Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality
Abstract
1. Introduction
2. Result and Discussion
2.1. Nanoparticle Characterization
2.2. Growth Modulation
2.3. Effects of NiFe2O4 NPs on Peanut Photosynthetic Pigments and Gas Exchange Parameters
2.4. Effects of NiFe2O4 NPs on Peanut Yield
2.5. Effects of NiFe2O4 NPs on the Peanut Antioxidant System
2.6. Effects of NiFe2O4 NPs on Mineral Nutrient Elements in Peanut Grains
2.7. Effects of NiFe2O4 NPs on Peanut Seed Organic Nutrient and Amino Acid Contents
2.8. Peanut Seed Risk Assessment
3. Conclusions
4. Materials and Methods
4.1. Characterization of Nanoparticles
4.2. Experimental Design
- Surface sterilization in 10% (v/v) H2O2 for 10 min, followed by eight rinses with deionized water;
- Hydration in darkness at 25 ± 1 °C for 12 h;
- Germination in Petri dishes (100 mm × 15 mm) lined with moist filter paper [62] and incubation at 25 ± 1 °C (DRP-9052 incubator, Peiyin, China) until radicle elongation reached 1 cm.
4.3. Chlorophyll Quantification
4.4. Gas Exchange Analysis
4.5. Yield Component Analysis
- 45 DAS: Leaves were sampled for chlorophyll measurement and then stored at −20 °C for physiological and biochemical analyses;
- 120 DAS (full life cycle): Plants were washed with deionized water, and surface soil was removed. Roots were further cleaned with 0.1% dilute nitric acid to eliminate adsorbed ions and nanoparticles. Plant height, root length, and grain yield were recorded. Tissues were dried at 105 °C for 1 h and then at 70 °C for 24 h before determining the dry weight.
4.6. Antioxidant Enzyme Profiling
4.7. Elemental Composition Analysis
4.8. Nutritional Metabolite Assays
4.9. Risk Assessment of Peanut Seeds
4.10. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NPs | Nanoparticles |
NiFe2O4 NPs | Iron–nickel oxide nanoparticles |
Tris-HCl | Tris (hydroxymethyl) aminomethane hydrochloride |
DLS | Dynamic light scattering |
CAT | Catalase |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
POD | Peroxidase |
SS | Soluble sugar |
TP | Total protein |
Starch | Starch |
AA | Amino acid |
FFA | Free fatty acid |
AK | Available potassium |
AP | Available phosphorus |
References
- Abadía, J.; Vázquez, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a Knowledge-Based Correction of Iron Chlorosis. Plant Physiol. Biochem. 2011, 49, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Palumbo, G.; He, J.-Z.; Pinton, R.; Cesco, S. Review on Iron Availability in Soil: Interaction of Fe Minerals, Plants, and Microbes. J. Soils Sediments 2014, 14, 538–548. [Google Scholar] [CrossRef]
- Lucena, J.J. Fe Chelates for Remediation of Fe Chlorosis in Strategy I Plants. J. Plant Nutr. 2003, 26, 1969–1984. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Ding, Z.; Bahloul, A.M.E.; Gawish, M.S.; Abou El Ghit, H.M.; Abdelaziz, A.M.R.A.; El-Desouky, H.S.; Sami, R.; Khojah, E.; Hashim, T.A.; et al. Foliar Application of Nano, Chelated, and Conventional Iron Forms Enhanced Growth, Nutritional Status, Fruiting Aspects, and Fruit Quality of Washington Navel Orange Trees (Citrus Sinensis L. Osbeck). Plants 2021, 10, 2577. [Google Scholar] [CrossRef]
- Perez-Labrada, F.; Benavides-Mendoza, A.; Juarez-Maldonado, A.; Solis-Gaona, S.; Gonzalez-Morales, S. Organic Acids Combined with Fe-Chelate Improves Ferric Nutrition in Tomato Grown in Calcisol Soil. J. Soil Sci. Plant Nutr. 2020, 20, 673–683. [Google Scholar] [CrossRef]
- Arcas, A.; Lopez-Rayo, S.; Garate, A.; Lucena, J.J. A Critical Review of Methodologies for Evaluating Iron Fertilizers Based on Iron Reduction and Uptake by Strategy I Plants. Plants 2024, 13, 819. [Google Scholar] [CrossRef]
- Zuluaga, M.Y.A.; Cardarelli, M.; Rouphael, Y.; Cesco, S.; Pii, Y.; Colla, G. Iron Nutrition in Agriculture: From Synthetic Chelates to Biochelates. Sci. Hortic. 2023, 312, 111833. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; Xiao, Y.; Lili, Z.; Muhammad, T.; Li, Y. Application of Chelated Fertilizers to Mitigate Organic-Inorganic Fouling in Brackish Water Drip Irrigation Systems. Agric. Water Manag. 2023, 285, 108355. [Google Scholar] [CrossRef]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; et al. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea). Front. Plant Sci. 2016, 7, 815. [Google Scholar] [CrossRef]
- Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) Nanoparticles Reduce Heavy Metals Uptake and Mitigate Their Toxicity in Wheat Seedling. Sustainability 2017, 9, 790. [Google Scholar] [CrossRef]
- Van Nhan, L.; Ma, C.; Rui, Y.; Cao, W.; Deng, Y.; Liu, L.; Xing, B. The Effects of Fe2O3 Nanoparticles on Physiology and Insecticide Activity in Non-Transgenic and Bt-Transgenic Cotton. Front. Plant Sci. 2016, 6, 1263. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Cadenas-Pliego, G.; Juárez-Maldonado, A.; González-Fuentes, J.A.; Tortella, G.; Benavides-Mendoza, A. Fe2O3 Nanoparticles Can Replace Fe-EDTA Fertilizer and Boost the Productivity and Quality of Raphanus sativus in a Soilless System. Sci. Hortic. 2023, 321, 112261. [Google Scholar] [CrossRef]
- Alarifi, A.; Deraz, N.M.; Shaban, S. Structural, Morphological and Magnetic Properties of NiFe2O4 Nano-Particles. J. Alloys Compd. 2009, 486, 501–506. [Google Scholar] [CrossRef]
- Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Doeblinger, M.; Mueller, A.; Pokharel, A.; Boecklein, S.; Scheu, C.; et al. Iron-Doped Nickel Oxide Nanocrystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting. ACS Nano 2015, 9, 5180–5188. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Lu, S.; Wang, W.-K.; Huang, G.-X.; Huang, B.-C.; Zhang, F.; Zhang, Y.-J.; Yu, H.-Q. Ultrahigh Electrocatalytic Oxygen Evolution by Iron-Nickel Sulfide Nanosheets/Reduced Graphene Oxide Nanohybrids with an Optimized Autoxidation Process. Nano Energy 2018, 43, 300–309. [Google Scholar] [CrossRef]
- Naik, K.M.; Chourasia, A.K.; Sharma, C.S. Nano-Interface Engineering of NiFe2O4/MoS2/MWCNTs Heterostructure Catalyst as Cathodes in the Long-Life Reversible Li-CO2 Mars Batteries. Chem. Eng. J. 2024, 490, 151729. [Google Scholar] [CrossRef]
- Miner, G.L.; Delgado, J.A.; Ippolito, J.A.; Johnson, J.J.; Kluth, D.L.; Stewart, C.E. Wheat Grain Micronutrients and Relationships with Yield and Protein in the U.S. Central Great Plains. Field Crops Res. 2022, 279, 108453. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef]
- Kobayashi, T. Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. Plant Cell Physiol. 2019, 60, 1440–1446. [Google Scholar] [CrossRef]
- Leskova, A.; Javot, H.; Giehl, R.F.H. Metal Crossroads in Plants: Modulation of Nutrient Acquisition and Root Development by Essential Trace Metals. J. Exp. Bot. 2022, 73, 1751–1765. [Google Scholar] [CrossRef]
- Bahuguna, A.; Singh, S.K.; Pandey, A.; Sharma, S.; Pradhan, S.; Arvind, M.K.; Shukla, M.K.; Bharteey, P.K.; Mukherjee, S.; Tripathi, S.; et al. Effect of Ni and Fe Co-Application on the Soybean Crop Grown in Nickel and Iron Deficient Soils of Mirzapur District. Commun. Soil Sci. Plant Anal. 2024, 55, 3400–3417. [Google Scholar] [CrossRef]
- Toledo, R.L.; de Melo, W.J.; de Mello Prado, R.; Viciedo, D.O.; de Melo, G.M.P.; de Araujo, A.S.F.; Hurtado, A.C. Morpho-Physiological Response to Micronutrient Deficiencies and Nickel Addition of Passion Fruit Plants. J. Plant Nutr. 2025, 48, 670–689. [Google Scholar] [CrossRef]
- Ma, J.; Islam, F.; Ayyaz, A.; Fang, R.; Hannan, F.; Farooq, M.A.; Ali, B.; Huang, Q.; Sun, R.; Zhou, W. Wood Vinegar Induces Salinity Tolerance by Alleviating Oxidative Damages and Protecting Photosystem II in Rapeseed Cultivars. Ind. Crops Prod. 2022, 189, 115763. [Google Scholar] [CrossRef]
- Andjelković, L.; Jeremić, D.; Milenković, M.R.; Radosavljević, J.; Vulić, P.; Pavlović, V.; Manojlović, D.; Nikolić, A.S. Synthesis, Characterization and in Vitro Evaluation of Divalent Ion Release from Stable NiFe2O4, ZnFe2O4 and Core-Shell ZnFe2O4@NiFe2O4 Nanoparticles. Ceram. Int. 2020, 46, 3528–3533. [Google Scholar] [CrossRef]
- Shokri, S.; Shariatifar, N.; Molaee-Aghaee, E.; Khaniki, G.J.; Sadighara, P.; Faramarzi, M.A.; Mohammadi, M.; Rezagholizade-shirvan, A. Synthesis and Characterization of a Novel Magnetic Chitosan–Nickel Ferrite Nanocomposite for Antibacterial and Antioxidant Properties. Sci. Rep. 2023, 13, 15777. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Zhang, K.; Zada, A.; Qi, K. Sonocatalytic Degradation of Tetracycline Hydrochloride with CoFe2O4/g-C3N4 Composite. Ultrason. Sonochem. 2023, 94, 106325. [Google Scholar] [CrossRef]
- Manohar, A.; Prabhakar Vattikuti, S.V.; Manivasagan, P.; Jang, E.-S.; Bandi, H.; Al-Enizi, A.M.; Gupta, M.; Ubaidullah, M.; Kim, K.H. Exploring NiFe2O4 Nanoparticles: Electrochemical Analysis and Evaluation of Cytotoxic Effects on Normal Human Dermal Fibroblasts (HDF) and Mouse Melanoma (B16-F10) Cell Lines. Colloids Surf. A 2024, 682, 132855. [Google Scholar] [CrossRef]
- Yeganeh, F.E.; Yeganeh, A.E.; Far, B.F.; Mansouri, A.; Sibuh, B.Z.; Krishnan, S.; Pandit, S.; Alsanie, W.F.; Thakur, V.K.; Gupta, P.K. Synthesis and Characterization of Tetracycline Loaded Methionine-Coated NiFe2O4 Nanoparticles for Anticancer and Antibacterial Applications. Nanomaterials 2022, 12, 2286. [Google Scholar] [CrossRef]
- Jermy, B.R.; Ravinayagam, V.; Almohazey, D.; Alamoudi, W.A.; Dafalla, H.; Akhtar, S.; Tanimu, G. PEGylated Green Halloysite/Spinel Ferrite Nanocomposites for pH Sensitive Delivery of Dexamethasone: A Potential Pulmonary Drug Delivery Treatment Option for COVID-19. Appl. Clay Sci. 2022, 216, 106333. [Google Scholar] [CrossRef]
- Cao, X.; Yue, L.; Wang, C.; Luo, X.; Zhang, C.; Zhao, X.; Wu, F.; White, J.C.; Wang, Z.; Xing, B. Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano 2022, 16, 1170–1181. [Google Scholar] [CrossRef]
- Parra-Torrejon, B.; Caceres, A.; Sanchez, M.; Sainz, L.; Guzman, M.; Bermudez-Perez, F.J.; Ramirez-Rodriguez, G.B.; Delgado-Lopez, J.M. Multifunctional Nanomaterials for Biofortification and Protection of Tomato Plants. Environ. Sci. Technol. 2023, 57, 14950–14960. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, R.; Li, Y.; Liu, C.; Wang, P.; Sun, H.; Wang, L. Foliar Uptake and Distribution of Metallic Oxide Nanoparticles in Maize (Zea mays L.) Leaf. Environ. Sci. Technol. 2024, 58, 16994–17003. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ding, Y.; Nadeem, M.; Li, Y.; Zhao, W.; Guo, Z.; Zhang, P.; Rui, Y. Enhancing Maize Stress Tolerance with Nickel Ferrite Nanoparticles: A Sustainable Approach to Combat Abiotic Stresses. Environ. Sci. Nano 2024, 12, 302–314. [Google Scholar] [CrossRef]
- Liang, H.; Yang, L.; Wu, Q.; Meng, C.; Zhang, J.; Shen, P. Regulation of the C:N Ratio Improves the N-Fixing Bacteria Activity, Root Growth, and Nodule Formation of Peanut. J. Soil Sci. Plant Nutr. 2023, 23, 4596–4608. [Google Scholar] [CrossRef]
- Wang, W.; Sun, N.; Bai, B.; Wu, H.; Cheng, Y.; Geng, H.; Song, J.; Zhou, J.; Pang, Z.; Qian, S.; et al. Prediction of Wheat SPAD Using Integrated Multispectral and Support Vector Machines. Front. Plant Sci. 2024, 15, 1405068. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.-M. Effects of SPAD Value Variations According to Nitrogen Application Levels on Rice Yield and Its Components. Front. Plant Sci. 2024, 15, 1437371. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; Ding, H.; Guo, Q.; Ci, D.; Zhang, J.; Qin, F.; Xu, M.; Zhang, G. The Impact of Short-Term Drought on the Photosynthetic Characteristics and Yield of Peanuts Grown in Saline Alkali Soil. Plants 2024, 13, 2920. [Google Scholar] [CrossRef]
- Hassan, M.J.; Shao, G.; Zhang, G. Influence of Cadmium Toxicity on Growth and Antioxidant Enzyme Activity in Rice Cultivars with Different Grain Cadmium Accumulation. J. Plant Nutr. 2005, 28, 1259–1270. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as Key Players in Plant Stress Signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Petrov, V.; Hille, J.; Mueller-Roeber, B.; Gechev, T.S. ROS-Mediated Abiotic Stress-Induced Programmed Cell Death in Plants. Front. Plant Sci. 2015, 6, 69. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic Stress: Interplay between ROS, Hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- Li, M.; Kim, C. Chloroplast ROS and Stress Signaling. Plant Commun. 2022, 3, 100264. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, S.; Zhang, Q.; Cui, M.; Zhao, M.; Li, N.; Wang, S.; Wu, R.; Zhang, L.; Cao, Y.; et al. The Interaction of ABA and ROS in Plant Growth and Stress Resistances. Front. Plant Sci. 2022, 13, 1050132. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Xiong, H.; He, H.; Chang, Y.; Miao, B.; Liu, Z.; Wang, Q.; Dong, F.; Xiong, L. Multiple Roles of NAC Transcription Factors in Plant Development and Stress Responses. J. Integr. Plant Biol. 2025. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Sahu, P.K.; Jayalakshmi, K.; Tilgam, J.; Gupta, A.; Nagaraju, Y.; Kumar, A.; Hamid, S.; Singh, H.V.; Minkina, T.; Rajput, V.D.; et al. ROS Generated from Biotic Stress: Effects on Plants and Alleviation by Endophytic Microbes. Front. Plant Sci. 2022, 13, 1042936. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Bae, H. ROS Interplay between Plant Growth and Stress Biology: Challenges and Future Perspectives. Plant Physiol. Biochem. 2023, 203, 108032. [Google Scholar] [CrossRef]
- Dumanovic, J.; Nepovimova, E.; Natic, M.; Kuca, K.; Jacevic, V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef]
- Raza, A.; Salehi, H.; Rahman, M.A.; Zahid, Z.; Madadkar Haghjou, M.; Najafi-Kakavand, S.; Charagh, S.; Osman, H.S.S.; Albaqami, M.; Zhuang, Y.; et al. Plant Hormones and Neurotransmitter Interactions Mediate Antioxidant Defenses under Induced Oxidative Stress in Plants. Front. Plant Sci. 2022, 13, 961872. [Google Scholar] [CrossRef]
- Asen, N.D.; Badamasi, A.T.; Gborigo, J.T.; Aluko, R.E.; Girgih, A.T. Comparative Evaluation of the Antioxidant Properties of Whole Peanut Flour, Defatted Peanut Protein Meal, and Peanut Protein Concentrate. Front. Sustain. Food Syst. 2021, 5, 765364. [Google Scholar] [CrossRef]
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M.; Khan, M.N. A Comprehensive Review of Impacts of Diverse Nanoparticles on Growth, Development and Physiological Adjustments in Plants under Changing Environment. Chemosphere 2022, 291, 132672. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ye, S.; Liu, L.; Ren, Y.; Li, Q.; Zhang, C.; Qian, J.-Y. Influence of Ohmic Heating on Structure, Texture and Flavor of Peanut Protein Isolate. Innov. Food Sci. Emerg. Technol. 2023, 90, 103512. [Google Scholar] [CrossRef]
- Li, W.; Huang, L.; Liu, N.; Chen, Y.; Guo, J.; Yu, B.; Luo, H.; Zhou, X.; Huai, D.; Chen, W.; et al. Identification of a Stable Major Sucrose-Related QTL and Diagnostic Marker for Flavor Improvement in Peanut. Theor. Appl. Genet. 2023, 136, 78. [Google Scholar] [CrossRef]
- Wang, F.; Miao, H.; Zhang, S.; Hu, X.; Li, C.; Chu, Y.; Chen, C.; Zhong, W.; Zhang, T.; Wang, H.; et al. Identification of a Major QTL Underlying Sugar Content in Peanut Kernels Based on the RIL Mapping Population. Front. Plant Sci. 2024, 15, 1423586. [Google Scholar] [CrossRef]
- Li, X.; Ji, N.; Qiu, C.; Xia, M.; Xiong, L.; Sun, Q. The Effect of Peanut Protein Nanoparticles on Characteristics of Protein- and Starch-Based Nanocomposite Films: A Comparative Study. Ind. Crops Prod. 2015, 77, 565–574. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Study of Interactions between Cassava Starch and Peanut Skin on Biodegradable Foams. Int. J. Biol. Macromol. 2020, 147, 1343–1353. [Google Scholar] [CrossRef]
- Mi, H.; Su, N.; Liang, S.; Li, J.; Chen, J.; Li, X. Effect of Starch and Peanut Oil on Physicochemical and Gel Properties of Myofibrillar Protein: Amylose Content and Addition Form. Int. J. Biol. Macromol. 2024, 268, 131699. [Google Scholar] [CrossRef]
- Yoshida, H.; Hirakawa, Y.; Tomiyama, Y.; Nagamizu, T.; Mizushina, Y. Fatty Acid Distributions of Triacylglycerols and Phospholipids in Peanut Seeds (Arachis hypogaea L.) Following Microwave Treatment. J. Food Compos. Anal. 2005, 18, 3–14. [Google Scholar] [CrossRef]
- Zeng, R.; Chen, T.; Wang, X.; Cao, J.; Li, X.; Xu, X.; Chen, L.; Xia, Q.; Dong, Y.; Huang, L.; et al. Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut. Front. Plant Sci. 2021, 12, 601771. [Google Scholar] [CrossRef]
- Stoermer, L.; Globisch, M.; Henle, T. Glycerol-Bound Oxidized Fatty Acids: Formation and Occurrence in Peanuts. Eur. Food Res. Technol. 2022, 248, 2053–2066. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Zhou, P.; Zhu, G.; Wang, Q.; Li, Y.; Wang, Q.; White, J.C.; Rui, Y.; Zhang, P. Recycled Lithium Battery Nanomaterials as a Sustainable Nanofertilizer: Reduced Peanut Allergenicity and Improved Seed Quality. Sci. Total Environ. 2024, 955, 176900. [Google Scholar] [CrossRef] [PubMed]
- Priester, J.H.; Ge, Y.; Mielke, R.E.; Horst, A.M.; Moritz, S.C.; Espinosa, K.; Gelb, J.; Walker, S.L.; Nisbet, R.M.; An, Y.-J.; et al. Soybean Susceptibility to Manufactured Nanomaterials with Evidence for Food Quality and Soil Fertility Interruption. Proc. Natl. Acad. Sci. USA 2012, 109, E2451–E2456. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jakobsen, I.; Roos, P.; Zhu, Y.-G. Effects of the Mycorrhizal Fungus Glomus Intraradices on Uranium Uptake and Accumulation by Medicago truncatula L. from Uranium-Contaminated Soil. Plant Soil 2005, 275, 349–359. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Guo, Z.; Zhao, W.; Li, Y.; Yi, T.; Cao, W.; Gao, L.; Tian, C.F.; Chen, Q.; et al. Dynamic Transformation of Nano-MoS2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth. Environ. Sci. Technol. 2024, 58, 1211–1222. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, Y.; Zhao, W.; Yi, T.; Jiang, Y.; Zhu, G.; Sun, Y.; Wang, Q.; Huang, L.; Chen, F.; et al. Potassium-Based Nanomaterials Significantly Enhance Nutrient Utilization Efficiency and Promote High Crop Yields. Environ. Sci. Nano 2024, 11, 2906–2922. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Zain, M.; Zhang, P.; Ahmad, M.A.; Farooq, T.; Zhou, P.; Azeem, I.; Rizwan, M.; Guo, K.; et al. Exposure of Cherry Radish (Raphanus Sativus L. var. Radculus Pers) to Iron-Based Nanoparticles Enhances Its Nutritional Quality by Trigging the Essential Elements. NanoImpact 2022, 25, 100388. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, Y.; Adeel, M.; Shakoor, N.; Zhao, W.; Liu, Y.; Li, Y.; Li, M.; Azeem, I.; Rui, Y.; et al. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. Environ. Sci. Technol. 2023, 57, 7547–7558. [Google Scholar] [CrossRef]
- Góth, L. A Simple Method for Determination of Serum Catalase Activity and Revision of Reference Range. Clin. Chim. Acta Int. J. Clin. Chem. 1991, 196, 143–151. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Oyanagui, Y. Reevaluation of Assay Methods and Establishment of Kit for Superoxide Dismutase Activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, P.; Ma, T.; Adeel, M.; Shakoor, N.; Li, Y.; Li, M.; Guo, M.; Rui, Y. Effects of Two Mn-Based Nanomaterials on Soybean Antioxidant System and Mineral Element Homeostasis. Environ. Sci. Pollut. Res. 2023, 30, 18880–18889. [Google Scholar] [CrossRef]
- Zhu, G.; Tang, Y.; Ding, Y.; Zhao, W.; Wang, Q.; Li, Y.; Wang, Q.; Zhang, P.; Tan, Z.; Rui, Y. Synergistic Effect of Nano-Iron Phosphide and Wood Vinegar on Soybean Production and Grain Quality. Environ. Sci. Nano 2024, 11, 4634–4643. [Google Scholar] [CrossRef]
- Preety; Chauhan, N.; Sharma, S.; Hooda, V. Improved Protein Determination Assays Obtained after Substitution of Copper Sulfate by Copper Oxide Nanoparticles. Anal. Biochem. 2018, 547, 19–25. [Google Scholar] [CrossRef]
- Simpson, R.J. Quantifying Protein by Bicinchoninic Acid. Cold Spring Harb. Protoc. 2008, 2008, pdb.prot4722. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Guo, Z.; Cao, W.; Gao, L.; Li, Y.; Tian, C.F.; Chen, Q.; Shen, Y.; Ren, F.; et al. Molybdenum Nanofertilizer Boosts Biological Nitrogen Fixation and Yield of Soybean through Delaying Nodule Senescence and Nutrition Enhancement. ACS Nano 2023, 17, 14761–14774. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, G.; Wang, Q.; Zhao, W.; Li, Y.; Shakoor, N.; Tan, Z.; Wang, F.; Zhang, P.; Rui, Y. The Fate and Impact of Co3O4 Nanoparticles in the Soil Environment: Observing the Dose Effect of Nanoparticles on Soybeans. J. Environ. Manag. 2024, 368, 122186. [Google Scholar] [CrossRef]
- Johnson, G.; Lambert, C.; Johnson, D.K.; Sunderwirth, S.G. Plant Tissue Analysis, Colorimetric Determination of Glucose, Fructose, and Sucrose in Plant Materials Using a Combination of Enzymatic and Chemical Methods. J. Agric. Food Chem. 1964, 12, 216–219. [Google Scholar] [CrossRef]
- Hacbarth, E.; Kajdacsy-Balla, A. Low Density Neutrophils in Patients with Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Acute Rheumatic Fever. Arthritis Rheum. 1986, 29, 1334–1342. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, T.; Zhou, P.; Wu, Z.; Tan, Z.; Rui, Y. Insights into the Effect of Manganese-Based Nanomaterials on the Distribution Trait and Nutrition of Radish (Raphanus sativus L.). Plant Physiol. Biochem. 2024, 207, 108428. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.J.M.; Viana, L.N.; Saint’Pierre, T.D.; Canela, M.C.; de Almeida, C.M.S. Toxic and Essential Elements Determination in Edible Tissues of Different Elasmobranch Species from Southeastern Brazil and Potential Human Health Risks. Mar. Pollut. Bull. 2025, 214, 117749. [Google Scholar] [CrossRef]
- Ain, S.N.U.; Abbasi, A.M.; Ajab, H.; Faridullah; Khan, S.; Yaqub, A. Assessment of Arsenic in Mangifera indica (Mango) Contaminated by Artificial Ripening Agent: Target Hazard Quotient (THQ), Health Risk Index (HRI) and Estimated Daily Intake (EDI). Food Chem. Adv. 2023, 3, 100468. [Google Scholar] [CrossRef]
Indicator | Sand (Average Value) | Soil (Average Value) |
---|---|---|
Soil type | Fine sand | Sandy chernozem |
pH | 1.68 | 8.38 |
Total organic matter (g/kg) | 26.6 | 8.36 |
Available potassium (AK) (mg/kg) | 1.06 | 66.07 |
Available phosphorus (AP) (mg/kg) | 1.68 | 11.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhang, T.; Li, Y.; Wang, Q.; Zhao, W.; Nadeem, M.; Zhang, P.; Rui, Y. Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality. Plants 2025, 14, 1011. https://doi.org/10.3390/plants14071011
Tang Y, Zhang T, Li Y, Wang Q, Zhao W, Nadeem M, Zhang P, Rui Y. Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality. Plants. 2025; 14(7):1011. https://doi.org/10.3390/plants14071011
Chicago/Turabian StyleTang, Yuying, Taiming Zhang, Yuanbo Li, Quanlong Wang, Weichen Zhao, Muhammed Nadeem, Peng Zhang, and Yukui Rui. 2025. "Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality" Plants 14, no. 7: 1011. https://doi.org/10.3390/plants14071011
APA StyleTang, Y., Zhang, T., Li, Y., Wang, Q., Zhao, W., Nadeem, M., Zhang, P., & Rui, Y. (2025). Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality. Plants, 14(7), 1011. https://doi.org/10.3390/plants14071011