Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis of GJEO
2.2. In Vitro Antioxidant Activity of GJEO
2.3. Antimicrobial Analysis
2.4. In Silico Evaluation of GJEO
3. Materials and Methods
3.1. Plant Material and Essential Oil Preparation
3.2. Identification of the Constituents of Essential Oil Using GC-MS
3.3. In Vitro Determination of Antioxidant Activity of GJEO
3.4. Antimicrobial Analysis Using Disk Diffusion Assay
3.5. Determination of the Minimum Inhibitory Concentration (MIC)
3.6. Determination of the Minimum Fungicidal/Bactericidal Concentration
3.7. Molecular Docking
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef]
- WHO. WHO Traditional Medicine Strategy: 2014–2023; WHO: Geneva, Switzerland, 2013.
- Heinrich, M.; Ankli, A.; Frei, B.; Weimann, C.; Sticher, O. Medicinal Plants in Mexico: Healers’ Consensus and Cultural Importance. Soc. Sci. Med. 1998, 47, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.; Barnes, J.; Prieto-Garcia, J.; Gibbons, S.; Williamson, E.M. (Eds.) Fundamentals of Pharmacognosy and Phytotherapy, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-323-83434-6. [Google Scholar]
- Lis-Balchin, M. Aromatherapy Science: A Guide for Healthcare Professionals; Pharmaceutical Press: London, UK, 2006; ISBN 978-0-85369-578-3. [Google Scholar]
- Grigoriadou, K.; Krigas, N.; Lazari, D.; Maloupa, E. Chapter 4—Sustainable Use of Mediterranean Medicinal-Aromatic Plants. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 57–74. ISBN 978-0-12-814700-9. [Google Scholar]
- Chaachouay, N.; Benkhnigue, O.; Zidane, L. Ethnobotanical and Ethnomedicinal Study of Medicinal and Aromatic Plants Used against Dermatological Diseases by the People of Rif, Morocco. J. Herb. Med. 2022, 32, 100542. [Google Scholar] [CrossRef]
- Hmamouchi, M. Food, Aromatic, Condiment, Medicinal and Poisonous Plants in Morocco. In Identification of Wild Food and Non-Food Plants of the Mediterranean Region; Heywood, V.H., Skoula, M., Eds.; CIHEAM: Chania, Greece, 1997. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Zhang, N.; Luo, M.; He, L.; Yao, L. Chemical Composition of Essential Oil from Flower of ‘Shanzhizi’ (Gardenia jasminoides Ellis) and Involvement of Serotonergic System in Its Anxiolytic Effect. Molecules 2020, 25, 4702. [Google Scholar] [CrossRef]
- Buchbauer, G.; Jirovetz, L.; Nikiforov, A.; Kaul, V.K.; Winker, N. Volatiles of the Absolute of Gardenia jasminoides Ellis (Rubiaceae). J. Essent. Oil Res. 1996, 8, 241–245. [Google Scholar] [CrossRef]
- Chaichana, J.; Niwatananun, W.; Vejabhikul, S.; Somna, S.; Chansakaow, S. Volatile constituents and biological activities of Gardenia jasminoides. J. Health Res. 2009, 23, 141–145. [Google Scholar]
- Xiao, W.; Li, S.; Wang, S.; Ho, C.-T. Chemistry and Bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61. [Google Scholar] [CrossRef]
- Tian, J.; Qin, S.; Han, J.; Meng, J.; Liang, A. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology and Toxicology of Fructus Gardeniae (Zhi-Zi). J. Ethnopharmacol. 2022, 289, 114984. [Google Scholar] [CrossRef]
- Wang, X.-S.; Wu, Y.-F.; Dai, S.-L.; Chen, R.; Shao, Y. Ultrasound-Assisted Extraction of Geniposide from Gardenia jasminoides. Ultrason. Sonochem. 2012, 19, 1155–1159. [Google Scholar] [CrossRef]
- Song, J.-L.; Yang, Y.-J.; Qi, H.-Y.; Li, Q. Chemical constituents from flowers of Gardenia jasminoides. Zhong Yao Cai 2013, 36, 752–755. [Google Scholar]
- Phatak, R. Phytochemistry, Pharmacological Activities and Intellectual Property Landscape of Gardenia jasminoides Ellis: A Review. Pharmacogn. J. 2015, 7, 254–265. [Google Scholar] [CrossRef]
- Thormar, H. Lipids and Essential Oils as Antimicrobial Agents; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-470-97667-8. [Google Scholar]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Prashith Kekuda, T.R.; Raghavendra, H.L.; Shilpa, M.; Pushpavathi, D.; Petkar, T.; Siddiqha, A. Antimicrobial, antiradical and insecticidal activity of Gardenia gummifera L. f. (Rubiaceae). Int. J. Pharm. Pharm. Sci. 2017, 9, 265. [Google Scholar] [CrossRef]
- Avoseh, N.O.; Lawal, O.A.; Ogunwande, I.A.; Ascrizzi, R.; Flamini, G.; Amoo, E. In Vivo Anti-Inflammatory and Anti-Nociceptive Activities, and Chemical Constituents of Essential Oil from the Leaf of Gardenia jasminoides J. Ellis (Rubiaceae). Trends Phytochem. Res. 2020, 4, 203–212. [Google Scholar]
- Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, Phytochemistry, and Pharmacological and Industrial Applications of an Important Traditional Chinese Medicine. J. Ethnopharmacol. 2020, 257, 112829. [Google Scholar] [CrossRef]
- Zhang, N.; Bian, Y.; Yao, L. Essential Oils of Gardenia jasminoides J. Ellis and Gardenia jasminoides f. Longicarpa Z.W. Xie & M. Okada Flowers: Chemical Characterization and Assessment of Anti-Inflammatory Effects in Alveolar Macrophage. Pharmaceutics 2022, 14, 966. [Google Scholar] [CrossRef]
- De Vincenzi, M.; Silano, M.; Stacchini, P.; Scazzocchio, B. Constituents of Aromatic Plants: I. Methyleugenol. Fitoterapia 2000, 71, 216–221. [Google Scholar] [CrossRef]
- Miele, M.; Dondero, R.; Ciarallo, G.; Mazzei, M. Methyleugenol in Ocimum basilicum L. Cv. Genovese Gigante. J. Agric. Food Chem. 2001, 49, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H.; Nishida, R. Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef]
- Smith, R.L.; Adams, T.B.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.; Rogers, A.E.; et al. Safety Assessment of Allylalkoxybenzene Derivatives Used as Flavouring Substances—Methyl Eugenol and Estragole. Food Chem. Toxicol. 2002, 40, 851–870. [Google Scholar] [CrossRef]
- Canales, M.; Hernández, T.; Rodríguez-Monroy, M.A.; Jiménez-Estrada, M.; Flores, C.M.; Hernández, L.B.; Gijón, I.C.; Quiroz, S.; García, A.M.; Avila, G. Antimicrobial Activity of the Extracts and Essential Oil of Viguiera dentata. Pharm. Biol. 2008, 46, 719–723. [Google Scholar] [CrossRef]
- Ghavam, M. In Vitro Biological Potential of the Essential Oil of Some Aromatic Species Used in Iranian Traditional Medicine. Inflammopharmacology 2022, 30, 855–874. [Google Scholar] [CrossRef] [PubMed]
- Ayenew, K.D.; Sewale, Y.; Amare, Y.E.; Ayalew, A. Acute and Subacute Toxicity Study of Essential Oil of Cymbopogon martini in Mice. J. Toxicol. 2022, 2022, 1995578. [Google Scholar] [CrossRef] [PubMed]
- Haznedaroglu, M.Z.; Karabay, N.U.; Zeybek, U. Antibacterial Activity of Salvia tomentosa Essential Oil. Fitoterapia 2001, 72, 829–831. [Google Scholar] [CrossRef]
- Ololade, Z.S.; Olawore, N.O.; Oladosu, I.A. Phytochemistry and Therapeutic Potentials of the Seed Essential Oil of Eucalyptus maculata Hook from Nigeria. Org. Chem. Curr. Res. 2013, 2, 1000114. [Google Scholar] [CrossRef]
- Subashri, B.; Justin Koilpillai, Y. A Comparitive Study of Antioxidant Activity of Baccopa monnieri (L.) Pennell Using Various Solvent Extracts and Its GC-MS Analysis. Int. J. Pharm. Pharm. Sci. 2014, 6, 494–498. [Google Scholar]
- Yang, J.-F.; Yang, C.-H.; Chang, H.-W.; Yang, C.-S.; Wang, S.-M.; Hsieh, M.-C.; Chuang, L.-Y. Chemical Composition and Antibacterial Activities of Illicium verum Against Antibiotic-Resistant Pathogens. J. Med. Food 2010, 13, 1254–1262. [Google Scholar] [CrossRef]
- PubChem 2,6-Dimethoxybenzoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/15109 (accessed on 12 August 2024).
- Nur, S.; Hanafi, M.; Setiawan, H.; Elya, B. Chemical Characterization and Biological Activity of Molineria latifolia Root Extract as Dermal Antiaging: Isolation of Natural Compounds, in Silico and in Vitro Study. Biocatal. Agric. Biotechnol. 2024, 56, 103039. [Google Scholar] [CrossRef]
- Kalinowska, M.; Gołębiewska, E.; Świderski, G.; Męczyńska-Wielgosz, S.; Lewandowska, H.; Pietryczuk, A.; Cudowski, A.; Astel, A.; Świsłocka, R.; Samsonowicz, M.; et al. Plant-Derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021, 13, 3107. [Google Scholar] [CrossRef]
- Santoso, S.P.; Ismadji, S.; Angkawijaya, A.E.; Soetaredjo, F.E.; Go, A.W.; Ju, Y.H. Complexes of 2,6-Dihydroxybenzoic Acid with Divalent Metal Ions: Synthesis, Crystal Structure, Spectral Studies, and Biological Activity Enhancement. J. Mol. Liq. 2016, 221, 617–623. [Google Scholar] [CrossRef]
- Galan, D.M.; Ezeudu, N.E.; Garcia, J.; Geronimo, C.A.; Berry, N.M.; Malcolm, B.J. Eucalyptol (1,8-Cineole): An Underutilized Ally in Respiratory Disorders? J. Essent. Oil Res. 2020, 32, 103–110. [Google Scholar] [CrossRef]
- Her, L.; Kanjanasilp, J.; Chaiyakunapruk, N.; Sawangjit, R. Efficacy and Safety of Eucalyptus for Relieving Cough: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Integr. Complement. Med. 2022, 28, 218–226. [Google Scholar] [CrossRef]
- Hoch, C.C.; Petry, J.; Griesbaum, L.; Weiser, T.; Werner, K.; Ploch, M.; Verschoor, A.; Multhoff, G.; Bashiri Dezfouli, A.; Wollenberg, B. 1,8-Cineole (Eucalyptol): A Versatile Phytochemical with Therapeutic Applications across Multiple Diseases. Biomed. Pharmacother. 2023, 167, 115467. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Pei, R.; Zhou, F.; Ji, B.; Xu, J. Evaluation of Combined Antibacterial Effects of Eugenol, Cinnamaldehyde, Thymol, and Carvacrol against E. Coli with an Improved Method. J. Food Sci. 2009, 74, M379–M383. [Google Scholar] [CrossRef]
- Thosar, N.; Basak, S.; Bahadure, R.N.; Rajurkar, M. Antimicrobial Efficacy of Five Essential Oils against Oral Pathogens: An in Vitro Study. Eur. J. Dent. 2013, 7, S71–S77. [Google Scholar] [CrossRef]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial Activities of Commercial Essential Oils and Their Components against Food-Borne Pathogens and Food Spoilage Bacteria. Food Sci Nutr 2014, 2, 403–416. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef]
- Olagoke, O.O. GC/MS Analysis and Evaluation of Antimicrobial Performance of Aframomum latifolium Leaf Essential Oil from South West Nigeria. Int. J. Trend Sci. Res. Dev. 2019, 4, 189–191. [Google Scholar]
- Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In Vitro Synergy of Eugenol and Methyleugenol with Fluconazole against Clinical Candida Isolates. J. Med. Microbiol. 2010, 59, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Quave, C.L.; Lyles, J.T.; Kavanaugh, J.S.; Nelson, K.; Parlet, C.P.; Crosby, H.A.; Heilmann, K.P.; Horswill, A.R. Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLoS ONE 2015, 10, e0136486. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Rashed, Z.I.; Alharbi, A.A.; Alsharef, S.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Battah, B.; Donadu, M.G. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024, 29, 3466. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Assouguem, A.; Abdou, R.Z.; Bahhou, J. Phytochemical Content and Antioxidant Activity of Vinegar Prepared from Four Apple Varieties by Different Methods. Trop. J. Nat. Prod. Res. 2021, 5, 1578–1585. [Google Scholar] [CrossRef]
- Kara, M.; Assouguem, A.; Al Kamaly, O.M.; Benmessaoud, S.; Imtara, H.; Mechchate, H.; Hano, C.; Zerhouni, A.R.; Bahhou, J. The Impact of Apple Variety and the Production Methods on the Antibacterial Activity of Vinegar Samples. Molecules 2021, 26, 5437. [Google Scholar] [CrossRef]
- El-Mernissi, R.; Khaldan, A.; Bouamrane, S.; Rehman, H.M.; Alaqarbeh, M.; Ajana, M.A.; Lakhlifi, T.; Bouachrine, M. 3D-QSAR, Molecular Docking, Simulation Dynamic and ADMET Studies on New Quinolines Derivatives against Colorectal Carcinoma Activity. J. Biomol. Struct. Dyn. 2024, 42, 3682–3699. [Google Scholar] [CrossRef]
- EL-Mernissi, R.; Alaqarbeh, M.; Khaldan, A.; Kara, M.; Al Kamaly, O.; Alnakhli, A.M.; Lakhlifi, T.; Sbai, A.; Ajana, M.A.; Bouachrine, M. 3D-QSAR, Molecular Docking, ADMET, Simulation Dynamic, and Retrosynthesis Studies on New Styrylquinolines Derivatives against Breast Cancer. Open Chem. 2024, 22, 20240041. [Google Scholar] [CrossRef]
- EL-Mernissi, R.; El Khatabi, K.; Khaldan, A.; Bouamrane, S.; El Mchichi, L.; Ajana, M.A.; Lakhlifi, T.; Bouachrine, M. Designing of Novel Quinolines Derivatives as Hepatocellular Carcinoma Inhibitors by Using In Silico Approaches. Biointerface Res. Appl. Chem. 2022, 13, 217. [Google Scholar] [CrossRef]
- El-Mernissi, R.; El Khatabi, K.; Khaldan, A.; Bouamrane, S.; ElMchichi, L.; Aziz Ajana, M.; Lakhlifi, T.; Bouachrine, M. 3D-QSAR, ADMET and Docking Studies for Design New 5,5-Diphenylimidazolidine-2,4-Dione Derivatives Agents Against Cervical Cancer. Orbital Electron. J. Chem. 2022, 14, 24–32. [Google Scholar] [CrossRef]
- El-Mernissi, R.; El Khatabi, K.; Khaldan, A.; ElMchichi, L.; Shahinozzaman, M.; Ajana, M.A.; Lakhlifi, T.; Bouachrine, M. 2-Oxoquinoline Arylaminothiazole Derivatives in Identifying Novel Potential Anticancer Agents by Applying 3D-QSAR, Docking, and Molecular Dynamics Simulation Studies. J. Mex. Chem. Soc. 2021, 66, 79–94. [Google Scholar] [CrossRef]
- EL-Mernissi, R.; El Khatabi, K.; Khaldan, A.; El Mchichi, L.; Ajana, M.A.; Lakhlifi, T.; Bouachrine, M. Design of New 3, 5-Disubstituted Indole as Hematological Anticancer Agents Using 3D-QSAR, Molecular Docking and Drug-Likeness Studies. Mater. Today Proc. 2021, 45, 7608–7614. [Google Scholar] [CrossRef]
RT (min) | Area % | Compound | MF | Prob |
---|---|---|---|---|
12.56 | 4.13 | Eucalyptol | C10H18O | 87.63 |
15.33 | 3.37 | D-Limonene | C10H16 | 13.42 |
18.02 | 0.59 | Linalool | C10H18O | 46.72 |
18.60 | 1.42 | α-Terpineol | C10H18O | 89.57 |
23.95 | 10.68 | Tricyclo[2.2.1.0(2,6)]heptane, 1,3,3-trimethyl- | C10H16 | 39.75 |
24.29 | 3.12 | Eugenol | C10H12O2 | 73.84 |
25.23 | 0.32 | 5,9-Tetradecadiyne | C14H22 | 100 |
25.88 | 15.41 | Methyleugenol | C11H14O2 | 82.28 |
26.13 | 1.16 | α-Pinene | C10H16 | 2.97 |
29.81 | 3.4 | 1-Undecyne | C11H20 | 25.49 |
30.21 | 0.56 | Limonene | C10H16 | 33.94 |
31 | 0.47 | 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- | C15H26O | 99 |
31.15 | 8.25 | 2-Methyl-1-phenyl-1-butanol | C11H16O | 100 |
31.27 | 0.83 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | C13H20O | 89.44 |
31.51 | 2.63 | 2,3-Dimethoxybenzoic acid | C9H10O4 | 15.3 |
31.78 | 1.23 | Nerolidol | C15H26O | 91.29 |
32.1 | 0.98 | Benzene, 2-methyl-1,4-bis(1-methylethyl)- | C13H20 | 67.91 |
32.19 | 1.11 | Supraene | C15H26O | 86.33 |
32.44 | 0.42 | Isoborneol | C10H18O | 63.77 |
32.64 | 2.87 | Benzene, 1-(1,1-dimethylethyl)-3-methyl- | C11H16 | 17.22 |
33.36 | 6.64 | 2-Butanone, 4-(4-methoxyphenyl)- | C11H14O2 | 43.79 |
33.79 | 0.57 | Bicyclo[3.1.1]hept-2-ene-2-ethanol, 6,6-dimethyl- | C11H18O | 28.08 |
34.15 | 0.4 | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- | C14H20O2 | 80.01 |
37.4 | 0.56 | Undec-10-ynoic acid | C11H18O2 | 28.63 |
37.82 | 0.36 | Thymoquinone | C10H12O2 | 31.94 |
DPPH-IC50 (µL/mL) | TAC (µg EAA/mL) | |
---|---|---|
GJEO | 19.05 ± 1.87 c | 1.247 ± 0.06 |
BHT * | 3.12 ± 0.32 a | - |
Ascorbic acid * | 7.48 ± 0.02 b | - |
E. coli | P. aeruginosa | S. aureus | C. albicans | A. neger | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIZ | MIC * | MBC * | DIZ | MIC | MBC | DIZ | MIC | MBC | DIZ | MIC | MFC | DIZ | MIC | MFC | |
GJEO (100 µL/mL) | 10.67 ± 0.58 | 26.67 ± 11.55 | 40 ± 0.00 | 11.00 ± 0.00 | 16.67 ± 5.77 | 20 ± 0.00 | 14.33 ± 0.58 | 26.67 ± 11.55 | - | Rs | Rs | Rs | Rs | Rs | Rs |
Ampicillin (10 µg/disc) | 23.00 ± 0.00 | - | - | Rs | - | - | 15.00 ± 0.00 | - | - | - | - | - | - | - | - |
Penicillin (10 µg/disc) | 12.00 ± 0.00 | - | - | Rs | - | - | Rs | - | - | - | - | - | - | - | - |
Fluconazole (25 µg/disc) | - | - | - | - | - | - | - | - | - | 21.00 ± 0.00 | 0.40 ± 0.00 | - | - | - | - |
Voriconazole (50 µg/disc) | - | - | - | - | - | - | - | - | - | - | - | - | 12.00 ± 0.10 | 0.5 ± 0.00 | - |
N° | 3D View | 2D View |
---|---|---|
Eugenol | ||
Methyleugenol | ||
α-Terpineol |
N° | 3D View | 2D View |
---|---|---|
Eugenol | ||
Methyleugenol | ||
α-Terpineol |
Compounds | Eugenol | Methyleugenol | α-Terpineol |
---|---|---|---|
Molecular Formula | C10H12O2 | C11H14O2 | C10H18O |
CID | 3314 | 7127 | 443162 |
Structures | |||
Activities | Protein | ||
Antimicrobial | PDB: 1JIJ | PDB: 1JIJ | PDB: 1JIJ |
Antioxidant | PDB: 3MNG) | PDB: 3MNG) | PDB: 3MNG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, M.; Haoudi, N.; Tahiri, N.E.h.; Rhebbar, F.Z.; El Mernissi, R.; Assouguem, A.; Slali, H.; Bahhou, J. Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil. Plants 2025, 14, 1055. https://doi.org/10.3390/plants14071055
Kara M, Haoudi N, Tahiri NEh, Rhebbar FZ, El Mernissi R, Assouguem A, Slali H, Bahhou J. Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil. Plants. 2025; 14(7):1055. https://doi.org/10.3390/plants14071055
Chicago/Turabian StyleKara, Mohammed, Nouha Haoudi, Nor El houda Tahiri, Fatima Zahra Rhebbar, Reda El Mernissi, Amine Assouguem, Hamid Slali, and Jamila Bahhou. 2025. "Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil" Plants 14, no. 7: 1055. https://doi.org/10.3390/plants14071055
APA StyleKara, M., Haoudi, N., Tahiri, N. E. h., Rhebbar, F. Z., El Mernissi, R., Assouguem, A., Slali, H., & Bahhou, J. (2025). Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil. Plants, 14(7), 1055. https://doi.org/10.3390/plants14071055