The Effect of Bauhinia bowkeri Extracts on Hypercholesterolemia: Insights from In Vitro and In Silico Investigations
Abstract
1. Introduction
2. Results
2.1. Percentage Yield
2.2. Total Phenolic and Flavonoids Content
2.3. FT IR Analysis
2.4. Phytochemical Profiling of B. bowkeri
2.5. In Vitro Antioxidant Activity
2.6. Inhibitory Effect of the Extracts on Enzyme Activity
2.6.1. The Inhibitory Effects of n-Hexane
2.6.2. Effect of B. bowkeri Crude Extract on Pancreatic Lipase Activity
2.6.3. Inhibition of the Extracts on HMG-CoA Reductase Activity
2.7. The Effect of the Extracts on Bile Acid Binding
2.8. Molecular Docking Analysis
3. Discussion
4. Materials and Methodology
4.1. Materials
4.1.1. Chemical Reagents
4.1.2. Collection and Extraction of Bauhinia bowkeri
4.2. Methodology
4.2.1. Phytochemical Profiling of B. bowkeri Extracts by FT-IR
4.2.2. Phytochemical Profiling of B. bowkeri Extracts by GC-MS
4.2.3. Quantification of Total Phenolic Content (TPC)
4.2.4. Quantification of Total Flavonoid Content (TFC)
4.2.5. In Vitro Antioxidant Assays
- Ac = the absorbance of the control sample;
- At = the absorbance of the sample in the presence of the tested extract.
- The absorbances were measured with a microplate reader (Synergy HT, BioTek Instrument, Inc., Winooski, VT, USA).
4.2.6. In Vitro Enzyme Inhibitory Assays
Inhibitory Effect of the Extract on Cholesterol Esterase Activity
- Ac = the absorbance of the control sample;
- At = the absorbance of the sample in the presence of the tested extract.
- The absorbances were measured with a microplate reader (Synergy HT, BioTek Instrument, Inc., Winooski, VT, USA).
Inhibitory Effect of the Extract on Pancreatic Lipase Activity
Inhibitory Effect of the Extract on HMG-CoA Reductase Activity
- 12.44 represents the 2 NADPH consumed;
- TV = the total volume of the reaction (mL);
- V = the volume of the enzyme used;
- 0.6 = the enzyme concentration (mg-protein, mgP);
- LP = the light path (cm).
4.2.7. The Effect of Extracts on Bile Acid
4.2.8. In Silico Studies
4.2.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langslet, G.; Emery, M.; Wasserman, S.M. Evolocumab (AMG 145) for primary hypercholesterolemia. Expert Rev. Cardiovasc. Ther. 2015, 13, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [PubMed]
- World Health Organization Noncommunicable Diseases. Fact Sheets 2021. Available online: www.who.int (accessed on 26 July 2024).
- Dai, L.; Zou, L.; Meng, L.; Qiang, G.; Yan, M.; Zhang, Z. Cholesterol metabolism in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Mol. Neurobiol. 2021, 58, 2183–2201. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar]
- Kon, V.; Shelton, E.L.; Pitzer, A.; Yang, H.C.; Kirabo, A. Inflammation, lymphatics, and cardiovascular disease: Amplification by chronic kidney disease. Curr. Hypertens. Rep. 2022, 24, 455–463. [Google Scholar]
- Onwe, P.E.; Folawiyo, M.A.; Anyigor-Ogah, C.S.; Umahi, G.; Okorocha, A.E.; Afoke, A.O. Hyperlipidemia: Etiology and possible control. IOSR J. Dent. Med. Sci. 2015, 14, 93–100. [Google Scholar]
- Golomb, B.A.; Evans, M.A. Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. Am. J. Cardiovasc. Drugs 2008, 8, 373–418. [Google Scholar] [PubMed]
- Li, J.; Yu, H.; Wang, S.; Wang, W.; Chen, Q.; Ma, Y.; Zhang, Y.; Wang, T. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des. Dev. Ther. 2018, 12, 121–135. [Google Scholar] [CrossRef]
- Ndawonde, B.G.; Zobolo, A.M.; Dlamini, E.T.; Siebert, S.J. A survey of plants sold by traders at Zululand muthi markets, with a view to selecting popular plant species for propagation in communal gardens. Afr. J. Range Forage Sci. 2007, 24, 103–107. [Google Scholar]
- Farag, M.A.; Sakna, S.T.; El-Fiky, N.M.; Shabana, M.M.; Wessjohann, L.A. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochemistry 2015, 119, 41–50. [Google Scholar]
- Miceli, N.; Buongiorno, L.P.; Celi, M.G.; Cacciola, F.; Dugo, P.; Donato, P.; Mondello, L.; Bonaccorsi, I.; Taviano, M.F. Role of the flavonoid-rich fraction in the antioxidant and cytotoxic activities of Bauhinia forficata Link.(Fabaceae) leaves extract. Nat. Prod. Res. 2016, 30, 1229–1239. [Google Scholar] [PubMed]
- de Souza, B.V.C.; Moreira Araújo, R.S.D.R.; Silva, O.A.; Faustino, L.C.; Gonçalves, M.F.B.; Dos Santos, M.L.; Souza, G.R.; Rocha, L.M.; Cardoso, M.L.S.; Nunes, L.C.C. Bauhinia forficata in the treatment of diabetes mellitus: A patent review. Expert Opin. Ther. Pat. 2018, 28, 129–138. [Google Scholar] [PubMed]
- Cechinel-Zanchett, C.C.; Boeing, T.; Somensi, L.B.; Steimbach, V.M.B.; Campos, A.; Krueger, C.D.M.A.; Schultz, C.; Sant’ana, D.D.M.G.; Cechinel-Filho, V.; Mota da Silva, L.; et al. Flavonoid-rich fraction of Bauhinia forficata Link leaves prevents the intestinal toxic effects of irinotecan chemotherapy in IEC-6 cells and in mice. Phytother. Res. 2019, 33, 90–106. [Google Scholar]
- Filho, V.C. Chemical composition and biological potential of plants from the genus Bauhinia. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 1347–1354. [Google Scholar]
- Ojo, M.C.; Mosa, R.A.; Osunsanmi, F.O.; Revaprasadu, N.; Opoku, A.R. In silico and in vitro assessment of the anti-β-amyloid aggregation and anti-cholinesterase activities of Ptaeroxylon obliquum and Bauhinia bowkeri extracts. Electron. J. Biotechnol. 2024, 68, 67–80. [Google Scholar]
- Flora, G.D.; Nayak, M.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr. Pharm. Des. 2019, 25, 4063–4084. [Google Scholar] [CrossRef]
- Azzu, V.; Vacca, M.; Virtue, S.; Allison, M.; Vidal-Puig, A. Adipose tissue-liver cross talk in the control of whole-body metabolism: Implications in nonalcoholic fatty liver disease. Gastroenterology 2020, 158, 1899–1912. [Google Scholar] [CrossRef]
- Thakur, A.; Chun, Y.S.; October, N.; Yang, H.O.; Maharaj, V. Potential of South African medicinal plants targeting the reduction of Aβ42 protein as a treatment of Alzheimer’s disease. J. Ethnopharmacol. 2019, 231, 363–373. [Google Scholar]
- Friesen, J.A.; Rodwell, V.W. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 2004, 5, 248. [Google Scholar]
- Cerqueira, N.M.; Oliveira, E.F.; Gesto, D.S.; Santos-Martins, D.; Moreira, C.; Moorthy, H.N.; Ramos, M.J.; Fernandes, P.A. Cholesterol biosynthesis: A mechanistic overview. Biochemistry 2016, 55, 5483–5506. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Li, H.; Tang, J.J.; Wang, J.; Luo, J.; Liu, B.; Wang, J.K.; Shi, X.J.; Cui, H.W.; Tang, J.; et al. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat. Commun. 2018, 9, 5138. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Li, Z.; Lin, X.; Li, X.; Chen, Y.; Xi, K.; Xiao, M.; Wei, H.; Zhu, L.; Xiang, H. Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm. Sin. B 2021, 11, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Yunarto, N.; Sulistyowati, I.; Finolawati, A.; Elya, B.; Sauriasari, R. HMG-CoA reductase inhibitory activity of extract and catechin isolate from Uncaria gambir as a treatment for hypercholesterolemia. J. Southwest Jiaotong Univ. 2021, 56, 490–499. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Burke, A.C.; Huff, M.W. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu. Rev. Nutr. 2016, 36, 275–299. [Google Scholar] [CrossRef]
- Hadrich, F.; Sayadi, S. Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α. Lipids Health Dis. 2018, 17, 95. [Google Scholar] [CrossRef]
- Botchlett, R.; Wu, C. Diet composition for the management of obesity and obesity-related disorders. J. Diabetes Mellit. Metab. Syndr. 2018, 3, 10. [Google Scholar] [CrossRef]
- Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- Mosa, R.A.; Naidoo, J.J.; Nkomo, F.S.; Mazibuko, S.E.; Muller, C.J.; Opoku, A.R. In vitro antihyperlipidemic potential of triterpenes from stem bark of Protorhus longifolia. Planta Medica 2014, 80, 1685–1691. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Y.; Hu, L. Identification and synthesis of selective cholesterol esterase inhibitor using dynamic combinatorial chemistry. Bioorg. Chem. 2022, 119, 105520. [Google Scholar] [CrossRef]
- Ojo, M.C.; Osunsanmi, F.O.; Zaharare, G.E.; Mosa, R.A.; Cele, N.D.; Oboh, M.O.; Opoku, A.R. In-vitro Anti-diabetic and Antioxidant Efficacy of Methanolic Extract of Encephalartos ferox leaves. Pharmacogn. J. 2019, 11, 455–460. [Google Scholar] [CrossRef]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.A. Bile formation and the enterohepatic circulation. In Physiology of the Gastrointestinal Tract; Academic Press: Cambridge, MA, USA, 2018; pp. 931–956. [Google Scholar]
- Di Ciaula, A.; Garruti, G.; Baccetto, R.L.; Molina-Molina, E.; Bonfrate, L.; Portincasa, P.; Wang, D.Q. Bile acid physiology. Ann. Hepatol. 2018, 16, 4–14. [Google Scholar] [CrossRef]
- Liu, R.H.; Wharton, S.; Sharma, A.M.; Ardern, C.I.; Kuk, J.L. Influence of a clinical lifestyle-based weight loss program on the metabolic risk profile of metabolically normal and abnormal obese adults. Obesity 2013, 21, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Sarafian, M.H.; Lewis, M.R.; Pechlivanis, A.; Ralphs, S.; McPhail, M.J.; Patel, V.C.; Dumas, M.E.; Holmes, E.; Nicholson, J.K. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal. Chem. 2015, 87, 9662–9670. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Ankita, K.; Shwetha, V.; Vanitha, S.; Sujatha, S.R.; Nagaraju, R.; Pavan, K.T. Assessment of salivary endothelin-1 in patients with leukoplakia, submucous fibrosis, oral cancer and healthy individuals–a comparative study. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 326–331. [Google Scholar] [CrossRef]
- Patel, R.; Rinker, L.; Peng, J.; Chilian, W.M. Reactive oxygen species: The good and the bad. In Reactive Oxygen Species (ROS) in Living Cells; IntechOpen: London, UK, 2018; Volume 7. [Google Scholar]
- Ungvari, Z.; Tarantini, S.; Kiss, T.; Wren, J.D.; Giles, C.B.; Griffin, C.T.; Murfee, W.L.; Pacher, P.; Csiszar, A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 2018, 15, 555–565. [Google Scholar] [CrossRef]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef]
- Moreira, V.; Leiguez, E.; Janovits, P.M.; Maia-Marques, R.; Fernandes, C.M.; Teixeira, C. Inflammatory effects of Bothrops phospholipases A2: Mechanisms involved in biosynthesis of lipid mediators and lipid accumulation. Toxins 2021, 13, 868. [Google Scholar] [CrossRef]
- Feaster, S.R.; Lee, K.; Baker, N.; Hui, D.Y.; Quinn, D.M. Molecular recognition by cholesterol esterase of active site ligands: Structure− reactivity effects for inhibition by aryl carbamates and subsequent carbamylenzyme turnover. Biochemistry 1996, 35, 16723–16734. [Google Scholar] [CrossRef]
- Bosma, K.J.; Kaiser, C.E.; Kimple, M.E.; Gannon, M. Effects of arachidonic acid and its metabolites on functional beta-cell mass. Metabolites 2022, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Yokote, K.; Arai, H.; Iida, M.; Ishigaki, Y.; Ishibashi, S.; Umemoto, S.; Egusa, G.; Ohmura, H.; Okamura, T.; et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J. Atheroscler. Thromb. 2018, 25, 846–984. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, L.; Devi, P.; Divya Shridhar, M.P.; Naik, C.G. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck). Anal. Chem. Insights 2008, 3, 117739010800300001. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Ordonez, A.A.L.; Gomez, J.D.; Vattuone, M.A. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- William, B. Use of a free radical method to evaluate antioxidant activity. Sci. Technol. Int. 1995, 28, 1–7. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 1981, 128, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janeš, D.; Štrukelj, B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 874–877. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kadowaki, A.; Ozaki, N.; Takenaka, M.; Ono, H.; Yokoyama, S.I.; Gato, N. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo. Phytother. Res. 2011, 25, 624–628. [Google Scholar] [CrossRef]
Compound Names | RT | % Area | Molecular Formula | Molecular Mass |
---|---|---|---|---|
9,12,15-Octadecatrienoic acid, ethyl ester | 23.06 | 10.61 | C20H36O2 | 308 |
Diethyl Phthalate | 13.44 | 27.60 | C12H14O4 | 222 |
E-15-Heptadecenal | 18.49 | 18.00 | C18H36O | 284 |
Hexadecanoic acid, ethyl ester | 15.72 | 7.10 | C17H32O | 252 |
9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z) | 23.29 | 6.10 | C20H34O | 306 |
Tetradecane 5-methyl | 25.38 | 10.36 | C15H | 212 |
Octadecane, 5-methyl | 25.42 | 10.62 | C19H | 268 |
Extracts IC50 (mg/mL) | DPPH | ABTS | OH• | NO• | Metal Ion Chelating |
---|---|---|---|---|---|
n-hexane | - | 0.08 ± 0.01 | 0.25 ± 0.06 | 0.41 ± 0.04 | - |
DCM | - | 0.07 ± 0.00 | 0.16 ± 0.02 | 0.35 ± 0.03 | - |
70% ethanol | 0.38 ± 0.01 | 0.07 ± 0.01 | 0.13 ± 0.02 | 0.32 ± 0.05 | - |
AA | 0.28 ± 0.01 | 0.20 ± 0.13 | 0.09 ± 0.00 | 0.30 ± 0.17 | 3.97 ± 11.31 |
BHA | 0.18 ± 0.17 | 0.07 ± 0.00 | 0.25 ± 0.02 | 0.34 ± 0.07 | 3.74 ± 11.93 |
Compound Names | 3 FAK Hormone-Sensitive Lipase (Kcal/mol) | 1 HW9 HMG CoA Reductase (Kcal/mol) | 4 OTJ Cyclooxygenase (Kcal/mol) | Simvastatin (Kcal/mol) | PUBCHEM ID |
---|---|---|---|---|---|
Diethyl Phthalate | −5.9 | −5.4 | −7.0 | −5.5 | 6781 |
Tetradecane 5-methyl | −4.9 | −3.9 | −4.5 | −4.4 | 98,976 |
E-15-Heptadecenal | −4.1 | −4.1 | −4.7 | −4.2 | 5,363,097 |
9,12,15-Octadecatrienoic acid, ethyl ester (Z,Z) | −5.4 | −4.6 | −5.1 | −4.6 | 5,363,097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thethwayo, S.T.; Madoroba, E.; Masikane, S.; Opoku, A.R.; Cele, N.D. The Effect of Bauhinia bowkeri Extracts on Hypercholesterolemia: Insights from In Vitro and In Silico Investigations. Plants 2025, 14, 979. https://doi.org/10.3390/plants14060979
Thethwayo ST, Madoroba E, Masikane S, Opoku AR, Cele ND. The Effect of Bauhinia bowkeri Extracts on Hypercholesterolemia: Insights from In Vitro and In Silico Investigations. Plants. 2025; 14(6):979. https://doi.org/10.3390/plants14060979
Chicago/Turabian StyleThethwayo, Siphelele T., Evelyn Madoroba, Sphamandla Masikane, Andrew R. Opoku, and Nkosinathi D. Cele. 2025. "The Effect of Bauhinia bowkeri Extracts on Hypercholesterolemia: Insights from In Vitro and In Silico Investigations" Plants 14, no. 6: 979. https://doi.org/10.3390/plants14060979
APA StyleThethwayo, S. T., Madoroba, E., Masikane, S., Opoku, A. R., & Cele, N. D. (2025). The Effect of Bauhinia bowkeri Extracts on Hypercholesterolemia: Insights from In Vitro and In Silico Investigations. Plants, 14(6), 979. https://doi.org/10.3390/plants14060979