Phytochemical Profiles, Antimicrobial and Antioxidant Activity of Knautia integrifolia (L.) Bertol. subsp. integrifolia
Abstract
1. Introduction
2. Results and Discussion
2.1. LC-ESI-MS/MS Analysis of Knautia integrifolia Methanol Extract
2.2. Isolation and Characterization of Specialized Metabolites from Knautia integrifolia
2.3. Evaluation of the Antioxidant Activity
2.4. Antimicrobial Activity of Knautia integrifolia
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material
3.3. LC-ESI-MS/MS Analysis
3.4. Extraction and Isolation Procedure
3.5. Determination of Antioxidant Activity
3.6. Antimicrobial Activity Assays
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, P.H.; Mill, R.R.; Tan, K. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1988; Volume 10. [Google Scholar]
- The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef]
- The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Yildirim, H.; Ozdol, T.; Can, I.D.; Erdem, S.; Ogur, E.; Ozudogru, B. Knautia goecmenii (Caprifoliaceae): An unexpected caespitose suffrutescent new species from the Western Anatolia, Turkey. Phytotaxa 2022, 531, 97–110. [Google Scholar] [CrossRef]
- Kopyt’ko, Y.F.; Dargaeva, T.D.; Rendyuk, T.D. Composition of the Field Scabious (Knautia arvensis L.). Pharm. Chem. J. 2020, 54, 725–733. [Google Scholar] [CrossRef]
- Launert, E. The Hamlyn Guide to Edible and Medicinal Plants of Britain and Northern Europe; Hamlyn: London, UK, 1981. [Google Scholar]
- Marijan, M.; Jablan, J.; Jakupović, L.; Jug, M.; Marguí, E.; Dalipi, R.; Sangiorgi, E.; Zovko Končić, M. Plants from Urban Parks as Valuable Cosmetic Ingredients: Green Extraction, Chemical Composition and Activity. Agronomy 2022, 12, 204. [Google Scholar] [CrossRef]
- Grieve, M. A Modern Herbal: The Medicinal, Culinary, Cosmetic and Economic Properties, Cultivation and Folklore of Herbs, Grasses, Fungi, Shrubs and Trees with All Their Modern Scientific Uses; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- Mattalia, G.; Quave, C.L.; Pieroni, A. Traditional uses of wild food and medicinal plants among Brigasc, Kyé, and Provençal communities on the Western Italian Alps. Genet. Resour. Crop Evol. 2013, 60, 587–603. [Google Scholar] [CrossRef]
- Hoffmann, E.M.; Selje-Assmann, N.; Becker, K. Dose studies on anti-proteolytic effects of a methanol extract from Knautia arvensis on in vitro ruminal fermentation. Anim. Feed. Sci. Technol. 2008, 145, 285–301. [Google Scholar] [CrossRef]
- Chrząszcz, M.; Miazga-Karska, M.; Klimek, K.; Dybowski, M.P.; Typek, R.; Tchórzewska, D.; dos Santos Szewczyk, K. The anti-acne potential and chemical composition of Knautia drymeia Heuff. and Knautia macedonica Griseb extracts. Int. J. Mol. Sci. 2023, 24, 9188. [Google Scholar] [CrossRef] [PubMed]
- Corbo, T.; Miralem, M.; Kalajdzic, A.; Pojskic, N. In silico prediction of the inhibitory effect of phytochemical components extracted from Knautia sarajevensis on the main protease of SARS-CoV-2 virus. Genet. Appl. 2022, 6, 31–40. [Google Scholar] [CrossRef]
- Alankus-Caliskan, O.; Emirdag, S.; Bedir, E.; Avunduk, S.; Anıl, H. Triterpene saponins from Knautia integrifolia var. bidens. Z. fur Naturforschung B 2004, 59, 821–824. [Google Scholar] [CrossRef]
- Giambanelli, E.; Filippo D’Antuono, L.; Romero-González, R.; Frenich, A.G. Identification and quantification of phenolic compounds in edible wild leafy vegetables by UHPLC/Orbitrap-MS. J. Sci. Food Agric. 2018, 98, 945–954. [Google Scholar] [CrossRef]
- Movsumov, I.S.; Yusifova, D.Y.; Garaev, E.A.; Isaev, M.I. Flavonoids from Knautia montana flowers growing in Azerbaijan. Chem. Nat. Compd. 2011, 47, 438–439. [Google Scholar] [CrossRef]
- Moldoch, J.; Szajwaj, B.; Masullo, M.; Pecio, L.; Oleszek, W.; Piacente, S.; Stochmal, A. Phenolic constituents of Knautia arvensis aerial parts. Nat. Prod. Commun. 2011, 6, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Goudjil, S.; Boussekine, S.; Goudjil, S.; Goudjil, H.; Yilmaz, M.A.; Ola, M.S.; Ali, A.; Cakir, O. Investigation of Algerian Crataegus monogyna Jacq phenolic compounds (Using LC-ESI-MS/MS Analysis, Antioxidant Activity, and Enzyme Inhibition) and Their potential implications for food and nutraceutical applications. Antioxidants 2024, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Fraisse, D.; Carnat, A.; Viala, D.; Pradel, P.; Besle, J.M.; Coulon, J.B.; Felgines, C.; Lamaison, J.L. Polyphenols composition of a permanent pasture: Variations related to the period of harvesting. J. Sci. Food Agric. 2007, 87, 2427–2435. [Google Scholar] [CrossRef]
- Karalija, E.; Muratović, E.; Tarkowski, P.; Zeljković, S.Ć. Variation in phenolic composition of Knautia arvensis in correlation with geographic area and plant organ. Nat. Prod. Commun. 2017, 12, 545–548. [Google Scholar] [CrossRef]
- Karalija, E.; Zeljković, S.Ć.; Tarkowski, P.; Muratović, E.; Parić, A. Media composition affects seed dormancy, apical dominance and phenolic profile of Knautia sarajevensis (Dipsacaceae), Bosnian endemic. Acta Bot. Croat. 2018, 77, 70–79. [Google Scholar] [CrossRef]
- Taketa, A.T.C.; Breitmaier, E.; Schenkel, E.P. Triterpenes and triterpenoidal glycosides from the fruits of Ilex paraguariensis (maté). J. Braz. Chem. Soc. 2004, 15, 205–211. [Google Scholar] [CrossRef]
- Kılınç, H.; Masullo, M.; D’Urso, G.; Karayildirim, T.; Alankus, O.; Piacente, S. Phytochemical investigation of Scabiosa sicula guided by a preliminary HPLC-ESIMSn profiling. Phytochemistry 2020, 174, 112350. [Google Scholar] [CrossRef] [PubMed]
- Baykal, T.; Panayir, T.; Tasdemir, D.; Sticher, O.; Calis, I. Triterpene saponins from Scabiosa rotata. Phytochemistry 1998, 48, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.A.; Lamperti, L.; et al. Lemon grass (Cymbopogon citratus (DC) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem. 2014, 151, 175–181. [Google Scholar] [CrossRef]
- Skala, E.; Szopa, A. Dipsacus and Scabiosa Species—The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023, 28, 3754. [Google Scholar] [CrossRef]
- Karalija, E.; Zeljković, S.Ć.; Parić, A. Harvest time–related changes in biomass, phenolics and antioxidant potential in Knautia sarajevensis shoot cultures after elicitation with salicylic acid and yeast. In Vitro Cell. Dev. Biol.-Plant 2020, 56, 177–183. [Google Scholar] [CrossRef]
- Nikolova, M.; Valyovska-Popova, N.; Dimitrova, M.; Peev, D. High-mountain Bulgarian plants-free radical scavenging activity and flavonoid composition. J. BioSci. Biotechnol. 2014, SE-Online, 29–33. [Google Scholar]
- Zowawi, H.M.; Harris, P.N.A.; Roberts, M.J.; Tambyah, P.A.; Schembri, M.A.; Pezzani, M.D.; Williamson, D.A.; Paterson, D.L. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat. Rev. Urol. 2015, 12, 570–584. [Google Scholar] [CrossRef]
- Czaban, J.; Mołdoch, J.; Wróblewska, B.; Szumacher-Strabel, M.; Cie’slak, A.; Oleszek, W.; Stochmal, A. Effects of triterpenoid saponins of field scabious (Knautia arvensis L. Coult.), alfalfa, red clover and common soapwort on growth of Gaeumannomyces graminis var. tritici and Fusarium culmorum. Allelopath. J. 2013, 32, 79–89. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Ng, Y.K.; Lim, C.S.S.; Anggraeni, V.S.; Siew, Z.Z.; Wong, C.W.; Wong, S.K. Pomolic acid: A short review on its chemistry, plant sources, pharmacological properties, and patents. J. Appl. Pharm. Sci. 2023, 13, 58–65. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lan, W.; Xie, J. Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.A. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind. Crops Prod. 2020, 149, 112347. [Google Scholar] [CrossRef]
- Turu, D.; Bozyel, M.E.; Candan, K.; Yakan, M.A.; Eray Bozyel, M.; Benek, A.; Canli, K. In vitro antimicrobial and antioxidant activities of Pyracantha coccinea fruits ethanol extract. Int. J. Acad. Multidiscip. Res. 2020, 4, 89–93. [Google Scholar]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reyes, A.S.; dos Santos, T.C.; Fit, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. BSAC standardized disc susceptibility testing method. J. Antimicrob. Chemother. 2003, 6, 20–41. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
Numbers | Analytes | RT | M.I. (m/z) | F.I. (m/z) | Ion. Mode | mg Analyte/g Extract |
---|---|---|---|---|---|---|
1 | Quinic acid | 3.0 | 190.8 | 93.0 | Neg | 8.094 |
2 | Gallic acid | 4.4 | 168.8 | 79.0 | Neg | 0.005 |
3 | Protocatechuic acid | 6.8 | 152.8 | 108.0 | Neg | 0.057 |
4 | Chlorogenic acid | 8.4 | 353.0 | 85.0 | Neg | 4.749 |
5 | Protocatechuic aldehyde | 8.5 | 137.2 | 92.0 | Neg | 0.051 |
6 | Tannic acid | 9.2 | 182.8 | 78.0 | Neg | 0.009 |
7 | Caffeic acid | 12.1 | 179.0 | 134.0 | Neg | 0.099 |
8 | p-Coumaric acid | 17.8 | 163.0 | 93.0 | Neg | 0.018 |
9 | Salicylic acid | 21.8 | 137.2 | 65.0 | Neg | 0.011 |
10 | Cyranoside | 23.7 | 447.0 | 284.0 | Neg | 0.023 |
11 | Isoquercitrin | 25.6 | 463.0 | 271.0 | Neg | 0.137 |
12 | Hesperidin | 25.8 | 611.2 | 449.0 | Pos | 0.002 |
13 | Genistin | 26.3 | 431.0 | 239.0 | Neg | 0.185 |
14 | Rosmarinic acid | 26.6 | 359.0 | 197.0 | Neg | 0.005 |
15 | Cosmosiin | 28.2 | 431.0 | 269.0 | Neg | 0.191 |
16 | Astragalin | 30.4 | 447.0 | 255.0 | Neg | 0.288 |
17 | Daidzein | 34.0 | 253.0 | 223.0 | Neg | 0.002 |
18 | Naringenin | 35.9 | 270.9 | 119.0 | Neg | 0.002 |
19 | Luteolin | 36.7 | 284.8 | 151.0/175.0 | Neg | 0.003 |
20 | Apigenin | 38.2 | 268.8 | 151.0/149.0 | Neg | 0.001 |
21 | Acacetin | 40.7 | 283.0 | 239.0 | Neg | 0.002 |
22 | 23 | 24 | ||||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 39.4 | 1.67, 1.02, m | 39.1 | 1.66, 1.02, m | 39.1 | 1.67, 1.03, m |
2 | 26.8 | 1.86, 1.65, m | 26.9 | 1.86, 1.67, m | 26.8 | 1.85, 1.66, m |
3 | 90.6 | 3.17, dd (11.5, 4.6) | 90.2 | 3.17, dd (11.5, 4.6) | 90.2 | 3.15, dd (11.5, 4.6) |
4 | 39.7 | - | 40.1 | - | 39.3 | - |
5 | 56.5 | 0.81, m | 56.1 | 0.80, m | 56.6 | 0.80, m |
6 | 19.0 | 1.55, 1.42, m | 18.1 | 1.56, 1.41, m | 18.1 | 1.55, 1.42, m |
7 | 33.5 | 1.56, 1.34, m | 32.6 | 1.54, 1.33, m | 32.6 | 1.56, 1.32, m |
8 | 40.4 | - | 40.2 | - | 39.3 | - |
9 | 48.5 | 1.70, m | 47.3 | 1.68, m | 47.2 | 1.70, m |
10 | 37.0 | - | 37.1 | - | 37.2 | - |
11 | 24.2 | 1.99 (2H), m | 24.0 | 1.99 (2H), m | 24.4 | 1.99 (2H), m |
12 | 129.4 | 5.33, t (3.5) | 128.0 | 5.33, t (3.5) | 128.9 | 5.32, t (3.5) |
13 | 138.4 | - | 138.4 | - | 138.5 | - |
14 | 42.1 | - | 41.3 | - | 41.2 | - |
15 | 29.1 | 1.32, 1.02, m | 28.9 | 1.32, 1.04, m | 28.8 | 1.32, 1.02, m |
16 | 26.2 | 2.63, 1.66, m | 25.6 | 2.62, 1.66, m | 25.8 | 2.63, 1.67, m |
17 | 48.6 | - | 48.8 | - | 47.7 | - |
18 | 54.6 | 2.56, s | 53.9 | 2.56, s | 53.9 | 2.53, s |
19 | 72.8 | - | 72.8 | - | 73.1 | - |
20 | 42.1 | 1.38, m | 41.9 | 1.38, m | 42.2 | 1.39, m |
21 | 26.1 | 1.77 (2H), m | 26.1 | 1.77 (2H), m | 26.1 | 1.77 (2H), m |
22 | 37.4 | 1.80, 1.65, m | 37.4 | 1.80, 1.65, m | 37.4 | 1.80, 1.67, m |
23 | 27.5 | 1.07, s | 27.8 | 1.07, s | 27.7 | 1.03, s |
24 | 16.8 | 0.80, s | 15.9 | 0.86, s | 16.8 | 0.87, s |
25 | 16.5 | 0.88, s | 15.7 | 0.98, s | 15.9 | 0.97, s |
26 | 16.3 | 0.96, s | 16.2 | 0.79, s | 16.6 | 0.79, s |
27 | 24.3 | 1.33, s | 23.2 | 1.33, s | 23.4 | 1.33, s |
28 | 178.5 | - | 178.5 | - | 179.0 | - |
29 | 26.8 | 1.22, s | 26.1 | 1.22, s | 27.4 | 1.22, s |
30 | 16.3 | 0.96, d (7.0) | 15.2 | 0.95, d (7.0) | 16.3 | 0.95, d (7.0) |
22 | 23 | 24 | ||||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
α- L-Ara (at C-3) | β- D -Xyl (at C-3) | α- L-Ara (at C-3) | ||||
1 | 106.7 | 4.32, d (7.0) | 105.6 | 4.31, d (7.4) | 103.5 | 4.56, d (4.0) |
2 | 72.1 | 3.68, dd (8.0, 7.0) | 74.6 | 3.23, dd (8.0, 7.0) | 76.1 | 3.77, dd (8.0, 7.0) |
3 | 74.1 | 3.53, dd (8.0, 3.0) | 77.1 | 3.54, dd (8.0, 3.0) | 72.9 | 3.75, dd (8.0, 3.0) |
4 | 67.8 | 3.69, m | 71.1 | 3.45, m | 70.1 | 3.80, m |
5 | 65.3 | 3.86, dd | 66.2 | 3.88, dd | 63.1 | 3.81, dd |
3.55, dd | 3.57, dd | 3.42, dd | ||||
α- L-Rha (at C-2ara) | ||||||
1 | 102.1 | 5.11, d (1.7) | ||||
2 | 72.1 | 3.88, dd (1.7, 3.4) | ||||
3 | 72.2 | 3.71, brd | ||||
4 | 73.8 | 3.41, brd | ||||
5 | 68.2 | 3.82, brd | ||||
6 | 17.9 | 1.23, d (6.2) | ||||
β- D-Glc (at C-28) | β- D-Glc (at C-28) | β- D-Glc (at C-28) | ||||
1 | 95.4 | 5.31, d (7.5) | 94.5 | 5.31, d (7.5) | 94.8 | 5.30, d (7.5) |
2 | 72.3 | 3.35, dd (7.5, 9.0) | 72.3 | 3.35, dd (7.5, 9.0) | 72.1 | 3.34, dd (7.5, 9.0) |
3 | 77.2 | 3.36 dd (9.0, 9.0) | 77.1 | 3.36 dd (9.0, 9.0) | 77.2 | 3.45 dd (9.0, 9.0) |
4 | 70.5 | 3.45 dd (9.0, 9.0) | 70.1 | 3.45 dd (9.0, 9.0) | 70.1 | 3.44 dd (9.0, 9.0) |
5 | 76.7 | 3.52, m | 76.8 | 3.52, m | 76.5 | 3.51, m |
6 | 68.4 | 3.85, dd (12.0, 3.5) | 68.4 | 4.12, dd (12.0,3.5) | 67.9 | 4.10, dd (12.0, 3.5) |
3.77, dd (12.0, 4.5) | 3.78, dd (12.0,4.5) | 3.76, dd (12.0,4.5) | ||||
β- D-All (at C-6Glc) | β- D-All (at C-6Glc) | β- D-All (at C-6Glc) | ||||
1 | 102.1 | 4.70, d (8.0) | 102.1 | 4.70, d (8.0) | 102.0 | 4.70, d (8.0) |
2 | 71.9 | 3.55, dd (8.0, 2.8) | 71.9 | 3.55, dd (8.0, 2.8) | 71.9 | 3.55, dd (8.0, 2.8) |
3 | 72.3 | 4.08, dd (2.8, 2.8) | 72.3 | 4.08, dd (2.8, 2.8) | 72.1 | 4.09, dd (2.8, 2.8) |
4 | 68.9 | 3.84, dd (2.8, 9.0) | 68.9 | 3.83, dd (2.8, 9.0) | 68.9 | 3.83, dd (2.8, 9.0) |
5 | 76.2 | 3.92, m | 76.1 | 3.91, m | 75.9 | 3.90, m |
6 | 62.1 | 3.85, dd (12.0, 3.5) | 62.2 | 3.85, dd (12.0, 3.5) | 62.5 | 3.85, dd (12.0, 3.5) |
3.68, dd (12.0, 4.5) | 3.68, dd (12.0, 4.5) | 3.68, dd (12.0, 4.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kılınc, H. Phytochemical Profiles, Antimicrobial and Antioxidant Activity of Knautia integrifolia (L.) Bertol. subsp. integrifolia. Plants 2025, 14, 466. https://doi.org/10.3390/plants14030466
Kılınc H. Phytochemical Profiles, Antimicrobial and Antioxidant Activity of Knautia integrifolia (L.) Bertol. subsp. integrifolia. Plants. 2025; 14(3):466. https://doi.org/10.3390/plants14030466
Chicago/Turabian StyleKılınc, Hilal. 2025. "Phytochemical Profiles, Antimicrobial and Antioxidant Activity of Knautia integrifolia (L.) Bertol. subsp. integrifolia" Plants 14, no. 3: 466. https://doi.org/10.3390/plants14030466
APA StyleKılınc, H. (2025). Phytochemical Profiles, Antimicrobial and Antioxidant Activity of Knautia integrifolia (L.) Bertol. subsp. integrifolia. Plants, 14(3), 466. https://doi.org/10.3390/plants14030466