Inorganic Element Identification and In Vitro Preliminary Evaluation of Three Types of Standardized Black Chokeberry Extracts Against Human Pulmonary Artery Endothelial Cells (HPAECs)
Abstract
:1. Introduction
2. Results
2.1. HPLC
2.2. Inorganic Element Identification
2.3. In Vitro Analysis
2.3.1. MTT Assay
2.3.2. Cell Cycle Analysis
2.3.3. Annexin V/PI Analysis
3. Discussion
3.1. Phytochemical Composition
3.2. Inorganic Element Determination
3.3. In Vitro Evaluation of the Selected Samples
4. Materials and Methods
4.1. Extracts’ Preparation, Reagents Used, and Phytochemical Characterization
4.2. EvArJ Characterization
4.3. Extracts’ Inorganic Element Detection (GF-AAS Method)
4.4. Cell Culture
4.5. In Vitro MTT Assay
4.6. Cell Cycle Analysis
4.7. Cell Death Analysis by Annexin V/PI Test
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-549 | human lung adenocarcinoma |
AAS | atomic absorption spectrometry |
Al | aluminum |
As | arsenic |
ATCC | American Type Culture Collection |
BCAECs | bovine coronary artery endothelial cells |
BCK | black chokeberry |
BJ-5ta | normal cell line |
Caco-2 | cell line of human colon cancer |
CCE | chlorogenic acid equivalents |
Cd | cadmium |
Co | cobalt |
Cr | chromium |
Cu | cooper |
Cy | cyanidin |
C3GE | cyanidin-3-O-glucoside equivalent |
CVD | cardiovascular disease |
DAD | detector with a photodiode |
DMSO | dimethyl sulfoxide |
DNA | deoxyribonucleic acid |
D-PBS | Dulbecco’s phosphate-buffered saline |
DryArs | dry berries |
ED | endothelial dysfunction |
EDTA | ethylenediaminetetraacetic acid |
EMA | European Medicines Agency |
eNOS | endothelial nitric oxide synthase |
ESI | electrospray ionization |
EU | European Union |
EvArJ | evaporated juice |
FACS | fluorescence-activated cell sorter |
FBS | fetal bovine serum |
Fe | iron |
FrozArs | frozen berries |
GAE | gallic acid equivalent |
GF | graphite furnace |
H9c2 | cell line of cardiomyoblasts |
HDL | high-density lipoprotein |
HeLa | human cervical adenocarcinoma |
HNO3 | nitric acid |
HPAECs | human pulmonary artery endothelial cells |
HPLC | high-performance liquid chromatography |
HT-29 | human colon cancer cells |
HUVECs | human umbilical vein endothelial cells |
IC50 | half maximal inhibitory concentration |
ICAM-1 | intercellular adhesion molecule |
ICP-OES | inductively coupled plasma optical emission spectroscopy technique |
IL | interleukin |
LC | lethal concentration |
LC-DAD-ESI-MS | liquid chromatography coupled with diode array detection and electrospray ionization tandem mass spectrometry |
LS-174T | human colorectal adenocarcinoma |
mRNA | messenger ribonucleic acid |
MCP-1 | monocyte chemoattractant protein-1 |
MCF-7 | breast cancer cell line |
MCF-10A | normal cell line |
MDA-MB-231 | breast cancer cell line |
Mn | manganese |
MRC-5 | normal lung fibroblasts |
MS | mass spectrometry |
NCM460 | normal colon cells |
Ni | nickel |
NO | nitric oxide |
OS | oxidative stress |
p21WAF1 | cyclin-dependent kinase inhibitor 1 |
p27KIP1 | multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers |
Pb | lead |
PI | propidium iodide |
PSA | potentiometric stripping analysis |
Q | quercetin |
RE | rutin equivalent |
RMPI-1788 | lymphoblast cell line |
RPM | revolutions per minute |
ROS | reactive oxygen species |
SV | schedule variance |
SV-HUC1 | normal uroepithelial cell line |
T24 | urinary bladder cancer cell line |
TIG-1 | human lung embryonic fibroblasts |
TNF-α | tumor necrosis factor-alpha |
udl | under detection limit |
UV-Vis | ultraviolet-visible |
VCAM-1 | vascular cell adhesion molecule |
WHO | World Health Organization |
WM793 | melanoma cell line |
Zn | zinc |
786-O cancer cells | human renal cancer cell line |
References
- The Top 10 Causes of Death—WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 1 March 2025).
- Di Cesare, M.; McGhie, D.V.; Perel, P.; Mwangi, J.; Taylor, S.; Pervan, B.; Narula, J.; Pineiro, D.; Pinto, F.J. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- State of Health in the EU. Romania. Country Health Profile 2023. Available online: https://www.oecd.org/en/publications/romania-country-health-profile-2023_f478769b-en.html (accessed on 9 October 2024).
- Man, A.W.C.; Li, H.; Xia, N. Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. Oxidative Med. Cell. Longev. 2020, 2020, 1496462. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Chourdakis, M.; Papaemmanouil, A.; Chaloulakou, S.; Georgakou, A.V.; Chatzis, G.; Triantafyllou, A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life 2024, 14, 267. [Google Scholar] [CrossRef]
- Li, A.; Yan, J.; Zhao, Y.; Yu, Z.; Tian, S.; Khan, A.H.; Zhu, Y.; Wu, A.; Zhang, C.; Tian, X.L. Vascular Aging: Assessment and Intervention. Clin. Interv. Aging 2023, 18, 1373–1395. [Google Scholar] [CrossRef] [PubMed]
- Biswas, I.; Khan, G.A. Endothelial Dysfunction in Cardiovascular Diseases. In Basic and Clinical Understanding of Microcirculation; Shad, K.F., Saravi, S.S.S., Bilgrami, N.L., Eds.; IntechOpen: London, UK, 2020; pp. 91–103. [Google Scholar]
- Buda, V.; Andor, M.; Diana, A.; Ardelean, F.; Zinuca Pavel, I.; Dehelean, C.; Soica, C.; Folescu, R.; Andrei, F.; Danciu, C. Cardioprotective Effects of Cultivated Black Chokeberries (Aronia spp.): Traditional Uses, Phytochemistry and Therapeutic Effects. In Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health; Sharma, K., Mishra, K., Senarpati, K.K., Danciu, C., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Bays, H.E.; Taub, P.R.; Epstein, E.; Michos, E.D.; Ferraro, R.A.; Bailey, A.L.; Kelli, H.M.; Ferdinand, K.C.; Echols, M.R.; Weintraub, H.; et al. Ten things to know about ten cardiovascular disease risk factors. Am. J. Prev. Cardiol. 2021, 5, 100149. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Chauhan, P.; Singh, G.; Malhotra, N.; Chahal, A. Physical Activity for Health and Fitness: Past, Present and Future. J. Lifestyle Med. 2022, 12, 9–14. [Google Scholar] [CrossRef]
- Almarshad, M.I.; Algonaiman, R.; Alharbi, H.F.; Almujaydil, M.S.; Barakat, H. Relationship between Ultra-Processed Food Consumption and Risk of Diabetes Mellitus: A Mini-Review. Nutrients 2022, 14, 2366. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Pan, X.F.; Chen, J.; Cao, A.; Xia, L.; Zhang, Y.; Wang, J.; Li, H.; Liu, G.; Pan, A. Combined lifestyle factors, all-cause mortality and cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. J. Epidemiol. Community Health 2021, 75, 92–99. [Google Scholar] [CrossRef]
- Nyulas, K.I.; Simon-Szabó, Z.; Pál, S.; Fodor, M.A.; Dénes, L.; Cseh, M.J.; Barabás-Hajdu, E.; Csipor, B.; Szakács, J.; Preg, Z.; et al. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs—Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 6388. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Mishra, T.; Kondepati, A.K.; Pasumarthi, S.D.; Chilana, G.S.; Devabhaktuni, S.; Singh, P.K. Phytotherapeutic antioxidants. Asian J. Med. Sci. 2020, 11, 96–100. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Mooroteea, K. A comparative ethno-religious study of traditionally used medicinal plants employed in the management of cardiovascular diseases. J. Herb. Med. 2021, 25, 100417. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. [Google Scholar] [CrossRef] [PubMed]
- Sapian, S.; Taib, I.S.; Katas, H.; Latip, J.; Zainalabidin, S.; Hamid, Z.A.; Anuar, N.N.M.; Budin, S.B. The Role of Anthocyanin in Modulating Diabetic Cardiovascular Disease and Its Potential to Be Developed as a Nutraceutical. Pharmaceuticals 2022, 15, 1344. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; John, O.D.; Mathai, M.L.; Brown, L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022, 14, 2161. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Nistor, M.; Pop, R.; Daescu, A.; Pintea, A.; Socaciu, C.; Rugina, D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022, 27, 4254. [Google Scholar] [CrossRef]
- Carvalho, F.; Lahlou, R.A.; Silva, L.R. Phenolic Compounds from Cherries and Berries for Chronic Disease Management and Cardiovascular Risk Reduction. Nutrients 2024, 16, 1597. [Google Scholar] [CrossRef]
- Ngamsamer, C.; Sirivarasai, J.; Sutjarit, N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules 2022, 12, 852. [Google Scholar] [CrossRef]
- Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Gao, Y.G.; Kinghorn, A.D. Potential Benefits of Black Chokeberry (Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. Molecules 2022, 27, 7823. [Google Scholar] [CrossRef]
- Jurendi’c, T.J.; Ščetar, M.; Voilley, A.; Kurek, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Shi, D.; Xu, J.; Sheng, L.; Song, K. Comprehensive Utilization Technology of Aronia melanocarpa. Molecules 2024, 29, 1388. [Google Scholar] [CrossRef] [PubMed]
- Staszowska-Karkut, M.; Materska, M. Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum L.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Gramza-Michałowska, A. Black Chokeberry Aronia melanocarpa L.—A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Go, M.Y.; Kim, J.; Jeon, C.Y.; Shin, D.W. Functional Activities and Mechanisms of Aronia melanocarpa in Our Health. Curr. Issues Mol. Biol. 2024, 46, 8071–8087. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Katragunta, K.; Osman, A.G.; Ali, Z.; John Adams, S.; Chittiboyina, A.G.; Khan, I.A. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000–2022. Molecules 2023, 28, 560. [Google Scholar] [CrossRef]
- Gerasimov, M.A.; Perova, I.B.; Eller, K.I.; Akimov, M.Y.; Sukhanova, A.M.; Rodionova, G.M.; Ramenskaya, G.V. Investigation of Polyphenolic Compounds in Different Varieties of Black Chokeberry Aronia melanocarpa. Molecules 2023, 28, 4101. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Zujko, M.E. Chokeberry (A. melanocarpa (Michx.) Elliott)—A Natural Product for Metabolic Disorders? Nutrients 2022, 14, 2688. [Google Scholar] [CrossRef]
- Buda, V.; Sturza, A.; Minda, D.; Diaconeasa, Z.; Iuhas, C.; Bădescu, B.; Dehelean, C.A.; Danciu, C.; Muntean, M.D.; Lighezan, R.; et al. Vasculo-Protective Effects of Standardized Black Chokeberry Extracts in Mice Aorta. Int. J. Mol. Sci. 2024, 25, 13520. [Google Scholar] [CrossRef]
- Romania: Country Health Profile 2021. Available online: https://www.oecd.org/en/publications/romania-country-health-profile-2021_74ad9999-en.html (accessed on 11 March 2025).
- Causes of Death Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Causes_of_death_statistics (accessed on 11 March 2025).
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef] [PubMed]
- Niesen, S.; Göttel, C.; Becker, H.; Bakuradze, T.; Winterhalter, P.; Richling, E. Fractionation of Extracts from Black Chokeberry, Cranberry, and Pomegranate to Identify Compounds That Influence Lipid Metabolism. Foods 2022, 11, 570. [Google Scholar] [CrossRef]
- Gao, N.; Shu, C.; Wang, Y.; Tian, J.; Lang, Y.; Jin, C.; Cui, X.; Jiang, H.; Liu, S.; Li, Z.; et al. Polyphenol components in black chokeberry (Aronia melanocarpa) as clinically proven diseases control factors—An overview. Food Sci. Hum. Wellness 2024, 13, 1152–1167. [Google Scholar] [CrossRef]
- Vagiri, M.; Jensen, M. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chem. 2017, 217, 409–417. [Google Scholar] [CrossRef]
- Salazar-Orbea, G.L.; García-Villalba, R.; Bernal, M.J.; Hernández-Jiménez, A.; Egea, J.A.; Tomás-Barberán, F.A.; Sánchez-Siles, L.M. Effect of Storage Conditions on the Stability of Polyphenols of Apple and Strawberry Purees Produced at Industrial Scale by Different Processing Techniques. J. Agric. Food Chem. 2023, 71, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Torović, L.; Sazdanić, D.; Krstonošić, M.A.; Mikulić, M.; Beara, I.; Cvejić, J. Compositional characteristics, health benefit and risk of commercial bilberry and black chokeberry juices. Food Biosci. 2023, 51, 102301. [Google Scholar] [CrossRef]
- Pop, L.; Costa, R.; Asănică, A.; Tudoreanu, L. Mineral nutritional value of products containing aronia fruits and juices: A review. Horticulture 2022, 66, 846–856. [Google Scholar]
- Pavlovic, A.N.; Brcanovic, J.M.; Veljkovic, J.N.; Mitic, S.S.; Tošic, S.B.; Kaličanin, B.M.; Kostić, D.A.; Dordević, M.S.; Velimirović, D.S. Characterization of commercially available products of aronia according to their metal content. Fruits 2015, 70, 385–393. [Google Scholar] [CrossRef]
- Kaličanin, B.; Pavlović, A.; Velimirović, D.; Arsić, I.; Dordević, S.; Tadić, V. Optimization and Application of Potentiometric Stripping Analysis for Determination of Heavy Metals in the samples of Aronia melanocarpa (Michx.) Elliot. Int. J. Electrochem. Sci. 2020, 15, 1840–1852. [Google Scholar] [CrossRef]
- Mężyńska, M.; Brzóska, M.M.; Rogalska, J.; Piłat-Marcinkiewicz, B. Extract from aronia melanocarpa l. Berries prevents cadmium-induced oxidative stress in the liver: A study in a rat model of low-level and moderate lifetime human exposure to this toxic metal. Nutrients 2019, 11, 21. [Google Scholar] [CrossRef]
- de Abreu, C.B.; de ORibeiro, M.; Pinho, C.S.; Carneiro, C.N.; de Azevedo Neto, A.D.; de Souza, M.O.; de S Dias, F. Exploratory analysis in the evaluation of stress due to aluminum presence in Physalis angulata L. and multielement determination by microwave-induced plasma optical emission spectrometry (MIP OES). Environ. Sci. Pollut. 2021, 28, 5598–5608. [Google Scholar] [CrossRef] [PubMed]
- Kis, B.; Pavel, I.Z.; Haidu, D.; Ștefănuț, M.N.; Diaconeasa, Z.; Moacă, E.A.; Dehelean, C.A.; Șipos, S.; Ivan, A.; Danciu, C. Inorganic Element Determination of Romanian Populus nigra L. Buds Extract and In Vitro Antiproliferative and Pro-Apoptotic Evaluation on A549 Human Lung Cancer Cell Line. Pharmaceutics 2021, 13, 986. [Google Scholar] [CrossRef] [PubMed]
- ICH Q3D Elemental Impurities—Scientific Guideline. Available online: https://www.ema.europa.eu/en/ich-q3d-elemental-impurities-scientific-guideline (accessed on 13 March 2025).
- WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Available online: https://iris.who.int/handle/10665/43510 (accessed on 13 March 2025).
- European Food Safety Authority (EFSA). Safety of Aluminium from Dietary Intake—Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar] [CrossRef]
- Haidu, D.; Párkányi, D.; Moldovan, R.I.; Savii, C.; Pinzaru, I.; Dehelean, C.; Kurunczi, L. Elemental Characterization of Romanian Crop Medicinal Plants by Neutron Activation Analysis. J. Anal. Methods Chem. 2017, 2017, 9748413. [Google Scholar] [CrossRef] [PubMed]
- Tietz, T.; Lenzner, A.; Kolbaum, A.E.; Zellmer, S.; Riebeling, C.; Gürtler, R.; Jung, C.; Kappenstein, O.; Tentschert, J.; Giulbudagian, M.; et al. Aggregated Aluminium Exposure: Risk Assessment for the General Population. Arch. Toxicol. 2019, 93, 3503–3521. [Google Scholar] [CrossRef]
- Cindrić, I.J.; Zeiner, M.; Mihajlov-Konanov, D.; Stingeder, G. Inorganicmacro- andmicronutrients in “superberries” black chokeberries (Aronia melanocarpa) and related teas. Int. J. Environ. Res. Public Health 2017, 14, 539. [Google Scholar] [CrossRef]
- Olechno, E.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Zujko, M.E. Are Chokeberry Products Safe for Health? Evaluation of the Content of Contaminants and Health Risk. Foods 2023, 12, 3271. [Google Scholar] [CrossRef]
- Aksoy, A.S. A Review of the Nutritional Profile, Chemical Composition and Potential Health Benefits of Aronia melanocarpa (Chokeberry) Berries and Products. Turk. J. Agric.—Food Sci. Technol. 2023, 11, 2027–2043. [Google Scholar] [CrossRef]
- Malik, M.; Zhao, C.; Schoene, N.; Guisti, M.M.; Moyer, M.P.; Magnuson, B.A. Anthocyanin-Rich Extract from Aronia meloncarpa E. Induces a Cell Cycle Block in Colon Cancer but Not Normal Colonic Cells. Nutr. Cancer 2003, 46, 186–196. [Google Scholar]
- Gill, N.K.; Rios, D.; Osorio-Camacena, E.; Mojica, B.E.; Kaur, B.; Soderstrom, M.A.; Gonzalez, M.; Plaat, B.; Poblete, C.; Kaur, N.; et al. Anticancer Effects of Extracts from Three Different Chokeberry Species. Nutr. Cancer 2021, 73, 1168–1174. [Google Scholar] [CrossRef]
- Dvorska, D.; Mazurakova, A.; Lackova, L.; Sebova, D.; Kajo, K.; Samec, M.; Brany, D.; Svajdlenka, E.; Treml, J.; Mersakova, S.; et al. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol. 2024, 14, 1463656. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Soto, M.J.; Larrosa, M.; Garcia-Cantalejo, J.M.; Espín, J.C.; Tomás-Barberan, F.A.; García-Conesa, M.T. Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice. J. Nutr. Biochem. 2007, 18, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Sharif, T.; Stambouli, M.; Burrus, B.; Emhemmed, F.; Dandache, I.; Auger, C.; Etienne-Selloum, N.; Schini-Kerth, V.B.; Furhrmann, G. The polyphenolic-rich Aronia melanocarpa juice kills teratocarcinomal cancer stem-like cells, but not their differentiated counterparts. J. Funct. Foods 2013, 5, 1244–1252. [Google Scholar] [CrossRef]
- Nowak, D.; Kloskowski, T.; Gośliński, M.; Buhl, M.; Wojtowicz, E.; Popławski, C.; Drewa, T.; Pokrywczyńska, M. Antioxidant Properties of Aronia melanocarpa and Morinda citrifolia Juices and their Impact on Bladder Cancer Cell Lines. Med. Sci. Monit. 2025, 31, e945120. [Google Scholar] [CrossRef]
- Borczak, B.; Kapusta-Duch, J.; Domagała, D.; Doskočil, I. Study on the Potential Antitumor Activity of Cookies Enriched with Sambucus nigra L., Aronia melanocarpa, Hippophae rhamnoides L., and Crataegus L., on WM793 Melanoma and MCF-7 Breast Cell Lines. Appl. Sci. 2023, 13, 12256. [Google Scholar] [CrossRef]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Aronia melanocarpa Flavonol Extract—Antiradical and Immunomodulating Activities Analysis. Plants 2023, 12, 2976. [Google Scholar] [CrossRef]
- Matsuo, M.; Sasaki, N.; Saga, K.; Kaneko, T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol. Pharm. Bull. 2005, 28, 253–259. [Google Scholar] [CrossRef]
- Cvetanović, A.; Zengin, G.; Zeković, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos de Almeida, T. Anticancer activity of rutin and its combination with ionic liquids on renal cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid-flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Sharma, P.K. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B—Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Mladěnka, P.; Zatloukalová, L.; Šimůnek, T.; Bobrovová, Z.; Semecký, V.; Nachtigal, P.; Hašková, P.; Macková, E.; Vávrová, J.; Holečková, M.; et al. Direct administration of rutin does not protect against catecholamine cardiotoxicity. Toxicology 2009, 255, 25–32. [Google Scholar] [CrossRef]
- Filipský, T.; Říha, M.; Hašková, P.; Pilařová, V.; Nováková, L.; Semecký, V.; Vávrová, J.; Holečková, M.; Palicka, V.; Šimůnek, T.; et al. Intravenous rutin in rat exacerbates isoprenaline-induced cardiotoxicity likely due to intracellular oxidative stress. Redox Rep. 2017, 22, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Borecki, K.; Żuchowski, M.; Siennicka, A.; Adler, G.; Jastrzębska, M. Polyphenol rich extract of Aronia melanocarpa inhibits TNF α induced apoptosis in H9c2 cells. J. Med. Sci. 2016, 84, 185. [Google Scholar] [CrossRef]
- Zapolska-Downar, D.; Bryk, D.; Małecki, M.; Hajdukiewicz, K.; Sitkiewicz, D. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. Eur. J. Nutr. 2012, 51, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Luzak, B.; Golanski, J.; Rozalski, M.; Krajewska, U.; Olas, B.; Watala, C. Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells. Arch. Med. Sci. 2010, 6, 141–144. [Google Scholar] [CrossRef]
- Iwashima, T.; Kudome, Y.; Kishimoto, Y.; Saita, E.; Tanaka, M.; Taguchi, C.; Hirakawa, S.; Mitani, N.; Kondo, K.; Iida, K. Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Bryk, D.; Paradowska, K.; Siudem, P.; Wawer, I.; Wrzosek, M. Anti-Atherosclerotic Properties of Aronia melanocarpa Extracts Influenced by Their Chemical Composition Associated with the Ripening Stage of the Berries. Int J Mol Sci. 2024, 25, 4145. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, M.S.; Auger, C.; Lee, K.W.; Schini-Kerth, V.B. Polyphenol-rich Aronia melanocarpa juice sustains eNOS activation through phosphorylation and expression via redox-sensitive pathways in endothelial cells. Food Sci. Biotechnol. 2024, 33, 2865–2875. [Google Scholar] [CrossRef]
- Oprean, C.; Bojin, F.; Soica, C.; Drăghia, L.; Caunii, A.; Paunescu, V.; Tatu, C. Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicol. Mech. Methods 2018, 28, 148–156. [Google Scholar] [CrossRef]
- Ungureanu, A.R.; Popovici, V.; Oprean, C.; Danciu, C.; Schröder, V.; Olaru, O.T.; Mihai, D.P.; Popescu, L.; Luță, E.A.; Chițescu, C.L.; et al. Cytotoxicity Analysis and In Silico Studies of Three Plant Extracts with Potential Application in Treatment of Endothelial Dysfunction. Pharmaceutics 2023, 15, 2125. [Google Scholar] [CrossRef] [PubMed]
EvArJ (µg/g) | Rt (min) | |
---|---|---|
Cy-3-O-diglucoside | 0.03 C3GE | 3.19 |
Neochlorogenic acid | 433.46 CCE | 9.88 |
Cy-3-O-glucoside | 67.92 C3GE | 10.98 |
Chlorogenic acid | 384.31 CCE | 11.78 |
Cy-3-O-arabinoside | 23.15 C3GE | 11.96 |
Cy-3-O-xyloside | 7.12 C3GE | 12.13 |
Caffeic acid | 30.58 CCE | 13.27 |
Q-3-O-rutinoside (rutin) | 41.24 RE | 15.35 |
Q-3-O-glucoside | 53.34 RE | 16.16 |
Q | 1.77 RE | 21.71 |
Total phenolic load | 1042.93 | ---- |
DryArs | FrozArs | EvArJ | ||||
---|---|---|---|---|---|---|
Average | SV | Average | SV | Average | SV | |
As | *udl | *udl | *udl | |||
Al | 277.355 | 9.05 | 329.037 | 22.52 | 380.039 | 15.99 |
Cd | 0.049 | 0.00 | 0.026 | 0.01 | 0.043 | 0.01 |
Co | *udl | *udl | *udl | |||
Cr | 1.135 | 0.01 | 0.275 | 0.08 | 1.375 | 0.02 |
Cu | 0.343 | 0.06 | 0.282 | 0.05 | 0.243 | 0.07 |
Fe | 396.728 | 15.75 | 302.667 | 20.56 | 597.665 | 30.21 |
Mn | 1.418 | 0.12 | 1.177 | 0.23 | 1.550 | 0.13 |
Ni | *udl | *udl | *udl | |||
Pb | *udl | *udl | *udl | |||
Zn | 44.344 | 5.53 | 58.909 | 9.47 | 44.708 | 4.36 |
1 μg/mL | 2.5 μg/mL | 5 μg/mL | 7.5 μg/mL | 10 μg/mL | |
---|---|---|---|---|---|
DryArs | 63.55 ± 7.58 | 66.67 ± 2.45 | 62.58 ± 4.28 | 67.85 ± 4.57 | 65.91 ± 4.96 |
FrozArs | 66.89 ± 0.63 | 65.57 ± 4.13 | 66.14 ± 5.64 | 66.38 ± 3.06 | 64.17 ± 1.46 |
EvArJ | 67.60 ± 3.80 | 67.96 ± 5.85 | 67.63 ± 11.06 | 66.62 ± 7.54 | 72.57 ± 0.76 |
G0-G1% | S% | G2-M% | Sub-G0% | |
---|---|---|---|---|
Control | 62.66 ± 4.22 | 6.28 ± 1.50 | 21.56 ± 2.23 | 2.24 ± 1.38 |
DMSO 0.01% | 61.08 ± 4.26 | 8.11 ± 2.72 | 19.41 ± 5.76 | 5.71 ± 4.13 * |
DryArs—1 μg/mL | 63.00 ± 4.69 | 7.80 ± 1.71 | 17.89 ± 2.61 | 6.56 ± 6.55 |
DryArs—10 μg/mL | 57.14 ± 4.30 * | 7.86 ± 1.06 | 16.85 ± 5.42 * | 13.90 ± 8.67 ** |
FrozArs—1 μg/mL | 62.12 ± 4.68 | 7.71 ±1.97 | 19.08 ± 1.00 | 5.46 ± 4.58 |
FrozArs—10 μg/mL | 62.54 ± 2.66 | 6.79 ± 1.61 | 17.60 ± 4.31 | 8.18 ± 3.86 |
EvArJ—1 μg/mL | 64.09 ± 3.52 | 8.05 ± 1.39 | 18.16 ± 2.06 | 2.56 ± 0.92 |
EvArJ—10 μg/mL | 60.88 ± 3.96 | 7.54 ± 1.68 | 16.83 ± 3.35 | 9.76 ± 3.99 |
Living Cells % | Cells in Early Apoptosis % | Apoptotic Cells % | Necrotic Cells % | Dying Cells % | |
---|---|---|---|---|---|
Control | 93.84 ± 0.77 | 1.86 ± 0.39 | 2.06 ± 0.52 | 2.23 ± 0.14 | |
DMSO 0.01% | 93.39 ± 0.83 | 2.44 ± 0.14 | 2.16 ± 0.34 | 2.01 ± 0.63 | |
DryArs, 1 μg/mL | 89.54 ± 2.27 * | 1.42 ± 0.36 | 1.98 ± 0.36 | 7.06 ± 2.99 * | |
DryArs, 10 μg/mL | 80.82 ± 4.86 * | 2.81 ± 0.33 | 3.27 ± 0.31 * | 7.78 ± 4.20 ** | 5.30 ± 1.21% |
FrozArs, 1 μg/mL | 89.25 ± 2.05 | 3.17 ± 1.17 | 3.89 ± 1.48 | 3.69 ± 0.60 | |
FrozArs, 10 μg/mL | 90.93 ± 1.39 | 2.40 ± 1.08 | 3.57 ± 1.59 | 3.10 ± 1.27 | |
EvArJ, 1 μg/mL | 93.65 ± 1.52 | 2.28 ± 0.70 | 1.97 ± 0.65 | 2.11 ± 1.56 | |
EvArJ, 10 μg/mL | 93.54 ± 0.98 | 1.39 ± 0.49 | 2.08 ± 0.24 | 2.98 ± 1.24 |
No | Metal | Wave, λ [nm] | Lower | Upper | Calibration Curve | R2 |
---|---|---|---|---|---|---|
Limit, µg/L | Limit, µg/L | |||||
1 | As | 193.7 | 13.2 | 58.1 | y = 0.00185 + 0.001544x | 0.9927 |
2 | Al | 309.3 | 13.2 | 58.2 | y = 0.006978 + 0.00175x | 0.9971 |
3 | Pb | 283.3 | 7.4 | 37 | y = 0.001778 + 0.003524x | 0.9994 |
4 | Cd | 228.8 | 0.1 | 2.2 | y = 0.004734 + 0.071971x | 0.9923 |
5 | Co | 240.7 | 5.4 | 29.4 | y = 0.008353 + 0.010864 x | 0.9929 |
6 | Cr | 357.9 | 5 | 22 | y = 0.018371 + 0.018435x | 0.9961 |
7 | Cu | 324.8 | 3.6 | 18 | y = 0.020731 + 0.016628 x | 0.9961 |
8 | Fe | 248.3 | 3.6 | 14.4 | y = 0.02274 + 0.013974 | 0.9939 |
9 | Mn | 297.5 | 0.84 | 4.2 | y = 0.007792 + 0.112496x | 0.9925 |
10 | Ni | 232 | 4.2 | 34.6 | y = 0.033774 + 0.011603x | 0.9967 |
11 | Zn | 213.9 | 1 | 8 | y = 0.071658 + 0.092202x | 0.9827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buda, V.O.; Oprean, C.; Gavriliuc, O.I.; Diaconeasa, Z.; Căta, A.; Haidu, D.; Minda, D.; Păunescu, A.; Dehelean, C.A.; Danciu, C. Inorganic Element Identification and In Vitro Preliminary Evaluation of Three Types of Standardized Black Chokeberry Extracts Against Human Pulmonary Artery Endothelial Cells (HPAECs). Plants 2025, 14, 1202. https://doi.org/10.3390/plants14081202
Buda VO, Oprean C, Gavriliuc OI, Diaconeasa Z, Căta A, Haidu D, Minda D, Păunescu A, Dehelean CA, Danciu C. Inorganic Element Identification and In Vitro Preliminary Evaluation of Three Types of Standardized Black Chokeberry Extracts Against Human Pulmonary Artery Endothelial Cells (HPAECs). Plants. 2025; 14(8):1202. https://doi.org/10.3390/plants14081202
Chicago/Turabian StyleBuda, Valentina Oana, Camelia Oprean, Oana Isabella Gavriliuc, Zorita Diaconeasa, Adina Căta, Daniela Haidu, Daliana Minda, Andreea Păunescu, Cristina Adriana Dehelean, and Corina Danciu. 2025. "Inorganic Element Identification and In Vitro Preliminary Evaluation of Three Types of Standardized Black Chokeberry Extracts Against Human Pulmonary Artery Endothelial Cells (HPAECs)" Plants 14, no. 8: 1202. https://doi.org/10.3390/plants14081202
APA StyleBuda, V. O., Oprean, C., Gavriliuc, O. I., Diaconeasa, Z., Căta, A., Haidu, D., Minda, D., Păunescu, A., Dehelean, C. A., & Danciu, C. (2025). Inorganic Element Identification and In Vitro Preliminary Evaluation of Three Types of Standardized Black Chokeberry Extracts Against Human Pulmonary Artery Endothelial Cells (HPAECs). Plants, 14(8), 1202. https://doi.org/10.3390/plants14081202