The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fruit Characteristics
2.2. Fruit Physiological Disorders
3. Materials and Methods
3.1. Experimental Site and Plant Material
3.2. Irrigation Strategies
3.3. Tree and Fruit Assessments
3.4. Experimental Design and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manera, F.J.; Legua, P.; Melgarejo, P.; Brotons, J.M.; Hernández, F.C.A.; Martínez, J.J. Determination of a colour index for fruit of pomegranate varietal group “Mollar de Elche”. Sci. Hortic. 2013, 150, 360–364. [Google Scholar] [CrossRef]
- Porras-Jorge, R.; Aguilar, J.M.; Baixauli, C.; Bartual, J.; Pascual, B.; Pascual-Seva, N. Effect of deficit irrigation on agronomic and physiological performance of pomegranate (Punica granatum L.). Plants 2025, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalik, A.; Pascual, B.; Nájera, I.; Domene, M.A.; Baixauli, C.; Pascual-Seva, N. Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrig. Sci. 2020, 38, 89–104. [Google Scholar] [CrossRef]
- Chater, J.M.; Garner, L.C. Foliar nutrient applications to ‘Wonderful’ pomegranate (Punica granatum L.). II. Effects on leaf nutrient status and fruit split, yield and size. Sci. Hortic. 2018, 242, 207–213. [Google Scholar] [CrossRef]
- Yilmaz, C.; Özgüven, A.I. The effects of some plant nutrients, gibberellic acid and pinolene treatments on the yield, fruit quality and cracking in pomegranate. Acta Hortic. 2009, 818, 205–212. [Google Scholar] [CrossRef]
- Khattab, M.M.; Shaban, A.E.; El-Shrief, A.H.; Mohamed, A.S.E.-D. Growth and Productivity of Pomegranate Trees Under Different Irrigation Levels. II: Fruit Quality. J. Hortic. Sci. Ornament. Plants 2011, 3, 259–264. [Google Scholar]
- Intrigliolo, D.S.; Bonet, L.; Nortes, P.A.; Puerto, H.; Nicolas, E.; Bartual, J. Pomegranate Trees Performance Under Sustained and Regulated Deficit Irrigation. Irrig. Sci. 2013, 31, 959–970. [Google Scholar] [CrossRef]
- Galindo, A.; Rodríguez, P.; Collado-González, J.; Cruz, Z.N.; Torrecillas, E.; Ondoño, S.; Corell, M.; Moriana, A.; Torrecillas, A. Rainfall Intensifies Fruit Peel Cracking in Water Stressed Pomegranate Trees. Agric. For. Meteorol. 2014, 194, 29–35. [Google Scholar] [CrossRef]
- Iscimen, B.; Sezen, S.M.; Yılmaz, C.; Unlu, M. Combined Impacts of Different Irrigation Levels and Potassium Doses on Drip-Irrigated Pomegranate Yield, Quality, Water Productivity, Cracking Rate, and the Economic Net Return. Irrig. Sci. 2023, 41, 629–648. [Google Scholar] [CrossRef]
- Melgarejo Moreno, P.; Salazar Hernández, D.M. Tratado de Fruticultura Para Zonas Áridas y Semiáridas (Vol. II). Algarrobo, Granado y Jinjolero; AMV-Mundi-Prensa: Madrid, Spain, 2003; ISBN 8484761118. [Google Scholar]
- Bartual, J.; Bonet, L.; Intrigliolo, D.S.; Palou, L.; Pomares, F. Técnicas de cultivo del granado. Agrícola Vergel 2014, 33, 359–363. [Google Scholar]
- Munhuweyi, K.; Lennox, C.L.; Meitz-Hopkins, J.C.; Caleb, O.J.; Opara, U.L. Major diseases of pomegranate (Punica granatum L.), their causes and management—A Review. Sci. Hortic. 2016, 211, 126–139. [Google Scholar] [CrossRef]
- Volschenk, T. Effect of Water Deficits on Pomegranate Tree Performance and Fruit Quality—A Review. Agric. Water Manag. 2021, 246, 106499. [Google Scholar] [CrossRef]
- Laribi, A.I.; Palou, L.; Intrigliolo, D.S.; Nortes, P.A.; Rojas-Argudo, C.; Taberner, V.; Bartual, J.; Pérez-Gago, M.B. Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage. Agric. Water. Manag. 2013, 125, 61–70. [Google Scholar] [CrossRef]
- Bartual, J.; Navarro, M.J.; Pérez-Gago, M.B.; Ortiz, M.; Palou, L. Irrigation strategies affect quality, mineral composition and internal rind browning of ‘Mollar de Elche’ pomegranate fruits. Acta Hortic. 2022, 1349, 47–55. [Google Scholar] [CrossRef]
- Kayesh, E.; Shangguan, L.; Korir, N.K.; Sun, X.; Bilkish, N.; Zhang, Y.; Han, J.; Song, C.; Cheng, Z.M.; Fang, J. Fruit skin color and the role of anthocyanin. Acta Physiol. Plant. 2013, 35, 2879–2890. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Galindo, A.; Griñán, I.; Rodríguez, P.; Cruz, Z.N.; Martínez-Font, R.; Carbonell-Barrachina, A.A.; Nouri, H.; Melgarejo, P. Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition. Agric. Water. Manag. 2019, 226, 105781. [Google Scholar] [CrossRef]
- Mellisho, C.D.; Egea, I.; Galindo, A.; Rodríguez, P.; Rodríguez, J.; Conejero, W.; Romojaro, F.; Torrecillas, A. Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agric. Water. Manag. 2012, 114, 30–36. [Google Scholar] [CrossRef]
- Hernández, F.; Melgarejo, P.; Tomás-Barberán, F.A.; Artés, F. Evolution of juice anthocyanins during ripening of new selected pomegranate (Punica granatum) clones. Eur. Food Res. Technol. 1999, 210, 39–42. [Google Scholar] [CrossRef]
- Castellarin, S.D.; Matthews, M.A.; Di Gaspero, G.; Gambetta, G.A. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 2007, 227, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Pék, Z.; Daood, H.G.; Neményi, A.; Helyes, L.; Szuvandzsiev, P. Seasonal and irrigation effect on yield parameters and soluble solids content of processing cherry tomato. Acta Hortic. 2017, 1159, 45–49. [Google Scholar] [CrossRef]
- Abdelfatah, M.A.M. Response of Pomegranate Trees (Punica granatum L., cv. Mollar de Elche) to Deficit Irrigation at Different Phenological Stages. Master’s Thesis, Universitat Politècnica de València, València, València, Spain, 9 May 2014. [Google Scholar]
- Melgarejo, P.; Salazar, D.M.; Artés, F. Organic acids and sugars composition of harvested pomegranate fruits. Eur. Food Res. Technol. 2000, 211, 185–190. [Google Scholar] [CrossRef]
- Scandella, D.; Kraeutler, E.; Venien, S. Anticiper la qualité gustative des pêches et des nectarines. Infos CTIFL 1997, 129, 16–19. [Google Scholar]
- Dinc, N.; Aydinsakir, K.; Isik, M.; Bastug, R.; Ari, N.; Sahin, A.; Buyuktas, D. Assessment of Different Irrigation Strategies on Yield and Quality Characteristics of Drip Irrigated Pomegranate Under Mediterranean Conditions. Irrig. Sci. 2018, 36, 87–96. [Google Scholar] [CrossRef]
- Adiba, A.; Khachtib, Y.; Boutagayout, A.; Hamdani, A.; Kouighat, M.; Haddioui, A.; Hssaini, L.; Razouk, R. Bioactive Compounds and Quality Attributes of Pomegranate Fruit as Affected by Continuous Deficit Irrigation. Vegetos 2024, 1–14. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Reference Manual, Chapter 2–AquaCrop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: https://openknowledge.fao.org/handle/20.500.14283/br267e (accessed on 15 January 2025).
- United Nations Economic Commission for Europe (UNECE). Fresh Fruit and Vegetables–Standards. Pomegranates; UNECE: Geneva, Switzerland, 2021; Available online: https://unece.org/trade/documents/2021/02/standards/pomegranates (accessed on 14 January 2025).
- Wetzstein, H.Y.; Zhang, Z.; Ravid, N.; Wetzstein, M.E. Characterization of attributes related to fruit size in pomegranate. Hortscience 2011, 60, 908–912. [Google Scholar] [CrossRef]
- Fernández García, F. Manual de Climatología Aplicada: Clima, Medio Ambiente y Planificación; Editorial Síntesis: Madrid, Spain, 1996; ISBN 8477382751. [Google Scholar]
- Matas, A.J.; López-Casado, G.; Cuartero, J.; Heredia, A. Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticles. Am. J. Bot. 2005, 92, 462–468. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.K.; Meghwal, P.R. Fruit Cracking in Pomegranate: Extent, Cause, and Management—A Review. Int. J. Fruit Sci. 2020, 20 (Suppl. S3), S1234–S1253. [Google Scholar] [CrossRef]
- Holland, D.; Hatib, K.; Bar-Yàakov, I. Pomegrante: Botany, horticulture and breeding. Hortic. Rev. 2009, 35, 127–191. [Google Scholar] [CrossRef]
- Bartual, J.; Intrigliolo, D.S.; Pomares, F.; Bonet, L.; Parra, J.; García-González, J.; Pérez-Gago, M.B.; Palou, L. Manejo del riego y la fertilización del granado. Rev. Frutic. 2016, 51, 40–51. [Google Scholar]
- Saei, H.; Sharifani, M.M.; Dehghani, A.; Seifi, E.; Akbarpour, V. Description of biomechanical forces and physiological parameters of fruit cracking in pomegranate. Sci. Hortic. 2014, 178, 224–230. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2011; ISBN 0123849063. [Google Scholar]
- Huang, X.M.; Wang, H.C.; Zhong, W.L.; Yuan, W.Q.; Lu, J.M.; Li, J.G. Spraying calcium is not an effective way to increase structural calcium in litchi pericarp. Sci. Hortic. 2008, 117, 39–44. [Google Scholar] [CrossRef]
- Mesejo, C.; Reig, C.; Martínez-Fuentes, A.; Gambetta, G.; Gravina, A.; Agustí, M. Tree water status influences fruit splitting in Citrus. Sci. Hortic. 2016, 209, 96–104. [Google Scholar] [CrossRef]
- Volschenck, T. Water use and irrigation management of pomegranate trees. A review. Agric. Water Manag. 2020, 241, 106375. [Google Scholar] [CrossRef]
- Yılmaz, C.; Özgüven, A.I. Physiology of pre-harvest fruit cracking in pomegranate: Mineral contents. Acta Hortic. 2019, 1254, 205–212. [Google Scholar] [CrossRef]
- Cybulska, J.; Zdunek, A.; Konstankiewicz, K. Calcium effect on mechanical properties of model cell walls and apple tissue. J. Food. Eng. 2011, 102, 217–223. [Google Scholar] [CrossRef]
- Melgarejo-Sánchez, P.; Martínez, J.J.; Hernández, F.; Legua, P.; Martínez, R.; Melgarejo, P. The pomegranate tree in the world: New cultivars and uses. Acta Hortic. 2015, 1089, 327–332. [Google Scholar] [CrossRef]
- Quiroz-Castañeda, R.E.; Folch-Mallol, J.L. Proteínas que remodelan y degradan la pared celular vegetal: Perspectivas actuales. Biotechnol. Appl. 2002, 4, 205–215. [Google Scholar]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food. Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura Pesca y Alimentación (MAPA). Métodos Oficiales de Análisis; MAPA: Madrid, Spain, 1986; ISBN 84-7479-532.X. [Google Scholar]
- Galindo, A.; Calín-Sánchez, A.; Collado-González, J.; Ondoño, S.; Hernández, F.; Torrecillas, A.; Carbonell-Barrachina, A.A. Phytochemical and Quality Attributes of Pomegranate Fruits for Juice Consumption as Affected by Ripening Stage and Deficit Irrigation. J. Sci. Food. Agric. 2014, 94, 2259–2265. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioproc. Tech. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Galindo, A.; Calín-Sánchez; Griñán, I.; Rodríguez, P.; Cruz, Z.N.; Girón, I.F.; Corell, M.; Martínez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.A.; et al. Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Sci. Hortic. 2017, 226, 68–74. [Google Scholar] [CrossRef]
- Statistical Graphics Corporation. Statgraphics Centurion XIX; Statistical Graphics: Rockville, MD, USA, 2023. [Google Scholar]
TY | MY | UW | D | D/L | RW | AW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing season (GS) | |||||||||||||||
2022 | 36.74 | b | 23.33 | b | 572.78 | a | 105.27 | a | 1.19 | b | 241.17 | a | 331.61 | a | |
2023 | 52.54 | a | 32.54 | a | 500.86 | b | 100.00 | b | 1.15 | a | 213.02 | b | 287.83 | b | |
LSD | 2.89 | 2.12 | 22.37 | 1.44 | 0.02 | 19.38 | 12.86 | ||||||||
Irrigation strategy (IS) | |||||||||||||||
Control | 46.35 | a | 29.40 | b | 539.61 | a | 103.72 | a | 1.17 | 239.77 | a | 299.84 | b | ||
RDI1 | 48.10 | a | 32.53 | a | 566.66 | a | 104.05 | a | 1.16 | 239.09 | a | 327.56 | a | ||
RDI2 | 48.56 | a | 31.73 | ab | 540.04 | a | 103.20 | a | 1.18 | 231.13 | a | 308.91 | b | ||
SDI | 35.54 | b | 18.09 | c | 500.98 | b | 99.56 | b | 1.17 | 198.39 | b | 302.58 | b | ||
LSD | 4.08 | 2.99 | 31.64 | 2.04 | 0.02 | 27.41 | 18.19 | ||||||||
GS × IS | |||||||||||||||
2022-Control | 38.37 | b | 22.91 | bc | 550.30 | 105.68 | 1.20 | 245.53 | 304.77 | cd | |||||
2022-RDI1 | 39.36 | b | 25.57 | b | 613.44 | 106.27 | 1.16 | 253.89 | 359.55 | a | |||||
2022-RDI2 | 38.20 | b | 26.09 | b | 581.46 | 106.87 | 1.20 | 253.48 | 327.98 | bc | |||||
2022-SDI | 31.02 | c | 18.75 | cd | 545.94 | 102.25 | 1.18 | 211.78 | 334.15 | ab | |||||
2023-Control | 54.34 | a | 35.88 | a | 528.92 | 101.75 | 1.15 | 234.01 | 294.91 | de | |||||
2023-RDI1 | 56.83 | a | 39.48 | a | 519.87 | 101.83 | 1.16 | 224.30 | 295.58 | de | |||||
2023-RDI2 | 58.92 | a | 37.37 | a | 498.62 | 99.54 | 1.15 | 208.78 | 289.84 | de | |||||
2023-SDI | 40.05 | b | 17.43 | d | 456.01 | 96.88 | 1.15 | 185.00 | 271.01 | e | |||||
LSD | 5.77 | 4.23 | 44.75 | 2.89 | 0.03 | 38.77 | 25.72 | ||||||||
Source (df) | % sum of squares | ||||||||||||||
S (1) | 44.04 | ** | 23.75 | ** | 16.22 | ** | 19.66 | ** | 9.19 | ** | 3.99 | ** | 17.92 | ** | |
IS (3) | 19.96 | ** | 37.70 | ** | 6.88 | ** | 9.18 | ** | 1.42 | ns | 5.77 | ** | 4.37 | * | |
GS × IS (3) | 3.22 | * | 10.60 | ** | 2.72 | ns | 1.19 | ns | 2.68 | ns | 0.70 | ns | 4.59 | * | |
Residual (88 Z/184 Y) | 32.78 | 27.95 | 74.19 | 69.97 | 86.71 | 89.54 | 73.11 | ||||||||
Standard deviation | 7.12 | 5.22 | 78.57 | 5.07 | 0.06 | 68.07 | 45.16 |
RF | RT | RDM | Pink-Red Zone of the Rind | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | L* | C* | h* | ||||||||||||
Growing season (GS) | |||||||||||||||
2022 | 41.26 | 4.51 | a | 26.25 | 24.58 | b | 60.04 | b | 45.90 | 51.62 | |||||
2023 | 42.28 | 3.61 | b | 24.37 | 29.79 | a | 62.07 | a | 45.65 | 49.05 | |||||
LSD | 2.26 | 0.22 | 1.93 | 3.47 | 1.46 | 0.88 | 2.66 | ||||||||
Irrigation strategy (IS) | |||||||||||||||
Control | 43.93 | a | 3.96 | 26.46 | 21.98 | b | 61.20 | 45.48 | 49.89 | ||||||
RDI1 | 41.92 | ab | 4.19 | 23.72 | 25.63 | b | 60.68 | 46.01 | 50.12 | ||||||
RDI2 | 42.08 | ab | 4.13 | 26.27 | 25.83 | b | 62.59 | 45.18 | 52.15 | ||||||
SDI | 39.16 | b | 3.96 | 24.81 | 35.31 | a | 59.76 | 46.41 | 49.19 | ||||||
LSD | 3.19 | 0.32 | 2.73 | 4.91 | 2.06 | 1.24 | 3.76 | ||||||||
GS × IS | |||||||||||||||
2022-Control | 43.83 | 4.33 | ab | 27.88 | 20.00 | 58.97 | 46.32 | 48.46 | |||||||
2022-RDI1 | 40.69 | 4.43 | a | 24.07 | 22.71 | 60.21 | 45.91 | 51.97 | |||||||
2022-RDI2 | 42.62 | 4.63 | a | 27.56 | 23.54 | 62.41 | 45.14 | 54.60 | |||||||
2022-SDI | 37.90 | 4.67 | a | 25.50 | 32.08 | 58.58 | 46.21 | 51.45 | |||||||
2023-Control | 44.03 | 3.60 | cd | 25.03 | 23.96 | 63.43 | 44.65 | 51.32 | |||||||
2023-RDI1 | 43.15 | 3.95 | bc | 23.36 | 28.54 | 61.14 | 46.11 | 48.27 | |||||||
2023-RDI2 | 41.53 | 3.64 | cd | 24.99 | 28.13 | 62.78 | 45.23 | 49.69 | |||||||
2023-SDI | 40.41 | 3.25 | d | 24.12 | 38.54 | 60.95 | 46.62 | 46.93 | |||||||
LSD | 4.51 | 0.45 | 3.86 | 6.94 | 2.91 | 1.76 | 5.31 | ||||||||
Source (df) | % sum of squares | ||||||||||||||
GS (1) | 0.39 | ns | 41.27 | ** | 3.83 | ns | 2.10 | ** | 1.90 | * | 0.08 | ns | 0.93 | ns | |
IS (3) | 4.37 | * | 2.14 | ns | 5.47 | ns | 7.57 | ** | 1.94 | ns | 1.18 | ns | 0.69 | ns | |
GS × IS (3) | 0.88 | ns | 5.98 | * | 0.81 | ns | 0.08 | ns | 1.15 | ns | 0.90 | ns | 1.42 | ns | |
Residual (184) | 94.35 | 50.61 | 89.90 | 90.21 | 95.02 | 97.85 | 96.97 | ||||||||
Standard deviation | 8.08 | 0.52 | 4.75 | 17.28 | 7.25 | 4.38 | 13.23 |
AF | ADM | J/F | L* | C* | h* | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing season (GS) | |||||||||||||
2022 | 58.74 | 17.08 | a | 29.03 | a | 33.95 | a | 33.37 | b | 11.43 | a | ||
2023 | 57.72 | 16.13 | b | 22.65 | b | 33.31 | b | 36.81 | a | 5.38 | b | ||
LSD | 2.30 | 0.41 | 1.37 | 0.63 | 1.54 | 2.23 | |||||||
Irrigation strategy (IS) | |||||||||||||
Control | 56.07 | b | 16.57 | b | 25.37 | 33.98 | 35.10 | 10.79 | |||||
RDI1 | 58.08 | ab | 16.51 | b | 27.19 | 33.74 | 36.56 | 7.45 | |||||
RDI2 | 57.92 | ab | 15.96 | c | 24.89 | 33.30 | 33.46 | 6.92 | |||||
SDI | 60.84 | a | 17.37 | a | 25.92 | 33.51 | 35.24 | 8.45 | |||||
LSD | 3.26 | 0.58 | 1.93 | 0.88 | 2.17 | 3.15 | |||||||
GS × IS | |||||||||||||
2022-Control | 56.17 | 17.09 | 26.65 | bc | 34.36 | 34.60 | 13.39 | ||||||
2022-RDI1 | 59.31 | 17.16 | 30.90 | a | 34.01 | 34.03 | 10.91 | ||||||
2022-RDI2 | 57.38 | 16.21 | 27.08 | b | 33.23 | 32.60 | 9.17 | ||||||
2022-SDI | 62.1 | 17.85 | 31.50 | a | 34.22 | 32.25 | 12.25 | ||||||
2023-Control | 55.97 | 16.05 | 24.08 | cd | 33.61 | 35.60 | 8.19 | ||||||
2023-RDI1 | 56.85 | 15.86 | 23.47 | d | 33.46 | 39.08 | 4.00 | ||||||
2023-RDI2 | 58.47 | 15.71 | 22.70 | de | 33.38 | 34.32 | 4.68 | ||||||
2023-SDI | 59.59 | 16.89 | 20.35 | e | 32.80 | 38.24 | 4.64 | ||||||
LSD | 4.60 | 0.82 | 2.73 | 1.25 | 3.07 | 4.46 | |||||||
Source (df) | % sum of squares | ||||||||||||
GS (1) | 0.39 | ns | 15.88 | ** | 28.59 | ** | 2.80 | * | 11.45 | ** | 16.68 | ** | |
IS (3) | 4.37 | ns | 17.65 | ** | 2.07 | ns | 1.76 | ns | 4.68 | ns | 4.01 | ns | |
GS × IS (3) | 0.88 | ns | 1.45 | ns | 7.42 | ** | 2.17 | ns | 4.36 | ns | 0.72 | ns | |
Residual (184) | 94.35 | 65.02 | 61.92 | 93.26 | 79.51 | 78.59 | |||||||
Standard deviation | 8.08 | 1.00 | 4.80 | 1.90 | 4.66 | 6.76 |
SSC | SSC Yield | TA | MI | ||||||
---|---|---|---|---|---|---|---|---|---|
Growing season (GS) | |||||||||
2022 | 15.90 | a | 1544 | b | 0.35 | 47.21 | a | ||
2023 | 15.28 | b | 1779 | a | 0.35 | 43.50 | b | ||
LSD | 0.17 | 124 | 0.02 | 3.15 | |||||
Irrigation strategy (IS) | |||||||||
Control | 15.23 | b | 1657 | a | 0.33 | 46.59 | |||
RDI1 | 15.29 | b | 1827 | a | 0.35 | 45.83 | |||
RDI2 | 15.36 | b | 1792 | a | 0.35 | 44.40 | |||
SDI | 16.48 | a | 1371 | b | 0.37 | 44.61 | |||
LSD | 0.23 | 175 | 0.03 | 4.46 | |||||
GS × IS | |||||||||
2022-Control | 15.65 | 1481 | cd | 0.31 | 50.82 | ||||
2022-RDI1 | 15.61 | 1717 | bc | 0.36 | 48.35 | ||||
2022-RDI2 | 15.76 | 1579 | cd | 0.37 | 43.90 | ||||
2022-SDI | 16.60 | 1398 | d | 0.37 | 45.76 | ||||
2023-Control | 14.82 | 1833 | ab | 0.35 | 42.36 | ||||
2023-RDI1 | 14.97 | 1936 | ab | 0.35 | 43.31 | ||||
2023-RDI2 | 14.96 | 2005 | a | 0.34 | 44.90 | ||||
2023-SDI | 16.36 | 1343 | d | 0.38 | 43.45 | ||||
LSD | 0.33 | 248 | 0.04 | 6.31 | |||||
Source (df) | % sum of squares | ||||||||
S (1) | 18.47 | ** | 9.87 | ** | 0.04 | ns | 5.47 | * | |
IS (3) | 50.02 | ** | 22.98 | ** | 7.76 | ns | 1.29 | ns | |
GS × IS (3) | 2.65 | ns | 6.00 | * | 6.90 | ns | 4.83 | ns | |
Residual (184) | 28.86 | 61.15 | 85.30 | ns | 88.4 | ||||
Standard deviation | 0.41 | 306 | 0.05 | 7.78 |
Total | Sunburned | Cracked | Scratched | Deformed | Small Fruits | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing season (GS) | |||||||||||||
2022 | 36.71 | 10.27 | b | 5.70 | b | 9.37 | a | 2.48 | b | 8.90 | |||
2023 | 39.25 | 15.41 | a | 7.99 | a | 3.42 | b | 4.40 | a | 8.04 | |||
LSD | 3.01 | 1.54 | 2.05 | 1.19 | 0.84 | 1.39 | |||||||
Irrigation strategy (IS) | |||||||||||||
Control | 36.85 | b | 12.93 | 5.09 | b | 5.81 | 4.37 | a | 8.65 | ||||
RDI 1 | 32.54 | c | 11.96 | 3.39 | b | 5.92 | 3.08 | b | 8.19 | ||||
SDI | 34.14 | bc | 12.38 | 3.24 | b | 6.58 | 3.68 | ab | 8.27 | ||||
RDS | 48.40 | a | 14.08 | 15.67 | a | 7.25 | 2.63 | b | 8.78 | ||||
LSD | 4.26 | 2.17 | 2.90 | 1.69 | 1.18 | 1.97 | |||||||
GS × IS | |||||||||||||
2022-Control | 40.35 | b | 10.99 | 8.53 | b | 8.45 | 3.39 | 9.00 | ab | ||||
2022-RDI 1 | 34.81 | bcd | 10.17 | 4.62 | bcd | 8.77 | 2.50 | 8.75 | ab | ||||
2022-RDI 2 | 31.57 | cd | 8.72 | 3.41 | cd | 10.03 | 2.26 | 7.15 | b | ||||
2022-SDI | 40.12 | b | 11.20 | 6.23 | bc | 10.23 | 1.77 | 10.70 | a | ||||
2023-Control | 33.35 | cd | 14.87 | 1.65 | d | 3.18 | 5.36 | 8.30 | ab | ||||
2023-RDI 1 | 30.27 | d | 13.76 | 2.15 | cd | 3.07 | 3.66 | 7.64 | b | ||||
2023-RDI 2 | 36.71 | bc | 16.04 | 3.06 | cd | 3.14 | 5.09 | 9.38 | ab | ||||
2023-SDI | 56.69 | a | 16.97 | 25.11 | a | 4.28 | 3.49 | 6.85 | b | ||||
LSD | 6.02 | 3.08 | 4.10 | 2.39 | 1.67 | 2.78 | |||||||
Source (df) | % sum of squares | ||||||||||||
GS (1) | 1.44 | ns | 31.48 | ** | 1.75 | * | 51.46 | ** | 17.24 | ** | 1.52 | ns | |
IS (3) | 34.36 | ** | 3.02 | ns | 35.08 | ** | 1.94 | ns | 8.05 | * | 0.50 | ns | |
GS × IS (3) | 19.18 | ** | 2.72 | ns | 32.21 | ** | 0.51 | ns | 1.68 | ns | 9.52 | * | |
Residual (88) | 45.02 | 62.78 | 30.96 | 46.10 | 73.03 | 88.46 | |||||||
Standard deviation | 7.42 | 3.79 | 5.05 | 2.94 | 2.06 | 3.43 |
Macronutrients | Micronutrients | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Fe | Cu | Mn | Zn | |||||||||||
Growing season (GS) | |||||||||||||||||||
2022 | 1.82 | b | 0.15 | 0.85 | 1.53 | b | 0.35 | 145.3 | a | 6.33 | 26.7 | b | 20.2 | ||||||
2023 | 2.01 | a | 0.16 | 0.89 | 1.84 | a | 0.41 | 114.2 | b | 8.42 | 40.0 | a | 16.2 | ||||||
LSD | 0.18 | 0.02 | 0.11 | 0.14 | 0.07 | 24.54 | 2.34 | 4.47 | 4.40 | ||||||||||
Irrigation strategy (IS) | |||||||||||||||||||
Control | 2.04 | 0.16 | 0.86 | 1.71 | 0.38 | 124.3 | 8.50 | 34.0 | 19.3 | ||||||||||
RDI1 | 1.88 | 0.15 | 0.88 | 1.73 | 0.35 | 131.3 | 6.50 | 33.3 | 17.7 | ||||||||||
RDI2 | 1.92 | 0.15 | 0.91 | 1.62 | 0.38 | 144.8 | 7.50 | 33.3 | 18.5 | ||||||||||
SDI | 1.82 | 0.14 | 0.83 | 1.68 | 0.41 | 118.5 | 7.00 | 32.7 | 17.2 | ||||||||||
LSD | 0.25 | 0.02 | 0.16 | 0.20 | 0.10 | 34.71 | 3.31 | 6.32 | 6.22 | ||||||||||
GS × IS | |||||||||||||||||||
2022-Control | 1.99 | 0.16 | 0.79 | 1.56 | 0.33 | 140.0 | 7.33 | 27.3 | 19.7 | ||||||||||
2022-RDI1 | 1.75 | 0.14 | 0.91 | 1.66 | 0.36 | 149.7 | 5.00 | 27.0 | 21.7 | ||||||||||
2022-RDI2 | 1.75 | 0.13 | 0.89 | 1.37 | 0.37 | 146.0 | 7.00 | 24.3 | 21.0 | ||||||||||
2022-SDI | 1.79 | 0.15 | 0.81 | 1.51 | 0.34 | 145.7 | 6.00 | 28.0 | 18.3 | ||||||||||
2023-Control | 2.10 | 0.17 | 0.92 | 1.86 | 0.43 | 108.7 | 9.67 | 40.7 | 19.0 | ||||||||||
2023-RDI1 | 2.00 | 0.16 | 0.85 | 1.81 | 0.35 | 113.0 | 8.00 | 39.7 | 13.7 | ||||||||||
2023-RDI2 | 2.09 | 0.18 | 0.93 | 1.86 | 0.38 | 143.7 | 8.00 | 42.3 | 16.0 | ||||||||||
2023-SDI | 1.86 | 0.13 | 0.85 | 1.84 | 0.48 | 91.3 | 8.00 | 37.3 | 16.0 | ||||||||||
LSD | 0.36 | 0.03 | 0.22 | 0.28 | 0.14 | 49.09 | 4.69 | 8.93 | 8.79 | ||||||||||
Source (df) | % sum of squares | ||||||||||||||||||
GS (1) | 19.45 | * | 10.38 | ns | 2.93 | ns | 52.29 | ** | 15.19 | ns | 25.22 | * | 16.31 | ns | 68.58 | * | 16.80 | ns | |
IS (3) | 14.04 | ns | 11.32 | ns | 6.56 | ns | 3.81 | ns | 6.21 | ns | 10.02 | ns | 8.22 | ns | 0.34 | ns | 2.86 | ns | |
GS × IS (3) | 5.80 | ns | 28.85 | ns | 8.05 | ns | 7.66 | ns | 14.33 | ns | 9.08 | ns | 1.96 | ns | 3.69 | ns | 8.11 | ns | |
Residual (88) | 60.70 | 49.44 | 82.47 | 36.23 | 64.27 | 55.68 | 73.51 | 27.39 | 72.23 | ||||||||||
Standard deviation | 0.21 | 0.02 | 0.13 | 0.16 | 0.08 | 28.36 | 2.71 | 5.16 | 5.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porras-Jorge, R.; Aguilar, J.M.; Baixauli, C.; Bartual, J.; Pascual, B.; Pascual-Seva, N. The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits. Plants 2025, 14, 720. https://doi.org/10.3390/plants14050720
Porras-Jorge R, Aguilar JM, Baixauli C, Bartual J, Pascual B, Pascual-Seva N. The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits. Plants. 2025; 14(5):720. https://doi.org/10.3390/plants14050720
Chicago/Turabian StylePorras-Jorge, Rossana, José Mariano Aguilar, Carlos Baixauli, Julián Bartual, Bernardo Pascual, and Nuria Pascual-Seva. 2025. "The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits" Plants 14, no. 5: 720. https://doi.org/10.3390/plants14050720
APA StylePorras-Jorge, R., Aguilar, J. M., Baixauli, C., Bartual, J., Pascual, B., & Pascual-Seva, N. (2025). The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits. Plants, 14(5), 720. https://doi.org/10.3390/plants14050720