, E.F.; Haliski, A.; Bini, A.R.; Scharr, D.A. Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil. Eur. J. Agron. 2015, 66, 41–53. [Google Scholar] [CrossRef]
- Carmeis Filho, A.C.A.; Crusciol, C.A.C.; Guimarães, T.M.; Calonego, J.C.; Mooney, S.J. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions. PLoS ONE 2016, 11, e0167564. [Google Scholar] [CrossRef]
- Badalucco, L.; Grego, S.; Dell’Orco, S.; Nannipieri, P. Effect of liming on some chemical, biochemical, and microbiological properties of acid soils under spruce (Picea abies L.). Biol. Fertil. Soils 1992, 14, 76–83. [Google Scholar] [CrossRef]
- Keller, A.B.; Borer, E.T.; Collins, S.L.; DeLancey, L.C.; Fay, P.A.; Hofmockel, K.S.; Leakey, A.D.B.; Mayes, M.A.; Seabloom, E.W.; Walter, C.A.; et al. Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade-long fertilization. Glob. Change Biol. 2022, 28, 1659–1677. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 2013, 340, 1615–1618. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Puget, P.; Drinkwater, L.E. Short-Term Dynamics of Root- and Shoot-Derived Carbon from a Leguminous Green Manure. Soil Sci. Soc. Am. J. 2001, 65, 771–779. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Ward, D.; Kirkman, K.; Tsvuura, Z. An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS ONE 2017, 12, e0177208. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Guo, J.; Peng, C.; Kneeshaw, D.; Roberge, G.; Pan, C.; Ma, X.; Zhou, D.; Wang, W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. Glob. Change Biol. 2023, 29, 3970–3989. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, X.; Song, L.; Gong, Y.; Lu, C.; Yue, P.; Tian, C.; Zhang, F. Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia 2015, 177, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Grunow, J.O.; Pienaar, A.J.; Breytenbach, C. Long term nitrogen application to veld in South Africa. Proc. Annu. Congr. Grassl. Soc. S. Afr. 1970, 5, 75–90. [Google Scholar] [CrossRef]
- da Silva Santos, J.H.; De Bona, F.D.; Monteiro, F.A. Growth and productive responses of tropical grass panicum maximum to nitrate and ammonium supply. Rev. Bras. Zootec. 2013, 42, 622–628. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Chien, S.H.; Gearhart, M.M.; Villagarcia, S. Comparison of Ammonium Sulfate with Other Nitrogen and Sulfur Fertilizers in Increasing Crop Production and Minimizing Environmental Impact: A Review. Soil Sci. 2011, 176, 327–335. [Google Scholar] [CrossRef]
- Pereira, C.G.; Clode, P.L.; Oliveira, R.S.; Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 2018, 218, 959–973. [Google Scholar] [CrossRef]
- Sardans, J.; Grau, O.; Chen, H.Y.H.; Janssens, I.A.; Ciais, P.; Piao, S.; Peñuelas, J. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 2017, 23, 3849–3856. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- Rajlakshmi Jadhav, D.A.; Dutta, S.; Sherpa, K.C.; Jayaswal, K.; Saravanabhupathy, S.; Mohanty, K.T.; Banerjee, R.; Kumar, J.; Rajak, R.C. Co-digestion processes of waste: Status and perspective. In Bio-Based Materials and Waste for Energy Generation and Resource Management: Present and Emerging Waste Management Practices: Volume 5 of Advanced Zero Waste Tools; Elsevier: Amsterdam, The Netherlands, 2023; pp. 207–241. [Google Scholar] [CrossRef]
- Liu, H.; Wang, R.; Lü, X.-T.; Cai, J.; Feng, X.; Yang, G.; Li, H.; Zhang, Y.; Han, X.; Jiang, Y. Effects of nitrogen addition on plant-soil micronutrients vary with nitrogen form and mowing management in a meadow steppe. Environ. Pollut. 2021, 289, 117969. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y. Tracer studies of carbon translocation by plants from the atmosphere into the soil (a review). Eurasian Soil Sci. 2001, 34, 28–42. [Google Scholar]
- Blagodatskaya, E.V.; Blagodatsky, S.A.; Anderson, T.H.; Kuzyakov, Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol. 2007, 37, 95–105. [Google Scholar] [CrossRef]
- Guenet, B.; Danger, M.; Abbadie, L.; Lacroix, G. Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology 2010, 91, 2850–2861. [Google Scholar] [CrossRef] [PubMed]
- Yandong, Z.; Zhihu, S.; Youxin, S. Effect of fertilization on soil microorganism of deteriiorated grassland in dry—Hot valley region of Jinsha river. J. Soil Water Conserv. 2005, 19, 88–91. [Google Scholar]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Mijangos, I.; Albizu, I.; Epelde, L.; Amezaga, I.; Mendarte, S.; Garbisu, C. Effects of liming on soil properties and plant performance of temperate mountainous grasslands. J. Environ. Manag. 2010, 91, 2066–2074. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef]
- Samuel, A.; Bungau, S.; Fodor, I.; Tit, D.M.; Felix, B.; Teodora, D.; Melinte, C. Effects of Liming and Fertilization on the Dehydrogenase and Catalase Activities. Rev. Chim. 2019, 70, 3464–3468. [Google Scholar] [CrossRef]
- Kanakidou, M.; Myriokefalitakis, S.; Daskalakis, N.; Fanourgakis, G.; Nenes, A.; Baker, A.R.; Tsigaridis, K.; Mihalopoulos, N. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 2016, 73, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Duan, L.; Mo, J.; Du, E.; Shen, J.; Lu, X.; Zhang, Y.; Zhou, X.; He, C.; Zhang, F. Nitrogen deposition and its ecological impact in China: An overview. Environ. Pollut. 2011, 159, 2251–2264. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.W.; Waite, I.S.; McNicol, J.W.; Poulton, P.R.; Macdonald, A.J.; O’Donnell, A.G. Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob. Change Biol. 2009, 15, 1739–1754. [Google Scholar] [CrossRef]
- Wedin, D.A.; Tilman, D. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 1996, 274, 1720–1723. [Google Scholar] [CrossRef] [PubMed]
- Buckeridge, K.M.; Mason, K.E.; Ostle, N.; McNamara, N.P.; Grant, H.K.; Whitaker, J. Microbial necromass carbon and nitrogen persistence are decoupled in agricultural grassland soils. Commun. Earth Environ. 2022, 3, 114. [Google Scholar] [CrossRef]
- Herre, M.; Heitkötter, J.; Heinze, S.; Rethemeyer, J.; Preusser, S.; Kandeler, E.; Marschner, B. Differences in organic matter properties and microbial activity between bulk and rhizosphere soil from the top-and subsoils of three forest stands. Geoderma 2022, 409, 115589. [Google Scholar] [CrossRef]
- Kiala, Z.; Odindi, J.; Mutanga, O. Potential of interval partial least square regression in estimating leaf area index. S. Afr. J. Sci. 2017, 113, 9. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 2006, 19, 1–30. Available online: https://www.sanbi.org/wp-content/uploads/2024/05/2006_Strelitzia19.pdf (accessed on 10 January 2025).
- Manson, A.D.; Roberts, V.G. Analytical Methods Used by the Soil Fertility and Analytical Services Section; Agriculture and Rural Development: Pietermaritzburg, South Africa, 2000. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties; Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994. [Google Scholar]
Treatments | Shoots (kg/ha) | Roots (kg/ha) | Shoot/Root |
---|---|---|---|
Control | 16,324 ± 1245 abc | 75.8 ± 8.9 ab | 19.26 ± 2.1 b |
Lime | 12,737 ± 987 a | 259.0 ± 23.4 cd | 4.92 ± 0.5 a |
AS70 | 33,075 ± 2134 de | 238.7 ± 21.3 cd | 13.86 ± 1.4 ab |
AS211 | 23,801 ± 1876 bcd | 353.2 ± 29.8 d | 6.74 ± 0.7 a |
AN70 | 16,251 ± 1123 abc | 247.8 ± 22.4 cd | 6.56 ± 0.7 a |
AN211 | 35,719 ± 2456 e | 90.0 ± 9.8 ab | 48.11 ± 4.8 c |
AS70L | 15,612 ± 1345 abc | 148.2 ± 15.6 abc | 10.53 ± 1.1 ab |
AS211L | 25,795 ± 1987 cde | 174.6 ± 17.8 bc | 14.77 ± 1.5 ab |
AN70L | 13,363 ± 1098 ab | 38.1 ± 5.6 a | 35.07 ± 3.5 c |
AN211L | 15,253 ± 1234 abc | 104.6 ± 11.2 ab | 14.58 ± 1.5 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buthelezi, K.; Buthelezi-Dube, N. Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland. Plants 2025, 14, 1302. https://doi.org/10.3390/plants14091302
Buthelezi K, Buthelezi-Dube N. Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland. Plants. 2025; 14(9):1302. https://doi.org/10.3390/plants14091302
Chicago/Turabian StyleButhelezi, Kwenama, and Nkosinomusa Buthelezi-Dube. 2025. "Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland" Plants 14, no. 9: 1302. https://doi.org/10.3390/plants14091302
APA StyleButhelezi, K., & Buthelezi-Dube, N. (2025). Long-Term Effects of Nitrogen and Lime Application on Plant–Microbial Interactions and Soil Carbon Stability in a Semi-Arid Grassland. Plants, 14(9), 1302. https://doi.org/10.3390/plants14091302