Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors
Abstract
1. Introduction
2. Results
2.1. Fresh Mass and Dry Mass
2.2. Plant Morphology and Leaf Number
2.3. Total Phenolic and Anthocyanin Concentrations
2.4. Leaf Coloration and SPAD
3. Discussion
3.1. Phytochrome-Mediated Responses to Red and Far-Red Light
3.2. Supplemental Light or the PFD Increases Phenolic Compounds and Leaf Coloration
3.3. Interactions Between Supplemental Light and the PFD
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Light Treatments
4.3. Experimental Design and Replication
4.4. Biochemical Analyses and Data Collection
4.5. Statistical Anaylsis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Blue |
DLI | Daily light integral |
DM | Dry mass |
EC | Electrical conductivity |
ETR | Electron transport rate |
FM | Fresh mass |
FR | Far-red |
G | Green |
iPPE | Internal phytochrome photoequilibrium |
LED | Light-emitting diode |
PAR | Photosynthetic active radiation |
PFD | Photon flux density |
PIF | Phytochrome interaction factor |
PPE | Phytochrome photoequilibrium |
R | Red |
SL | Supplemental light |
TAC | Total anthocyanin concentration |
TPFD | Total photon flux density |
TPC | Total phenolic concentration |
WW | Warm-white |
YPFD | Yield photon flux density |
ΦPSII | Quantum yield of photosystem II photochemistry |
References
- Viršilė, A.; Gudžinskaitė, I.; Laužikė, K.; Kudirka, G.; Pukalskas, A.; Samuolienė, G. Light Intensity Effects on Productivity and Post-Harvest Quality in Perilla Frutescens Cultivated in CEA. Agriculture 2024, 14, 2079. [Google Scholar] [CrossRef]
- Son, K.-H.; Oh, M.-M. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-Emitting Diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Kelly, N.; Runkle, E.S. Dependence of Far-Red Light on Red and Green Light at Increasing Growth of Lettuce. PLoS ONE 2024, 19, e0313084. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Kelly, N.; Runkle, E.S. Substituting Green or Far-Red Radiation for Blue Radiation Induces Shade Avoidance and Promotes Growth in Lettuce and Kale. Environ. Exp. Bot. 2019, 162, 383–391. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the Growth Response to Light Quantity of Greenhouse Grown Crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of Different Light Intensities on Chlorophyll Fluorescence Characteristics and Yield in Lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence-a Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic Efficiency and Phytochrome Photoequilibria Determination Using Spectral Data. Trans. ASAE 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Mccree, K.J. The Action Spectrum, Absorptance and Quantum Yield of Photosynthesis in Crop Plants. Agric. Meteorol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- Emerson, R.; Chalmers, R.; Cederstrand, C. Some Factors Influencing the Long-Wave Limit of Photosynthesis. Proc. Natl. Acad. Sci. USA 1957, 43, 133. [Google Scholar] [CrossRef]
- Emerson, R.; Rabinowitch, E. Red Drop and the Role of Auxiliary Pigments in Photosynthesis. Plant Physiol. 1960, 35, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves Are Green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of Lettuce Growth under an Increasing Daily Light Integral Depends on the Combination of the Photosynthetic Photon Flux Density and Photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Pérez-López, U.; Sgherri, C.; Miranda-Apodaca, J.; Micaelli, F.; Lacuesta, M.; Mena-Petite, A.; Quartacci, M.F.; Muñoz-Rueda, A. Concentration of Phenolic Compounds Is Increased in Lettuce Grown under High Light Intensity and Elevated CO2. Plant Physiol. Biochem. 2018, 123, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. Photon Efficacy in Horticulture: Turning LED Packages into LED Luminaires. In Plant Factory Basics, Applications and Advances; Academic Press: Cambridge, MA, USA, 2022; pp. 115–128. [Google Scholar] [CrossRef]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From Physics to Fixtures to Food: Current and Potential LED Efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- van Iersel, M.W. Optimizing LED Lighting in Controlled Environment Agriculture. In Light Emitting Diodes for Agriculture: Smart Lighting; Dutta Gupta, S., Ed.; Springer: Singapore, 2017; pp. 59–80. ISBN 978-981-10-5807-3. [Google Scholar]
- Vaštakaitė-Kairienė, V.; Kelly, N.; Runkle, E.S. Regulation of the Photon Spectrum on Growth and Nutritional Attributes of Baby-Leaf Lettuce at Harvest and during Postharvest Storage. Plants 2021, 10, 549. [Google Scholar] [CrossRef]
- Kelly, N.; Runkle, E.S. End-of-Production Ultraviolet A and Blue Light Similarly Increase Lettuce Coloration and Phytochemical Concentrations. HortScience 2023, 58, 525–531. [Google Scholar] [CrossRef]
- Kusuma, P.; Bugbee, B. On the Contrasting Morphological Response to Far-Red at High and Low Photon Fluxes. Front. Plant Sci. 2023, 14, 1185622. [Google Scholar] [CrossRef]
- Legendre, R.; van Iersel, M.W. Supplemental Far-Red Light Stimulates Lettuce Growth: Disentangling Morphological and Physiological Effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Zhen, S.; Haidekker, M.; van Iersel, M.W. Far-Red Light Enhances Photochemical Efficiency in a Wavelength-Dependent Manner. Physiol. Plant. 2019, 167, 21–33. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.W. Far-Red Light Is Needed for Efficient Photochemistry and Photosynthesis. J. Plant Physiol. 2017, 209, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kubota, C. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Poel, B.R.; Runkle, E.S. Spectral Effects of Supplemental Greenhouse Radiation on Growth and Flowering of Annual Bedding Plants and Vegetable Transplants. HortScience 2017, 52, 1221–1228. [Google Scholar] [CrossRef]
- Hooks, T.; Sun, L.; Kong, Y.; Masabni, J.; Niu, G. Short-Term Pre-Harvest Supplemental Lighting with Different Light Emitting Diodes Improves Greenhouse Lettuce Quality. Horticulturae 2022, 8, 435. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Collaborators. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N. Regulation of the Light Spectrum to Elicit Specific Growth and Quality Attributes of Lettuce Produced Indoors—ProQuest; Michigan State University: East Lansing, MI, USA, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K. RStudio Dplyr: A Grammar of Data Manipulation. 2022. Available online: https://dplyr.tidyverse.org (accessed on 3 April 2025).
- Mendiburu, F. de Agricolae: Statistical Procedures for Agricultural Research. 2021. Available online: https://cran.r-project.org/web/packages/agricolae/index.html (accessed on 3 April 2025).
- Franklin, K.A.; Whitelam, G.C. Phytochromes and Shade-Avoidance Responses in Plants. Ann. Bot. 2005, 96, 169. [Google Scholar] [CrossRef]
- Franklin, K.A. Shade Avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Chen, Y.; Xu, S.; Wu, X.; Wu, C.; Zhang, N.; Cao, K. Quantifying the Effects of Far-Red Light on Lettuce Photosynthesis and Growth Using a 3D Modelling Approach. Front. Plant Sci. 2024, 15, 1492431. [Google Scholar] [CrossRef]
- Kusuma, P.; Bugbee, B. Improving the Predictive Value of Phytochrome Photoequilibrium: Consideration of Spectral Distortion Within a Leaf. Front. Plant Sci. 2021, 12, 596943. [Google Scholar] [CrossRef]
- Casal, J.J. Shade Avoidance. Arab. Book 2012, 10, e0157. [Google Scholar] [CrossRef] [PubMed]
- de Lucas, M.; Davière, J.-M.; Rodríguez-Falcón, M.; Pontin, M.; Iglesias-Pedraz, J.M.; Lorrain, S.; Fankhauser, C.; Blázquez, M.A.; Titarenko, E.; Prat, S. A Molecular Framework for Light and Gibberellin Control of Cell Elongation. Nature 2008, 451, 480–484. [Google Scholar] [CrossRef]
- Tao, Y.; Ferrer, J.L.; Ljung, K.; Pojer, F.; Hong, F.; Long, J.A.; Li, L.; Moreno, J.E.; Bowman, M.E.; Ivans, L.J.; et al. Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell 2008, 133, 164–176. [Google Scholar] [CrossRef]
- Casal, J.J. Photoreceptor Signaling Networks in Plant Responses to Shade. Annu. Rev. Plant Biol. 2013, 64, 403–427. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.C.; Henriques, R.; Seo, H.S.; Nagatani, A.; Chua, N.H. Arabidopsis PHYTOCHROME INTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1 E3 Ligase in the Nucleus. Plant Cell 2010, 22, 2370–2383. [Google Scholar] [CrossRef] [PubMed]
- Rolauffs, S.; Fackendahl, P.; Sahm, J.; Fiene, G.; Hoecker, U. Arabidopsis COP1 and SPA Genes Are Essential for Plant Elongation but Not for Acceleration of Flowering Time in Response to a Low Red Light to Far-Red Light Ratio. Plant Physiol. 2012, 160, 2015–2027. [Google Scholar] [CrossRef]
- Seo, H.S.; Watanabe, E.; Tokutomi, S.; Nagatani, A.; Chua, N.-H. Photoreceptor Ubiquitination by COP1 E3 Ligase Desensitizes Phytochrome A Signaling. Genes Dev. 2004, 18, 617–622. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-Red Photons Have Equivalent Efficiency to Traditional Photosynthetic Photons: Implications for Redefining Photosynthetically Active Radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Kong, Y.; Nemali, K. Blue and Far-Red Light Affect Area and Number of Individual Leaves to Influence Vegetative Growth and Pigment Synthesis in Lettuce. Front. Plant Sci. 2021, 12, 667407. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Front. Plant Sci. 2021, 12, 1158. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-Red Radiation Promotes Growth of Seedlings by Increasing Leaf Expansion and Whole-Plant Net Assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Y.; Zhang, Y.; Bian, Z.; Fanourakis, D.; Yang, Q.; Li, T. Morphological and Physiological Properties of Indoor Cultivated Lettuce in Response to Additional Far-Red Light. Sci. Hortic. 2019, 257, 108725. [Google Scholar] [CrossRef]
- Kelly, N.; Runkle, E.S. Ultraviolet A and Blue Light Transiently Regulate Total Phenolic and Anthocyanin Concentrations in Indoor-Grown Red-Leaf Lettuce. HortScience 2023, 58, 1595–1602. [Google Scholar] [CrossRef]
- Lee, J.G.; Oh, S.S.; Cha, S.H.; Jang, Y.A.; Kim, S.Y.; Um, Y.C.; Cheong, S.R. Effects of Red/Blue Light Ratio and Short-Term Light Quality Conversion on Growth and Anthocyanin Contents of Baby Leaf Lettuce. J. Bio-Environ. Control 2010, 19, 351–359. [Google Scholar]
- Brelsford, C.C.; Morales, L.O.; Nezval, J.; Kotilainen, T.K.; Hartikainen, S.M.; Aphalo, P.J.; Robson, T.M. Do UV-A Radiation and Blue Light during Growth Prime Leaves to Cope with Acute High Light in Photoreceptor Mutants of Arabidopsis Thaliana? Physiol. Plant. 2019, 165, 537–554. [Google Scholar] [CrossRef]
- Jenkins, G.I.; Long, J.C.; Wade, H.K.; Shenton, M.R.; Bibikova, T.N. UV and Blue Light Signalling: Pathways Regulating Chalcone Synthase Gene Expression in Arabidopsis. New Phytol. 2001, 151, 121–131. [Google Scholar] [CrossRef]
- Wade, H.K.; Bibikova, T.N.; Valentine, W.J.; Jenkins, G.I. Interactions within a Network of Phytochrome, Cryptochrome and UV-B Phototransduction Pathways Regulate Chalcone Synthase Gene Expression in Arabidopsis Leaf Tissue. Plant J. 2001, 25, 675–685. [Google Scholar] [CrossRef]
- Park, J.-S.; Choung, M.-G.; Kim, J.-B.J.-B.; Hahn, B.-S.; Kim, J.-B.J.-B.; Bae, S.-C.; Roh, K.-H.; Kim, Y.-H.; Cheon, C.-I.; Sung, M.-K.; et al. Genes Up-Regulated during Red Coloration in UV-B Irradiated Lettuce Leaves. Plant Cell Rep. 2007, 26, 507–516. [Google Scholar] [CrossRef]
- Lee, M.; Xu, J.; Wang, W.; Rajashekar, C.B. The Effect of Supplemental Blue, Red and Far-Red Light on the Growth and the Nutritional Quality of Red and Green Leaf Lettuce. Am. J. Plant Sci. 2019, 10, 2219–2235. [Google Scholar] [CrossRef]
- Oh, M.-M.; Carey, E.E.; Rajashekar, C.B. Environmental Stresses Induce Health-Promoting Phytochemicals in Lettuce. Plant Physiol. Biochem. 2009, 47, 578–583. [Google Scholar] [CrossRef]
Factor | ‘Rouxai’ | ‘Rex’ | ||||
---|---|---|---|---|---|---|
SL Waveband | WW PFD | SL Waveband × WW PFD | SL Waveband | WW PFD | SL Waveband × WW PFD | |
Fresh mass | <0.001 | <0.001 | 0.009 | <0.001 | <0.001 | 0.163 |
Dry mass | <0.001 | <0.001 | 0.048 | <0.001 | <0.001 | 0.627 |
Plant diameter | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 |
Leaf length | <0.001 | <0.001 | 0.027 | <0.001 | <0.001 | <0.001 |
Leaf width | <0.001 | <0.001 | 0.363 | <0.001 | <0.001 | 0.376 |
Leaf number | <0.001 | <0.001 | 0.064 | <0.001 | <0.001 | 0.081 |
SPAD | <0.001 | <0.001 | 0.062 | <0.001 | <0.001 | <0.001 |
TPC | <0.001 | <0.001 | 0.008 | nd | nd | nd |
TAC | <0.001 | <0.001 | <0.001 | nd | nd | nd |
L* | <0.001 | <0.001 | <0.001 | nd | nd | nd |
a* | <0.001 | <0.001 | <0.001 | nd | nd | nd |
b* | <0.001 | <0.001 | <0.001 | nd | nd | nd |
Cultivar | WW PFD | Treatment | Plant Diameter (cm) | Leaf Number | SPAD |
---|---|---|---|---|---|
Rouxai | 90 | WW90 | 24.2 c | 11.3 e | 12.8 d |
+B40 | 20.1 d | 10.7 e | 16.1 c | ||
+G40 | 25.6 c | 13.1 d | 13.5 d | ||
+R40 | 24.7 c | 13.8 cd | 15.5 c | ||
+FR40 | 33.0 a | 11.4 e | 12.4 d | ||
+WW40 | 25.0 c | 13.0 d | 13.8 d | ||
180 | WW180 | 24.2 c | 14.8 bc | 17.1 bc | |
+B80 | 21.4 d | 13.2 d | 19.2 a | ||
+G80 | 24.3 c | 15.2 ab | 17.9 ab | ||
+R80 | 24.5 c | 16.1 a | 18.5 ab | ||
+FR80 | 29.3 b | 13.3 d | 15.6 c | ||
+WW80 | 24.5 c | 16.4 a | 18.4 ab | ||
Rex | 90 | WW90 | 30.2 b | 13.5 ef | 17.5 fg |
+B40 | 23.4 g | 14.4 de | 21.6 cd | ||
+G40 | 30.0 b | 15.5 cd | 18.0 f | ||
+R40 | 28.4 bc | 16.9 bc | 20.4 de | ||
+FR40 | 35.3 a | 12.2 f | 16.0 g | ||
+WW40 | 28.7 bc | 15.0 de | 18.6 ef | ||
180 | WW180 | 27.2 cd | 18.1 ab | 21.0 d | |
+B80 | 21.4 fg | 17.9 ab | 25.1 a | ||
+G80 | 24.9 ef | 19.0 a | 20.0 de | ||
+R80 | 24.8 ef | 19.2 a | 23.1 bc | ||
+FR80 | 33.7 a | 15.7 cd | 17.7 fg | ||
+WW80 | 25.5 de | 19.5 a | 24.2 ab |
Photon Flux Density (µmol∙m−2∙s−1) | ||||||
---|---|---|---|---|---|---|
Treatment | Total | Yield | Blue | Green | Red | Far-Red |
WW90 | 87.1 | 74.1 | 5.7 | 26.9 | 48.4 | 6.1 |
+B40 | 131.4 | 106.6 | 48.2 | 27.6 | 48.9 | 6.8 |
+G40 | 132.8 | 109.3 | 8.3 | 68.1 | 48.8 | 7.4 |
+R40 | 134.4 | 116.8 | 6.9 | 26.8 | 93.1 | 7.6 |
+FR40 | 137.3 | 88.1 | 5.7 | 28.0 | 54.5 | 49.2 |
+WW40 | 128.3 | 107.7 | 9.7 | 38.8 | 69.3 | 10.3 |
WW180 | 179.4 | 152.4 | 12.0 | 55.5 | 99.1 | 12.8 |
+B80 | 267.2 | 217.4 | 98.3 | 56.1 | 99.7 | 13.0 |
+G80 | 265.5 | 218.0 | 17.4 | 137.8 | 95.9 | 14.2 |
+R80 | 264.3 | 230.4 | 11.9 | 54.9 | 183.4 | 13.0 |
+FR80 | 269.4 | 172.5 | 11.9 | 54.5 | 106.5 | 96.6 |
+WW80 | 258.6 | 219.2 | 17.9 | 79.5 | 142.2 | 19.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, N.; Runkle, E.S. Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors. Plants 2025, 14, 1141. https://doi.org/10.3390/plants14071141
Kelly N, Runkle ES. Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors. Plants. 2025; 14(7):1141. https://doi.org/10.3390/plants14071141
Chicago/Turabian StyleKelly, Nathan, and Erik S. Runkle. 2025. "Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors" Plants 14, no. 7: 1141. https://doi.org/10.3390/plants14071141
APA StyleKelly, N., & Runkle, E. S. (2025). Analysis of Targeted Supplemental-Waveband Lighting to Increase Yield and Quality of Lettuce Grown Indoors. Plants, 14(7), 1141. https://doi.org/10.3390/plants14071141