Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain
Abstract
1. Introduction
2. Results
2.1. Effects of Taxa on Fruit Trait Variability
2.2. Effects of Environmental Gradients on Fruit Trait Variability
3. Discussion
4. Materials and Methods
4.1. Selection of Sites and Individuals and Sampling
4.2. Determination of Fruit Morphological Characteristics
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valcárcel, V.; Vargas, P. Quantitative morphology and species delimitation under the general lineage concept: Optimization for Hedera (Araliaceae). Am. J. Bot. 2010, 97, 1555–1573. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.I.U.; Reboucas, D.A.; Batista Leite, K.R.; de Oliveira, R.P.; Funch, L.S. Can leaf morphology and anatomy contribute to species delimitation? A case in the Campomanesia xanthocarpa complex (Myrtaceae). Flora 2018, 249, 111–123. [Google Scholar] [CrossRef]
- Oso, O.A.; Jayeola, A.A. Digital morphometrics: Application of Morpholeaf in shape visualization and species delimitation, using Cucurbitaceae leaves as a model. Appl. Plant Sci. 2021, 28, e11448. [Google Scholar] [CrossRef] [PubMed]
- Viscosi, V. Geometric morphometrics and leaf phenotypic plasticity: Assessing fluctuating asymmetry and allometry in European white oaks (Quercus). Bot. J. Linn. Soc. 2015, 179, 335–348. [Google Scholar] [CrossRef]
- Kusi, J.; Karsai, I. Plastic leaf morphology in three species of Quercus: The more exposed leaves are smaller, more lobated and denser. Plant Species Biol. 2020, 35, 24–37. [Google Scholar] [CrossRef]
- Martín-Sánchez, R.; Sancho-Knapik, D.; Alonso-Forn, D.; López-Ballesteros, A.; Ferrio, J.P.; Hipp, A.L.; Peguero-Pina, J.J.; Gil-Pelegrín, E. Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Ann. For. Sci. 2024, 81, 14. [Google Scholar] [CrossRef]
- Mediavilla, S.; Martín, I.; Babiano, J.; Escudero, A. Foliar plasticity related to gradients of heat and drought stress across crown orientations in three Mediterranean Quercus species. PLoS ONE 2019, 14, e0224462. [Google Scholar] [CrossRef] [PubMed]
- Solé-Medina, A.; Robledo-Arnuncio, J.J.; Ramírez-Valiente, J.A. Multi-trait genetic variation in resource-use strategies and phenotypic plasticity correlates with local climate across the range of a Mediterranean oak (Quercus faginea). New Phytol. 2022, 234, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Soheili, F.; Heydari, M.; Woodward, S.; Naji, H.R. Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: Morphological and anatomical traits. Sci. Rep. 2023, 13, 3580. [Google Scholar] [CrossRef] [PubMed]
- Antonecchia, G.; Fortini, P.; Lepais, O.; Gerber, S.; Legér, P.; Scippa, G.S.; Viscosi, V. Genetic structure of a natural oak community in central Italy: Evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae). Ann. For. Res. 2015, 58, 205–216. [Google Scholar] [CrossRef]
- Song, Y.; Deng, M.; Hipp, A.; Li, Q. Leaf morphological evidence of natural hybridization between two oak species (Quercus austrocochinchinensis and Q. kerrii) and its implications for conservation management. Eu. J. For. Res. 2015, 134, 139–151. [Google Scholar] [CrossRef]
- López De Heredia, U.; Sánchez, H.; Soto, A. Molecular evidence of bidirectional introgression between Quercus suber and Quercus ilex. iForest 2018, 11, 338. [Google Scholar] [CrossRef]
- Jawarneh, M.S.; Brake, M.H.; Muhaidat, R.; Migdadi, H.M.; Lahham, J.N.; El-Oqlah, A.A. Characterization of Quercus species distributed in Jordan using morphological and molecular markers. Afr. J. Biotechnol. 2013, 12, 1326–1334. [Google Scholar]
- Hipp, A.L. Should hybridization make us skeptical of the oak phylogeny? Int. Oaks 2015, 26, 9–18. [Google Scholar]
- Musarella, C.M.; Cano-Ortiz, A.; Piñar Fuentes, J.C.; Navas-Ureña, J.; Pinto Gomes, C.J.; Quinto Canas, R.; Cano, E.; Spampinato, G. Similarity analysis between species of the genus Quercus L. (Fagaceae) in southern Italy based on the fractal dimension. PhytoKeys 2018, 113, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Baki, Y.; Bavak, M.T. Morphological variability of acorns and its taxonomic significance in Quercus L. from Turkey. Bangladesh J. Bot. 2014, 43, 293–299. [Google Scholar] [CrossRef]
- Aykut, Y.; Emel, U.; Tekin, B.M. Morphological variability of evergreen oaks (Quercus) in Turkey. Bangladesh J. Plant Taxon. 2017, 24, 39–47. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 2006, 113, 91–105. [Google Scholar] [CrossRef]
- Mediavilla, S.; Escudero, A. Stomatal responses to drought at a Mediterranean site: A comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol. 2003, 23, 987–996. [Google Scholar] [CrossRef] [PubMed]
- González-Carrera, S.; Fernández-Fuentes, A.; Escudero, A.; García-Estévez, I.; Martínez-Ortega, M.; Mediavilla, S. Leaf traits and insect herbivory levels in two Mediterranean oaks and their hybrids through contrasting environmental gradients. Tree Physiol. 2025, 45, tpae170. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Humanes, B.; Espelta, J.M. Increased drought reduces acorn production in Quercus ilex coppices: Thinning mitigates this effect but only in the short term. Forestry 2011, 84, 73–82. [Google Scholar] [CrossRef]
- Caignard, T.; Kremer, A.; Firmat, C.; Nicolas, M.; Venner, S.; Delzon, S. Increasing Spring temperatures favor oak seed production in temperate areas. Sci. Rep. 2017, 7, 8555. [Google Scholar] [CrossRef]
- Gao, S.; Ren, Y.; Masabnin, J.; Zou, F.; Xiong, H.; Zhu, J. Influence of geographical and climatic factors on Quercus variabilis Blume fruit phenotypic diversity. Diversity 2021, 13, 329. [Google Scholar] [CrossRef]
- Bravo, J.A.; Roig, S.; Serrada, R. Selvicultura en Montes Bajos y Medios de Quercus ilex L., Q. pyrenaica Willd. y Q. faginea Lam; Serrada, R., Montero, G., Reque, J.A., Eds.; Compendio de Selvicultura Aplicada en España, INIA y FUCOVASA: Madrid, Spain, 2008; pp. 657–744. [Google Scholar]
- Hansen, M.M.; Olivieri, I.; Waller, D.M.; Nielsen, E.E. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 2012, 21, 1311–1329. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 2013, 7, 123–139. [Google Scholar] [CrossRef]
- Ojeda, M.G.-V.; Gámiz-Fortis, S.R.; Romero-Jiménez, E.; Rosa-Cánovas, J.J.; Yeste, P.; Castro-Díez, Y.; Esteban-Parra, M.J. Projected changes in the Iberian Peninsula drought characteristics. Sci. Total Environ. 2021, 757, 143702. [Google Scholar] [CrossRef]
- Hidalgo-Triana, N.; Solakis, A.; Casimiro-Soriguer, F.; Choe, H.; Navarro, T.; Pérez-Latorre, A.V.; Thorne, J.H. The high climate vulnerability of western Mediterranean forests. Sci. Total Environ. 2023, 895, 164983. [Google Scholar] [CrossRef] [PubMed]
- Brookes, P.C.; Wigston, D.L. Variation of morphological and chemical characteristics of acorns from populations of Quercus petraea (Matt.) Liebl., Q. robur L. and their hybrids. Walsonia 1979, 12, 315–324. [Google Scholar]
- Wei, L.; Li, Y.F.; Zhang, H.; Liao, W.J. Variation in morphological traits in a recent hybrid zone between closely related Quercus liaotungensis and Q. mongolica (Fagaceae). J. Plant Ecol. 2015, 8, 224–229. [Google Scholar] [CrossRef]
- Proietti, E.; Filesi, L.; Di Marzio, P.; Di Pietro, R.; Masin, R.; Conte, A.L.; Fortini, P. Morphology, geometric morphometrics, and taxonomy in relict deciduous oaks woods in northern Italy. Rend. Lincei. Sci. Fis. Nat. 2021, 32, 549–564. [Google Scholar] [CrossRef]
- Kadomatsu, M.; Funakoshi, S. Annual variations in morphological characters of leaf. acorn and cupule of Quercus. Trans. Jap. For. Soc. 1992, 103, 317–318. [Google Scholar]
- Shi, W.; Villar-Salvador, P.; Li, G.; Jiang, X. Acorn size is more important than nursery fertilization for out planting performance of Quercus variabilis container seedlings. Ann. For. Sci. 2019, 76, 22. [Google Scholar] [CrossRef]
- Gómez, J.M. Bigger is not always better: Conflicting selective pressures on seed size in Quercus ilex. Evolution 2004, 58, 71–80. [Google Scholar] [PubMed]
- Cicek, E.; Tilki, F. Seed size effects on germination, survival and seedling growth of Castanea sativa Mill. J. Biol. Sci. 2007, 7, 438–441. [Google Scholar] [CrossRef]
- Seiwa, K. Effects of seed size and emergence time on tree seedling establishment: Importance of developmental constraints. Oecologia 2000, 123, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.L. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species on north-east India. Acta Oecol. 2004, 25, 103–110. [Google Scholar] [CrossRef]
- Tilki, F. Infuence of acorn size and storage duration on moisture content, germination and survival of Quercus petraea (Mattuschka). J. Environ. Biol. 2010, 31, 325–328. [Google Scholar] [PubMed]
- Muñoz, A.; Bonal, R. Seed choice by rodents: Learning or inheritance? Behav. Ecol. Sociobiol. 2008, 62, 913–922. [Google Scholar] [CrossRef]
- Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 1976, 9, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Moles, A.T.; Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol. 2004, 92, 372–383. [Google Scholar] [CrossRef]
- Espelta, J.M.; Bonal, R.; Sánchez-Humanes, B. Pre-dispersal acorn predation in mixed oak forests: Interspecific differences are driven by the interplay among seed phenology, seed size and predator size. J. Ecol. 2009, 97, 1416–1423. [Google Scholar] [CrossRef]
- Kelly, D.; Sork, V.L. Mast seeding in perennial plants: Why, how, where? Annu. Rev. Ecol. Syst. 2002, 33, 427–447. [Google Scholar] [CrossRef]
- Greenberg, C.H.; Zarnoch, S.J. A test of the predator satiation hypothesis, acorn predator size, and acorn preference. Can. J. For. Res. 2018, 48, 237–245. [Google Scholar] [CrossRef]
- Koenig, W.D.; Knops, J.M.H.; Carmen, W.J.; Stanback, M.T.; Mumme, R.L. Estimating acorn crops using visual surveys. Can. J. For. Res. 1994, 24, 2105–2112. [Google Scholar] [CrossRef]
- Gezici, S.; Sekeroglu, N. Neuroprotective potential and phytochemical composition of acorn fruits. Ind. Crops Prod. 2018, 128, 13–17. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Yang, N.; Chang, M.; Ge, Y.; Zhou, H.; Li, G. Traits variation of acorns and cupules during maturation process in Quercus variabilis and Quercus aliena. J. Plant Biochem. Physiol. 2023, 196, 531–541. [Google Scholar] [CrossRef]
- Sherry, R.A.; Zhou, X.; Gu, S.; Arnone, J.A.; Schimel, D.S.; Verburg, P.S.; Wallace, L.L.; Luo, Y. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. USA 2007, 104, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009, 14, 30–36. [Google Scholar] [CrossRef]
- Pérez-Ramos, I.M.; Ourcival, J.M.; Limousin, J.M.; Rambal, S. Mast seedling under increasing drought: Results from a long-term data set and from a rainfall exclusion experiment. Ecology 2010, 91, 3057–3068. [Google Scholar] [CrossRef]
- Koenig, W.D.; Knops, J.M.H.; Carmen, W.J.; Stanback, M.T.; Mumme, R.L. Acorn production by oaks in central coastal California: Influence of weather at three levels. Can. J. For. Res. 1996, 26, 1677–1683. [Google Scholar] [CrossRef]
- Garrison, B.A.; Koenig, W.D.; Knops, J.M.H. Spatial synchrony and temporal patterns in acorn production of California black oaks. In Proceedings of the 6th Symposium on Oak Woodlands: Today’s Challenges, Tomorrow’s Opportunities, Rohnert Park, CA, USA, 9–12 October 2006; Merenlender, A., McCreary, D., Purcell, K.L., Eds.; General Technical Report PSW-GTR-217. USDA Forest Service, Pacific SW Forest and Range Experiment Station: Albany, CA, USA, 2008; pp. 343–356. [Google Scholar]
- Pulido, F.J.; Díaz, M. Regeneration of a Mediterranean oak: A whole-cycle approach. Écoscience 2005, 12, 92–102. [Google Scholar] [CrossRef]
- Pulido, F.J.; García, E.; Obrador, J.J.; Moreno, G. Multiple pathways for tree regeneration in anthropogenic savannas: Incorporating biotic and abiotic drivers into management schemes. J. Appl. Ecol. 2010, 47, 1272–1281. [Google Scholar] [CrossRef]
- Wilbur, H.M. Propagule size, number, and dispersion pattern in Ambystoma and Asclepias. Am. Nat. 1977, 111, 43–68. [Google Scholar] [CrossRef]
- Alejano, R.; Vázquez-Piqué, J.; Carevic, F.; Fernández, M. Do ecological and silvicultural factors influence acorn mass in holm oak (southwestern Spain)? Agrofor. Syst. 2011, 83, 25–39. [Google Scholar] [CrossRef]
- Valero-Galván, G.J.; Valledor, L.; Navarro, R.M.; Gil, E.; Jorrín-Novo, J.V. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. J. Proteomics 2011, 74, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.D.; Knops, J.M.H. Environmental correlates of acorn production by four species of Minnesota oaks. Popul. Ecol. 2014, 56, 63–71. [Google Scholar] [CrossRef]
- Hill, J.P.; Edwards, W.; Franks, P.J. Size is not everything for desiccation-sensitive seeds. J. Ecol. 2012, 100, 1131–1140. [Google Scholar] [CrossRef]
- Hamilton, K.N.; Offord, C.A.; Cuneo, P.; Deseo, M.A. A comparative study of seed morphology in relation to desiccation tolerance and other physiological responses in 71 Eastern Australian rainforest species. Plant Species Biol. 2013, 28, 51–62. [Google Scholar] [CrossRef]
- Wyse, S.V.; Dickie, J.B. Taxonomic affinity, habitat and seed mass strongly predict seed desiccation response: A boosted regression trees analysis based on 17 539 species. Ann. Bot. 2018, 121, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Valiente, J.A.; Valladares, F.; Gilb, L.; Aranda, I. Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For. Ecol. Manag. 2009, 257, 1676–1683. [Google Scholar] [CrossRef]
- Xia, K.; Daws, M.I.; Hay, F.R.; Chen, W.Y.; Zhou, Z.K.; Pritchard, H.W. A comparative study of desiccation responses of seeds of Asian evergreen oaks, Quercus subgenus Cyclobalanopsis and Quercus subgenus Quercus. S. Afr. J. Bot. 2012, 78, 47–54. [Google Scholar] [CrossRef]
- Moles, A.T.; Ackerly, D.; Tweddle, J.C.; Dickie, J.B.; Smith, R.; Leishman, M.R.; Mayfield, M.M.; Pitman, A.; Wood, J.T.; Westoby, M. Global patterns in seed size. Glob. Ecol. Biogeogr. 2007, 16, 109–116. [Google Scholar] [CrossRef]
- Chen, X.; Kohyama, T.S. Variation among 91 stone oak species (Fagaceae, Lithocarpus) in fruit and vegetative morphology in relation to climatic factors. Flora 2022, 286, 151984. [Google Scholar] [CrossRef]
- Lepais, O.; Gerber, S. Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution 2011, 65, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Leroy, T.; Louvet, J.M.; Lalanne, C.; Le Provost, G.; Labadie, K.; Aury, J.M.; Delzon, S.; Plomion, C.; Kremer, A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020, 226, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Viscosi, V.; Antonecchia, G.; Lepais, O.; Fortini, P.; Gerber, S.; Loy, A. Leaf shape and size differentiation in white oaks: Assessment of allometric relationships among three sympatric species and their hybrids. Int. J. Plant Sci. 2012, 173, 875–884. [Google Scholar] [CrossRef]
- Lyu, J.; Song, J.; Liu, Y.; Wang, Y.; Li, J.; Du, F.K. Species boundaries between three sympatric oak species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern edge of their distribution in China. Front. Plant Sci. 2018, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- Kluge, N.; Sartini, C.; Sedinger, B.; Barringer, B.; Hygnstrom, S. A comparison of visual survey methods to estimate acorn production: A means of standardizing results. For. Ecol. Manag. 2022, 520, 120418. [Google Scholar] [CrossRef]
- Tilki, F.; Alptekin, C.U. Variation in acorn characteristics in three provenances of Quercus aucheri Jaub. et Spach and provenance, temperature and storage effects on acorn germination. Seed Sci. Technol. 2005, 33, 441–447. [Google Scholar] [CrossRef]
- Warton, D.I.; Hui, F.K.C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Wright, S.J.; Lass, E.; Kitajima, K.; Pearcy, R.W. Plastic phenotypic response to light of 16 rainforests shrubs (Psychotria) differing in shade tolerance. Ecology 2000, 81, 1925–1936. [Google Scholar] [CrossRef]
- López, R.; Climent, J.; Gil, L. Intraspecific variation and plasticity in growth and foliar morphology along a climate gradient in the Canary Island pine. Trees 2010, 24, 343–350. [Google Scholar] [CrossRef]
Fruit Traits | ||
---|---|---|
AH | Maximum acorn height | mm |
AW | Maximum acorn width | mm |
AH/AW | Acorn length to width ratio | dimensionless |
AV | Acorn volume | mm3 |
AFM | Acorn fresh mass | g |
ADM | Acorn dry mass | g |
AMC | Acorn moisture content | % |
Cupule traits | ||
CH | Cupule height | mm |
CW | Cupule width | mm |
CT | Cupule thickness | mm |
CV | Cupule volume | mm3 |
CW/CH | Cupule width to height ratio | dimensionless |
CH/AH | Cupule height to acorn height ratio | dimensionless |
Peduncle traits | ||
PL | Length of the peduncle | mm |
PD | Peduncle diameter | mm |
PC1 | PC2 | |
---|---|---|
Eigenvalue | 8.21 | 4.11 |
Percentage variance | 54.8 | 27.4 |
Cumulative percentage | 54.8 | 82.2 |
Fruit traits | ||
AH | 0.930 | 0.171 |
AW | 0.680 | −0.697 |
AH/AW | 0.030 | 0.919 |
AV | 0.827 | −0.506 |
AFM | 0.960 | 0.045 |
ADM | 0.957 | −0.088 |
AMC | −0.171 | 0.555 |
CH | 0.510 | 0.780 |
CW | 0.969 | 0.032 |
CT | 0.728 | 0.385 |
CV | 0.876 | 0.360 |
CW/CH | 0.577 | −0.729 |
CH/AH | −0.444 | 0.709 |
PL | −0.742 | −0.432 |
PD | 0.870 | 0.269 |
Fruit Trait | Q. pyrenaica | Hybrids | Q. faginea |
---|---|---|---|
AH | 0.22 | 0.18 | 0.20 |
AW | 0.15 | 0.19 | 0.14 |
AH/AW | 0.34 | 0.32 | 0.31 |
AV | 0.09 | 0.18 | 0.07 |
AFM | 0.30 | 0.35 | 0.47 |
ADM | 0.22 | 0.29 | 0.43 |
AMC | 0.15 | 0.10 | 0.06 |
CH | 0.30 | 0.25 | 0.29 |
CW | 0.21 | 0.13 | 0.19 |
CT | 0.38 | 0.29 | 0.28 |
CV | 0.63 | 0.61 | 0.57 |
CW/CH | 0.12 | 0.14 | 0.14 |
CH/AH | 0.13 | 0.11 | 0.12 |
PL | 0.35 | 0.35 | 0.26 |
PD | 0.34 | 0.29 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Carrera, S.; Escudero, A.; Fernández-Fuentes, A.; Martínez-Ortega, M.; Mediavilla, S. Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain. Plants 2025, 14, 718. https://doi.org/10.3390/plants14050718
González-Carrera S, Escudero A, Fernández-Fuentes A, Martínez-Ortega M, Mediavilla S. Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain. Plants. 2025; 14(5):718. https://doi.org/10.3390/plants14050718
Chicago/Turabian StyleGonzález-Carrera, Santiago, Alfonso Escudero, Alejandro Fernández-Fuentes, Montserrat Martínez-Ortega, and Sonia Mediavilla. 2025. "Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain" Plants 14, no. 5: 718. https://doi.org/10.3390/plants14050718
APA StyleGonzález-Carrera, S., Escudero, A., Fernández-Fuentes, A., Martínez-Ortega, M., & Mediavilla, S. (2025). Variations in Acorn Characteristics Between Two Mediterranean Quercus Species and Their Hybrids Through Contrasting Environmental Gradients in Spain. Plants, 14(5), 718. https://doi.org/10.3390/plants14050718