Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season
Abstract
1. Introduction
2. Results
2.1. Soil Water Storage
2.2. Above-Ground Dry Matter Accumulation
2.3. Above-Ground Nutrient Accumulation
2.4. Grain Yield
2.5. ET and Water Use Efficiency
2.6. Correlation and Path Model
2.6.1. Correlation Analysis
2.6.2. Partial Least Squares Path Analysis
2.7. Comprehensive Evaluation
2.7.1. Determination of Weight Using the Entropy Method
2.7.2. TOPSIS Comprehensive Evaluation
3. Discussion
3.1. Soil Water Storage Affected by Subsoiling Before Wheat Sowing Combined with One-Off Irrigation During the Wheat Season
3.2. Dry Matter and Nutrient Accumulation Affected by Subsoiling Before Wheat Sowing Combined with One-Off Irrigation During the Wheat Season
3.3. Yield and Water Use Efficiency of Maize Affected by Subsoiling Before Wheat Sowing Combined with One-Off Irrigation During the Wheat Season
3.4. Pathway Analysis Using PLSPM and Comprehensive Evaluation
4. Materials and Methods
4.1. Experimental Site Description
4.2. Experimental Design and Field Managements
4.3. Measurements and Methods
4.3.1. Soil Water
4.3.2. Grain Yield and Yield Components
4.3.3. Dry Matter and Nutrient Accumulation
4.3.4. Water Use Efficiency
4.4. Calculation of Comprehensive Evaluation Value
4.4.1. Determination of Indicator Weights Using the Entropy Method
4.4.2. Calculation of Comprehensive Evaluation Values for Each Scheme Using TOPSIS
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Gao, H.X.; Zhang, C.C.; van der Werf, W.; Ning, P.; Zhang, Z.; Wan, S.B.; Zhang, F.S. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Res. 2022, 284, 108561. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res. 2011, 121, 2–18. [Google Scholar] [CrossRef]
- Ding, J.J.; Wu, J.C.; Ding, D.; Yang, Y.H.; Gao, C.M.; Hu, W. Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system. Agric. Water Manag. 2021, 254, 106933. [Google Scholar] [CrossRef]
- Wang, Q.J.; Lu, C.Y.; Li, H.W.; He, J.; Sarker, K.K.; Rasaily, R.G.; Liang, Z.H.; Qiao, X.D.; Li, H.; Mchugh, A.D.J. The effects of no-tillage with subsoiling on soil properties and maize yield: 12-Year experiment on alkaline soils of Northeast China. Soil Tillage Res. 2014, 137, 43–49. [Google Scholar] [CrossRef]
- Kuang, N.K.; Tan, D.C.; Li, H.J.; Gou, Q.S.; Li, Q.Q.; Han, H.F. Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain. Agric. Water Manag. 2020, 227, 105786. [Google Scholar] [CrossRef]
- Latifmanesh, H.; Zheng, C.Y.; Song, Z.W.; Deng, A.X.; Huang, J.L.; Li, L.; Chen, Z.J.; Zheng, Y.T.; Zhang, B.M.; Zhang, W.J. Integrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system. Int. J. Plant Prod. 2016, 10, 317–333. [Google Scholar] [CrossRef]
- Zhao, K.N.; Wang, H.T.; Wu, J.Z.; Liu, A.; Huang, X.L.; Li, G.Q.; Wu, S.W.; Zhang, J.; Zhang, Z.W.; Hou, Y.Q.; et al. One-off irrigation improves water and nitrogen use efficiency and productivity of wheat as mediated by nitrogen rate and tillage in drought-prone areas. Field Crops Res. 2023, 295, 108898. [Google Scholar] [CrossRef]
- Wu, J.Z.; Guan, H.Y.; Wang, Z.M.; Li, Y.J.; Fu, G.Z.; Huang, M.; Li, G.Q. Alternative Furrow Irrigation Combined with Topdressing Nitrogen at Jointing Help Yield Formation and Water Use of Winter Wheat under No-Till Ridge Furrow Planting System in Semi-Humid Drought-Prone Areas of China. Agronomy 2023, 13, 1390. [Google Scholar] [CrossRef]
- Huang, M.; Li, W.N.; Hu, C.; Wu, J.Z.; Wang, H.Z.; Fu, G.Z.; Shaaban, M.; Li, G.Q. Coupled one-off alternate furrow irrigation with nitrogen topdressing at jointing optimizes soil nitrate-N distribution and wheat nitrogen productivity in dryland. Front. Plant Sci. 2024, 15, 1372385. [Google Scholar] [CrossRef]
- Feng, Y.P.; Yang, M.; Shang, M.F.; Jia, H.; Chu, Q.Q.; Chen, F. Improving the annual yield of a wheat and maize system through irrigation at the maize sowing stage. Irrig. Drain. 2018, 67, 755–761. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, M.S.; Wu, W.; Tanveer, S.K.; Wen, X.X.; Liao, Y.C. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China. Soil Tillage Res. 2013, 130, 7–12. [Google Scholar] [CrossRef]
- Jabro, J.; Stevens, W.; Iversen, W.; Sainju, U.; Allen, B.; Dangi, S.; Chen, C. Soil-Water Retention Curves and Pore-Size Distribution in a Clay Loam Under Different Tillage Systems. Land 2024, 13, 1987. [Google Scholar] [CrossRef]
- Zhai, L.C.; Wang, Z.B.; Song, S.J.; Zhang, L.; Zhang, Z.B.; Jia, X.L. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agric. Water Manag. 2021, 245, 106600. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.L.; Xie, J.H.; Wang, L.L.; Liu, Y.Q.; Anwar, S. Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. Soil Tillage Res. 2022, 218, 105317. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, L.; Qian, X.; Li, Z.X.; Gao, Y.B.; Zhang, H.; Liu, S.T.; Liu, K.C.; Zhao, W.J. Effects of wheat stubble tillage methods on the yield formation of no-tillage summer maize. J. Maize Sci. 2023, 31, 113–119. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.s.A.; Karlen, D.L.; da Silva, C.l.P.; Keller, T.; Betioli, E. Seasonal changes in soil physical properties under long-term no-tillage. Soil Tillage Res. 2016, 160, 53–64. [Google Scholar] [CrossRef]
- Iqbal, M.; Anwar-ul-Hassan; Ibrahim, M. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea mays L.) yield in semi-arid Pakistan. Biol. Agric. Hortic. 2008, 25, 311–325. [Google Scholar] [CrossRef]
- Bekele, B.; Habtemariam, T.; Gemi, Y. Evaluation of conservation tillage methods for soil moisture conservation and maize grain yield in low moisture areas of SNNPR, Ethiopia. Water Conserv. Sci. Eng. 2022, 7, 119–130. [Google Scholar] [CrossRef]
- Hemmat, A.; Eskandari, I. Conservation tillage practices for winter wheat–fallow farming in the temperate continental climate of northwestern Iran. Field Crops Res. 2004, 89, 123–133. [Google Scholar] [CrossRef]
- Wang, X.B.; Wu, H.J.; Dai, K.; Zhang, D.C.; Feng, Z.H.; Zhao, Q.S.; Wu, X.P.; Jin, K.; Cai, D.X. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res. 2012, 132, 106–116. [Google Scholar] [CrossRef]
- Yan, Z.X.; Gao, C.; Ren, Y.; Zong, R.; Ma, Y.; Li, Q.Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agric. Water Manag. 2017, 186, 21–28. [Google Scholar] [CrossRef]
- Wang, S.B.; Guo, L.L.; Zhou, P.C.; Wang, X.J.; Shen, Y.; Han, H.F.; Ning, T.Y.; Han, K. Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant Soil Environ. 2019, 65, 131–137. [Google Scholar] [CrossRef]
- Ning, T.Y.; Liu, Z.; Hu, H.Y.; Li, G.; Kuzyakov, Y. Physical, chemical and biological subsoiling for sustainable agriculture. Soil Tillage Res. 2022, 223, 105490. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, W.; Zhao, Z.X.; Jiang, W.; Zhang, P.Y.; Sun, X.F.; Xue, Q.W. Soil Compaction and Maize Root Distribution under Subsoiling Tillage in a Wheat–Maize Double Cropping System. Agronomy 2023, 13, 394. [Google Scholar] [CrossRef]
- Sun, X.F.; Ding, Z.S.; Wang, X.B.; Hou, H.P.; Zhou, B.Y.; Yue, Y.; Ma, W.; Ge, J.Z.; Wang, Z.M.; Zhao, M. Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize. PLoS ONE 2017, 12, e0174952. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, Y.Z.; Uwimpaye, F.; Yan, Z.Z.; Li, L.; Liu, X.W.; Shao, L.W. Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize. Agric. Water Manag. 2021, 245, 106628. [Google Scholar] [CrossRef]
- Sun, Z.C.; Zhang, Y.H.; Zhang, Z.; Gao, Y.M.; Yang, Y.M.; Han, M.K.; Wang, Z.M. Significance of disposable presowing irrigation in wheat in increasing water use efficiency and maintaining high yield under winter wheat-summer maize rotation in the North China Plain. Agric. Water Manag. 2019, 225, 105766. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F.; Anderson, R.L.; Bowman, R.A.; Benjamin, J.G.; Halvorson, A.D. Cropping system influence on planting water content and yield of winter wheat. Agron. J. 2002, 94, 962–967. [Google Scholar] [CrossRef]
- Fan, X.Y.; Schütze, N. Assessing crop yield and water balance in crop rotation irrigation systems: Exploring sensitivity to soil hydraulic characteristics and initial moisture conditions in the North China Plain. Agric. Water Manag. 2024, 300, 108897. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Pei, D.; Chen, S.Y.; Sun, H.Y.; Yang, Y.H. Performance of double-cropped winter wheat–summer maize under minimum irrigation in the North China Plain. Agron. J. 2006, 98, 1620–1626. [Google Scholar] [CrossRef]
- Han, H.F.; Shen, J.Y.; Zhao, D.D.; Li, Q.Q. Effect of irrigation frequency during the growing season of winter wheat on the water use efficiency of summer maize in a double cropping system. Maydica 2012, 56, 107–112. [Google Scholar] [CrossRef]
- Wei, D.; Luo, N.; Zhu, Y.P.; Wang, P.; Meng, Q.F. Diverse water management in a preceding wheat crop does not affect maize yield but increases inter-annual variability: A six-year field study. Field Crops Res. 2023, 302, 109039. [Google Scholar] [CrossRef]
- Liang, C.; Yu, S.C.; Zhang, H.J.; Wang, Z.Y.; Li, F.Q. Economic evaluation of drought resistance measures for maize seed production based on TOPSIS model and combination weighting optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L.; Zhang, F.C.; Wang, X.K. Effects of soil water deficit at different growth stages on maize growth, yield, and water use efficiency under alternate partial root-zone irrigation. Water 2021, 13, 148. [Google Scholar] [CrossRef]
- Zhang, Z.G.; An, J.A.; Xiong, S.W.; Li, X.F.; Xin, M.H.; Wang, J.; Han, Y.C.; Wang, G.P.; Feng, L.; Lei, Y.P. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake. Field Crops Res. 2022, 279, 108470. [Google Scholar] [CrossRef]
- Gurmani, S.H.; Chen, H.Y.; Bai, Y.H. Dombi operations for linguistic T-spherical fuzzy number: An approach for selection of the best variety of maize. Soft Comput. 2022, 26, 9083–9100. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.Q.; Zhang, X.; Guo, D.D.; Zhou, W.; Huang, S.M. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Y.L.; Du, W.C.; Li, C.L.; Xu, M.L.; Xie, T.C.; Yin, Y.; Guo, H.Y. Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in North China under wheat–maize rotation. Sci. Total Environ. 2021, 785, 147248. [Google Scholar] [CrossRef]
- Ren, B.Z.; Li, X.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J. 2018, 6, 669–676. [Google Scholar] [CrossRef]
- Izumi, Y.; Yoshida, T.; Iijima, M. Effects of subsoiling to the non-tilled field of wheat-soybean rotation on the root system development, water uptake, and yield. Plant Prod. Sci. 2009, 12, 327–335. [Google Scholar] [CrossRef]
- Olesen, J.r.E.; Munkholm, L.J. Subsoil loosening in a crop rotation for organic farming eliminated plough pan with mixed effects on crop yield. Soil Tillage Res. 2007, 94, 376–385. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.J.; Chen, C.F.; Liu, J.Q.; Yuan, Z.Q.; Jin, B.C.; Yu, X.Y. Effects of three morphometric features of roots on soil water flow behavior in three sites in China. Geoderma 2018, 320, 161–171. [Google Scholar] [CrossRef]
- Czyz, E.; Dexter, A. Soil physical properties as affected by traditional, reduced and no-tillage for winter wheat. Int. Agrophysics 2009, 23, 319–326. [Google Scholar] [CrossRef]
- Wei, S.Y.; Kuang, N.K.; Jiao, F.L.; Zong, R.; Li, Q. Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2. Agric. Water Manag. 2023, 289, 108531. [Google Scholar] [CrossRef]
- Mahdavimanshadi, M.; Fan, N. Multistage Stochastic Optimization for Semi-arid Farm Crop Rotation and Water Irrigation Scheduling Under Drought Scenarios. J. Agric. Biol. Environ. Stat. 2024, 1–24. [Google Scholar] [CrossRef]
- KC, B.; Mohssen, M.; Chau, H.; Curtis, A.; Cuenca, R.; Bright, J.; Srinivasan, M.; Safa, M. Irrigation strategies for rotational grazing pasture in Canterbury, New Zealand, and impacts on irrigation efficiency. Irrig. Drain. 2018, 67, 779–789. [Google Scholar] [CrossRef]
- He, J.; Li, H.W.; Wang, X.Y.; McHugh, A.; Li, W.Y.; Gao, H.W.; Kuhn, N. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil Tillage Res. 2007, 94, 493–502. [Google Scholar] [CrossRef]
- Yang, Y.H.; Li, M.J.; Wu, J.C.; Pan, X.Y.; Gao, C.M.; Tang, D.W. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat. Front. Plant Sci. 2022, 12, 788651. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.D.; Wang, H.G.; Li, H.R.; Li, R.Q.; Batchelor, W.D.; Ju, H.; Li, Y.M. Tillage practices offset wheat yield reductions under limited irrigation regime in the North China Plain. Soil Tillage Res. 2023, 230, 105687. [Google Scholar] [CrossRef]
- Hunt, P.; Bauer, P.; Matheny, T.; Busscher, W. Crop yield and nitrogen accumulation response to tillage of a coastal plain soil. Crop Sci. 2004, 44, 1673–1681. [Google Scholar] [CrossRef]
- Cai, H.G.; Ma, W.; Zhang, X.Z.; Ping, J.Q.; Yan, X.G.; Liu, J.Z.; Yuan, J.C.; Wang, L.C.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef]
- Guan, D.H.; Al-Kaisi, M.M.; Zhang, Y.S.; Duan, L.S.; Tan, W.M.; Zhang, M.C.; Li, Z.H. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops Res. 2014, 157, 89–97. [Google Scholar] [CrossRef]
- Xu, D.; Mermoud, A. Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices. Agric. Water Manag. 2003, 63, 139–151. [Google Scholar] [CrossRef]
- Lamptey, S.; Li, L.L.; Xie, J.; Coulter, J.A. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China. Soil Tillage Res. 2022, 196, 104479. [Google Scholar] [CrossRef]
- Li, H.X.; Cheng, Y.F.; Feng, J.X.; Fu, G.L.; Liu, G.L.; Liu, P.; Ren, H.; Wang, H.Z.; Zhao, B.; Li, G. Effects of tillage methods on photosynthetic performance of different functional leaf groups of summer maize in coastal saline-alkali farmland. Photosynthetica 2024, 62, 339. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.M.; Wang, S.J.; Zhang, L.; Li, J.C.; Song, Y.H.; Peng, C.; Chen, X.; Jing, L.L.; Chen, H.J. Subsoiling improves the photosynthetic characteristics of leaves and water use efficiency of rainfed summer maize in the Southern Huang-Huai-Hai Plain of China. Agronomy 2020, 10, 465. [Google Scholar] [CrossRef]
- Song, L.B.; Jin, J.M. Improving CERES-Maize for simulating maize growth and yield under water stress conditions. Eur. J. Agron. 2020, 117, 126072. [Google Scholar] [CrossRef]
- Wang, B.; van Dam, J.; Yang, X.L.; Ritsema, C.; Du, T.S.; Kang, S.Z. Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agric. Water Manag. 2023, 280, 108229. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Qin, W.M.; Chen, S.Y.; Shao, L.W.; Sun, H.Y. Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- Zhou, S.W.; Hu, X.T.; Zhou, Z.J.; Wang, W. Improving water use efficiency of spring maize by adopting limited supplemental irrigation following sufficient pre-sowing irrigation in northwest China. Water 2019, 11, 802. [Google Scholar] [CrossRef]
- Luna, V.S.; Figueroa, M.J.; Baltazar, M.B.; Gomez, L.R.; Townsend, R.; Schoper, J. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 2001, 41, 1551–1557. [Google Scholar] [CrossRef]
- Cárcova, J.; Otegui, M.E. Ovary growth and maize kernel set. Crop Sci. 2007, 47, 1104–1110. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Li, W.; Qin, T.L.; Liu, S.S.; Yang, Y.H.; Liu, H.X.; Xu, S. Driving factors analysis of soil respiration in China ecosystems. Plant Soil 2024, 502, 1–21. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhou, B.Y.; Sun, X.F.; Yue, Y.; Ma, W.; Zhao, M. Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status. PLoS ONE 2015, 10, e0129231. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.D.; Xia, Z.Q.; Fu, Y.F.; Wang, Q.; Xue, J.Q.; Chu, J. Response of soil temperature, moisture, and spring maize (Zea mays L.) root/shoot growth to different mulching materials in semi-arid areas of Northwest China. Agronomy 2020, 10, 453. [Google Scholar] [CrossRef]
- Shi, J.L.; Li, S.; Tian, X.H. Integrated crop residue and subsoiling management strategies influence soil quality and agricultural sustainability. Agron. J. 2021, 113, 537–549. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, J.C.; Du, Y.L.; Gao, C.M.; Pan, X.Y.; Darrel, W.S. Martine Var der Ploeg. Short-and long-term straw mulching and subsoiling affect soil water, photosynthesis, and water use of wheat and maize. Front. Agron. 2021, 3, 708075. [Google Scholar] [CrossRef]
- Ekren, S.; Sönmez, Ç.; Özçakal, E.; Kurttaş, Y.S.K.; Bayram, E.; Gürgülü, H. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Echarte, L. Andrade F H. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crops Res. 2003, 82, 1–12. [Google Scholar] [CrossRef]
- Huang, M.; Wang, C.H.; Luo, L.C.; Wang, S.; Hui, X.L.; He, G.; Cao, H.B.; Ma, X.L.; Huang, T.M.; Zhao, Y.; et al. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Res. 2017, 212, 153–164. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, Z.M.; Yao, C.S.; Zhang, Z.; Liu, Y.; Zhang, Y.H. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. Crop J. 2021, 9, 1397–1407. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
Treatments | Grain Yield (kg ha−1) | Kernels Per Ear (kernels ear−1) | 100-Kernel Weight (g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | Average | 2020 | 2021 | 2022 | Average | 2020 | 2021 | 2022 | Average | |
RTW0 | 9750 e | 9564 b | 9474 c | 9596 b | 454 cd | 535 c | 514 b | 501 b | 31 ab | 30 bc | 33 bc | 31 bc |
RTW1 | 9315 f | 9239 b | 9360 c | 9305 b | 438 e | 526 d | 516 b | 493 b | 31 b | 29 bcd | 32 c | 31 bc |
PTW0 | 9018 c | 9024 bc | 10,906 d | 9649 b | 462 c | 529 cd | 531 b | 507 ab | 28 c | 28 cd | 34 bc | 30 c |
PTW1 | 8664 d | 8554 c | 10,501 d | 9239 b | 446 de | 524 d | 513 b | 494 b | 29 c | 27 d | 33 bc | 30 c |
SSW0 | 10,643 b | 10,653 a | 12,038 a | 11,111 a | 541 b | 544 b | 581 a | 555 ab | 32 ab | 31 ab | 36 a | 33 ab |
SSW1 | 11,160 a | 10,944 a | 12,297 a | 11,467 a | 578 a | 557 a | 589 a | 575 a | 32 a | 33 a | 36 a | 34 a |
Tillage (T) | 361.7 ** | 66.3 ** | 12.7 ** | 11.4 ** | 523.1 ** | 46.5 ** | 45.0 ** | 6.4 * | 37.6 ** | 15.5 ** | 40.0 ** | 9.8 ** |
Irrigation (I) | 46.7 ** | 6.0 * | 3.3 | 0.9 | 51.5 ** | 19.0 ** | 1.3 | 0.6 | 0.1 | 3.6 | 2.5 | 1.0 |
T * I | 0.5 | 0.1 | 0.3 | 0.0 | 4.4 * | 1.2 | 0.7 | 0.0 | 2.3 | 0.4 | 0.0 | 1.0 |
Treatments | Evapotranspiration (ET, mm) | Water Use Efficiency (kg ha−1 mm−1) | ||||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | Average | 2020 | 2021 | 2022 | Average | |
RTW0 | 454.7 a | 433.7 a | 471.7 c | 453.4 a | 21.4 b | 22.0 b | 20.1 b | 21.2 b |
RTW1 | 444.8 a | 438.4 a | 469.6 c | 450.9 a | 21 bc | 21.1 bc | 19.9 b | 20.7 bc |
PTW0 | 442.3 a | 439.8 a | 516.2 a | 466.1 a | 20.4 c | 20.5 cd | 21.1 b | 20.7 bc |
PTW1 | 443.7 a | 440.8 a | 498.7 b | 461.1 a | 19.5 d | 19.4 d | 21.1 b | 20.0 c |
SSW0 | 451.5 a | 413.8 b | 475.7 c | 447.0 a | 23.6 a | 25.7 a | 25.3 a | 24.9 a |
SSW1 | 459.1 a | 415.7 b | 483.4 c | 452.7 a | 24.3 a | 26.3 a | 25.4 a | 25.4 a |
Tillage (T) | 2.4 | 17.5 ** | 39.5 ** | 0.3 | 126.3 ** | 127.3 ** | 67.5 ** | 223.5 ** |
Irrigation (I) | 0 | 0.4 | 1.3 | 0 | 52.87 | 2.4 | 0.0 | 1.5 |
T * I | 1.3 | 0.1 | 4.3 * | 0.1 | 5.3 * | 2.8 | 0.0 | 3.3 |
Treatments | 2020 | 2021 | 2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
di+ | di− | di | Ranking | di+ | di− | di | Ranking | di+ | di− | di | Ranking | |
RTW0 | 0.25 | 0.12 | 0.33 c | 3 | 0.23 | 0.12 | 0.34 c | 3 | 0.31 | 0.08 | 0.21 d | 5 |
RTW1 | 0.29 | 0.09 | 0.23 d | 4 | 0.28 | 0.08 | 0.22 d | 4 | 0.35 | 0.04 | 0.11 e | 6 |
PTW0 | 0.28 | 0.07 | 0.21 d | 5 | 0.28 | 0.07 | 0.21 d | 5 | 0.26 | 0.14 | 0.34 c | 3 |
PTW1 | 0.31 | 0.04 | 0.12 e | 6 | 0.32 | 0.03 | 0.08 e | 6 | 0.33 | 0.09 | 0.22 d | 4 |
SSW0 | 0.11 | 0.25 | 0.7 b | 2 | 0.11 | 0.26 | 0.71 b | 2 | 0.09 | 0.31 | 0.78 b | 2 |
SSW1 | 0.03 | 0.33 | 0.93 a | 1 | 0.05 | 0.31 | 0.86 a | 1 | 0.05 | 0.36 | 0.88 a | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhao, K.; Zhang, J.; Ren, K.; Zhang, J.; Guo, J.; Wang, R.; Xiao, H.; Jiang, P.; Xu, N.; et al. Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season. Plants 2025, 14, 738. https://doi.org/10.3390/plants14050738
Peng Y, Zhao K, Zhang J, Ren K, Zhang J, Guo J, Wang R, Xiao H, Jiang P, Xu N, et al. Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season. Plants. 2025; 14(5):738. https://doi.org/10.3390/plants14050738
Chicago/Turabian StylePeng, Yanmin, Kainan Zhao, Jun Zhang, Kaiming Ren, Junhao Zhang, Jinhua Guo, Rongrong Wang, Huishu Xiao, Peipei Jiang, Ninglu Xu, and et al. 2025. "Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season" Plants 14, no. 5: 738. https://doi.org/10.3390/plants14050738
APA StylePeng, Y., Zhao, K., Zhang, J., Ren, K., Zhang, J., Guo, J., Wang, R., Xiao, H., Jiang, P., Xu, N., Huang, M., Wu, J., & Li, Y. (2025). Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season. Plants, 14(5), 738. https://doi.org/10.3390/plants14050738