Comparative Analysis of Satellite DNA in Dasypyrum Species: Identification of Chromosomal Markers for V and Vb Subgenomes
Abstract
1. Introduction
2. Results
2.1. Satellite Repeats Characterization
2.2. Mapping of Satellite Repeats on D. villosum and D. breviaristatum Chromosomes
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Sequencing and Bioinformatics Analysis
4.3. Fluorescence In Situ Hybridization (FISH)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Löve, Á. Conspectus of the Triticeae. Feddes Repert. 1984, 95, 425–521. [Google Scholar] [CrossRef]
- Frederiksen, S. Taxonomic Studies in Dasypyrum (Poaceae). Nord. J. Bot. 1991, 11, 135–142. [Google Scholar] [CrossRef]
- Ohta, S.; Morishita, M. Genome Relationships in the Genus Dasypyrum (Gramineae). Hereditas 2001, 135, 101–110. [Google Scholar] [CrossRef]
- Grądzielewska, A. The Genus Dasypyrum—Part 1. The Taxonomy and Relationships within Dasypyrum and with Triticeae Species. Euphytica 2006, 152, 429–440. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.-R.; Sehgal, S.K.; Jia, J.-Q.; Yang, Z.-J.; Friebe, B.; Gill, B. Genome Relationships in the Genus Dasypyrum: Evidence from Molecular Phylogenetic Analysis and in Situ Hybridization. Plant Syst. Evol. 2010, 288, 149–156. [Google Scholar] [CrossRef]
- Linde-Laursen, I.; Frederiksen, S. Comparison of the Giemsa C-Banded Karyotypes of Dasypyrum villosum (2x) and D. breviaristatum (4x) from Greece. Hereditas 1991, 114, 237–244. [Google Scholar] [CrossRef]
- Blanco, A.; Simeone, R.; Resta, P.; Pace, C.D.; Delre, V.; Caccia, R.; Mugnozza, G.S.; Frediani, M.; Cremonini, R.; Cionini, P. Genomic Relationships between Dasypyrum villosum (L.) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 1996, 39, 83–92. [Google Scholar] [CrossRef]
- Galasso, I.; Blanco, A.; Katsiotis, A.; Pignone, D.; Heslop-Harrison, J. Genomic Organization and Phylogenetic Relationships in the Genus Dasypyrum Analysed by Southern and in Situ Hybridization of Total Genomic and Cloned DNA Probes. Chromosoma 1997, 106, 53–61. [Google Scholar] [CrossRef]
- Baum, B.; Edwards, T.; Johnson, D. What Does the nr5S DNA Multigene Family Tell Us about the Genomic Relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol. Genet. Genom. 2014, 289, 553–565. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Dreisigacker, S.; Reynolds, M.; Bandyopadhyay, A.; Braun, H.-J.; Crespo-Herrera, L.; Crossa, J.; Govindan, V.; Huerta, J.; Ibba, M.I.; et al. Wheat Genetic Resources Have Avoided Disease Pandemics, Improved Food Security, and Reduced Environmental Footprints: A Review of Historical Impacts and Future Opportunities. Glob. Change Biol. 2024, 30, e17440. [Google Scholar] [CrossRef] [PubMed]
- Kroupin, P.Y.; Divashuk, M.G.; Karlov, G.I. Gene resources of perennial wild cereals involved in breeding to improve wheat crop. Sel’skohozyajstvennaya Biol. 2019, 54, 409–425. (In Russian) [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Yang, F.; Wang, Y.; Xiao, J.; Ding, H.; Ma, Q.; Deng, Q.; Jiang, Y. Utilization of the Dasypyrum Genus for Genetic Improvement of Wheat. Mol. Breed. 2024, 44, 82. [Google Scholar] [CrossRef] [PubMed]
- De Pace, C.; Vaccino, P.; Cionini, P.G.; Pasquini, M.; Bizzarri, M.; Qualset, C.O. Dasypyrum. In Wild Crop Relatives: Genomic and Breeding Resources: Cereals; Springer: Berlin/Heidelberg, Germany, 2011; pp. 185–292. [Google Scholar]
- Liu, Y.; Liu, Q.; Yi, C.; Liu, C.; Shi, Q.; Wang, M.; Han, F. Past Innovations and Future Possibilities in Plant Chromosome Engineering. Plant Biotechnol. J. 2025, 23, 695–708. [Google Scholar] [CrossRef]
- Chen, P.D.; Qi, L.L.; Zhou, B.; Zhang, S.; Liu, D. Development and Molecular Cytogenetic Analysis of Wheat-Haynaldia Villosa 6VS/6AL Translocation Lines Specifying Resistance to Powdery Mildew. Theor. Appl. Genet. 1995, 91, 1125–1128. [Google Scholar] [CrossRef]
- Xing, L.; Yuan, L.; Lv, Z.; Wang, Q.; Yin, C.; Huang, Z.; Liu, J.; Cao, S.; Zhang, R.; Chen, P.; et al. Long-Range Assembly of Sequences Helps to Unravel the Genome Structure and Small Variation of the Wheat–Haynaldia villosa Translocated Chromosome 6VS. 6AL. Plant Biotechnol. J. 2021, 19, 1567–1578. [Google Scholar] [CrossRef]
- Xing, L.; Hu, P.; Liu, J.; Witek, K.; Zhou, S.; Xu, J.; Zhou, W.; Gao, L.; Huang, Z.; Zhang, R.; et al. Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. Mol. Plant 2018, 11, 874–878. [Google Scholar] [CrossRef]
- Wu, X.; Bian, Q.; Gao, Y.; Ni, X.; Sun, Y.; Xuan, Y.; Cao, Y.; Li, T. Evaluation of Resistance to Powdery Mildew and Identification of Resistance Genes in Wheat Cultivars. PeerJ 2021, 9, e10425. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, T.; Jin, Y.; Li, W.; Kong, L.; Liu, X.; Xing, L.; Cao, A.; Zhang, R. Introgression of an Adult-Plant Powdery Mildew Resistance Gene Pm4VL from Dasypyrum villosum Chromosome 4V into Bread Wheat. Front. Plant Sci. 2024, 15, 1401525. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Du, J.; Chen, H.; Gong, S.; Jin, Y.; Meng, X.; Zhang, T.; Fu, B.; Molnár, I.; Holušová, K.; et al. Wheat Pm55 Alleles Exhibit Distinct Interactions with an Inhibitor to Cause Different Powdery Mildew Resistance. Nat. Commun. 2024, 15, 503. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Szabo, L.; Pretorius, Z.; Singh, R.; Ward, R.A.; Fetch, T., Jr. Detection of Virulence to Resistance Gene Sr24 within Race TTKS of Puccinia graminis f. Sp. tritici. Plant Dis. 2008, 92, 923–926. [Google Scholar] [CrossRef]
- Jin, Y.; Szabo, L.; Rouse, M.; Fetch, T., Jr.; Pretorius, Z.; Wanyera, R.; Njau, P. Detection of Virulence to Resistance Gene Sr36 within the TTKS Race Lineage of Puccinia graminis f. Sp. tritici. Plant Dis. 2009, 93, 367–370. [Google Scholar] [CrossRef]
- Chen, S.; Guo, Y.; Briggs, J.; Dubach, F.; Chao, S.; Zhang, W.; Rouse, M.N.; Dubcovsky, J. Mapping and Characterization of Wheat Stem Rust Resistance Genes SrTm5 and Sr60 from Triticum monococcum. Theor. Appl. Genet. 2018, 131, 625–635. [Google Scholar] [CrossRef]
- Qi, L.; Pumphrey, M.; Friebe, B.; Zhang, P.; Qian, C.; Bowden, R.; Rouse, M.; Jin, Y.; Gill, B. A Novel Robertsonian Translocation Event Leads to Transfer of a Stem Rust Resistance Gene (Sr52) Effective against Race Ug99 from Dasypyrum villosum into Bread Wheat. Theor. Appl. Genet. 2011, 123, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, Z.; Ma, C.; Tian, X.; Qi, Z.; Wu, N.; Friebe, B.; Xiang, Z.; Xia, Q.; Liu, W.; et al. Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on Ph1b-Induced Homoeologous Recombination. Int. J. Mol. Sci. 2019, 20, 4887. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Krishnan, V.; Rynearson, S.; Rouse, M.N.; Danilova, T.; Friebe, B.; See, D.; Pumphrey, M.O. Introgression of a Novel Ug99-Effective Stem Rust Resistance Gene into Wheat and Development of Dasypyrum villosum Chromosome-Specific Markers via Genotyping-by-Sequencing (GBS). Plant Dis. 2019, 103, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Gao, X.; Dong, J.; Zhao, Z.; Chen, Q.; Chen, L.; Shi, Y.; Li, X. Stripe Rust Resistance and Dough Quality of New Wheat-Dasypyrum villosum Translocation Lines T1DL •1V# 3S and T1DS• 1V# 3L and the Location of HMW-GS Genes. Genet. Mol. Res. 2015, 14, 8077–8083. [Google Scholar]
- Zhang, J.; Tang, S.; Lang, T.; Wang, Y.; Long, H.; Deng, G.; Chen, Q.; Guo, Y.; Xuan, P.; Xiao, J.; et al. Molecular Cytogenetic Identification of the Wheat–Dasypyrum villosum T3DL· 3V# 3S Translocation Line with Resistance against Stripe Rust. Plants 2022, 11, 1329. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, C.; Meng, X.; Fan, Y.; Du, J.; Liu, R.; Feng, Y.; Xing, L.; Cápal, P.; Holušová, K.; et al. Fine Mapping of Powdery Mildew and Stripe Rust Resistance Genes Pm5V/Yr5V Transferred from Dasypyrum villosum into Wheat without Yield Penalty. Theor. Appl. Genet. 2022, 135, 3629–3642. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Jin, Y.; Hu, J.; Kong, L.; Liu, X.; Xing, L.; Cao, A.; Zhang, R. Transferring an Adult-Plant Stripe-Rust Resistance Gene Yr7VS from Chromosome 7V of Dasypyrum villosum (L.) to Bread Wheat. Plants 2024, 13, 1875. [Google Scholar] [CrossRef]
- Li, G.-R.; Zhao, J.-M.; Li, D.-H.; Yang, E.-N.; Huang, Y.-F.; Liu, C.; Yang, Z.-J. A Novel Wheat—Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance. Cytogenet. Genome Res. 2014, 143, 280–287. [Google Scholar] [CrossRef]
- Chen, Q.C.; Wang, G.F.; Chen, H.F.; Chen, P.D. Development and Characterization of Triticum aestivum-Haynaldia villosa Translocation Line T4VS. 4VL-4AL. Acta Agron. Sin. 2007, 33, 871–877. [Google Scholar]
- Yildirim, A.; Jones, S.S.; Murray, T.D. Mapping a Gene Conferring Resistance to Pseudocercosporella herpotrichoides on Chromosome 4V of Dasypyrum villosum in a Wheat Background. Genome 1998, 41, 1–6. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, Y.; Li, H.; Yuan, H.; Dai, J.; Cao, A.; Xing, L.; Li, H. Cereal Cyst Nematode Resistance Gene CreV Effective against Heterodera filipjevi Transferred from Chromosome 6VL of Dasypyrum villosum to Bread Wheat. Mol. Breed. 2016, 36, 122. [Google Scholar] [CrossRef]
- Cai, X.; Xu, S.; Oliver, R.; Zhang, Q.; Stack, R.; Zhong, S.; Friesen, T.; Halley, S.; Elias, E. Alien Introgression for FHB Resistance in Wheat—Challenges and Strategies. In Proceedings of the 11th International Wheat Genetics Symposium, Brisbane, Australia, 24–29 August 2008; Sydney University Press: Sydney, Austraila, 2008; Volume 3, pp. 716–718. [Google Scholar]
- De Pace, C.; Bizzarri, M.; Pasquini, M.; Nocente, F.; Ceccarelli, M.; Vittori, D.; Vida, G. Additional Genetic Factors of Resistance to Stem Rust, Leaf Rust and Powdery Mildew from Dasypyrum villosum. In Proceedings of the International Symposium on Genetics & Breeding of Durum Wheat; CIHEAM: Bari, Italy, 2014; pp. 447–491. [Google Scholar]
- Zhong, G.-Y.; Dvořák, J. Evidence for Common Genetic Mechanisms Controlling the Tolerance of Sudden Salt Stress in the Tribe triticeae. Plant Breed. 1995, 114, 297–302. [Google Scholar] [CrossRef]
- Fu, J.; Bowden, R.L.; Jagadish, S.K.; Gill, B.S. Genetic Variation for Tolerance to Terminal Heat Stress in Dasypyrum villosum. Crop Sci. 2017, 57, 2626–2632. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.; Kumari, J.; Sehgal, S.; Friebe, B.; Djalovic, I.; Chen, Y.; Siddique, K.H.; Gill, B. Alien Chromosome Segment from Aegilops speltoides and Dasypyrum villosum Increases Drought Tolerance in Wheat via Profuse and Deep Root System. BMC Plant Biol. 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Chen, B.; Jiang, J.; Zheng, Z.; Guo, Y.; Liu, K.; Xu, H. Identification of High Ammonium and Salt Tolerance of Tongmai 6 at Seedling Stage and Analysis of Expression Patterns of Tags Genes. J. Triticeae Crops 2023, 43, 809–818. [Google Scholar] [CrossRef]
- Xiao, Z.; Tang, S.; Qiu, L.; Tang, Z.; Fu, S. Oligonucleotides and ND-FISH Displaying Different Arrangements of Tandem Repeats and Identification of Dasypyrum villosum Chromosomes in Wheat Backgrounds. Molecules 2017, 22, 973. [Google Scholar] [CrossRef]
- Sun, H.; Song, J.; Lei, J.; Song, X.; Dai, K.; Xiao, J.; Yuan, C.; An, S.; Wang, H.; Wang, X. Construction and Application of Oligo-Based FISH Karyotype of Haynaldia villosa. J. Genet. Genom. (Yi Chuan Xue Bao) 2018, 45, 463–466. [Google Scholar] [CrossRef]
- Lei, J.; Zhou, J.; Sun, H.; Wan, W.; Xiao, J.; Yuan, C.; Karafiátová, M.; Doležel, J.; Wang, H.; Wang, X. Development of Oligonucleotide Probes for FISH Karyotyping in Haynaldia villosa, a Wild Relative of Common Wheat. Crop J. 2020, 8, 676–681. [Google Scholar] [CrossRef]
- Wu, N.; He, Z.; Fang, J.; Liu, X.; Shen, X.; Zhang, J.; Lei, Y.; Xia, Y.; He, H.; Liu, W.; et al. Chromosome Diversity in Dasypyrum villosum, an Important Genetic and Trait Resource for Hexaploid Wheat Engineering. Ann. Bot. 2023, 131, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, Z.; Ren, T. Frequent Variations and Phylogenetic Relationships within the Genus Secale Identified by ND-FISH According to the Genome-Wide Universal Oligonucleotides Chromosome Probes. Front. Plant Sci. 2024, 15, 1501642. [Google Scholar] [CrossRef]
- Meng, Z.; Zheng, Q.; Wang, W.; Zhu, Y.; Li, Y.; Dong, F.; Luo, W.; Zhang, Z.; Wang, F.; Shen, H.; et al. Oligo-FISH Barcode Chromosome Identification System Provides Novel Insights into the Natural Chromosome Aberrations Propensity in the Autotetraploid Cultivated Alfalfa. Hortic. Res. 2025, 12, uhae266. [Google Scholar] [CrossRef]
- Plohl, M. Those Mysterious Sequences of Satellite DNAs. Period. Biol. 2010, 112, 403–410. [Google Scholar]
- Evtushenko, E.; Elisafenko, E.; Vershinin, A. Organization and Evolution of the Subtelomeric Regions of the Rye Chromosomes. Tsitologiia 2013, 55, 230–233. [Google Scholar]
- Mehrotra, S.; Goyal, V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014, 12, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.K.; Edwards, D.; Varshney, R.K. Structural Variations in Plant Genomes. Brief. Funct. Genom. 2014, 13, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Liang, S.; Xing, P.; Bao, Y.; Wang, R.R.-C.; Li, X. Genome Analysis of Thinopyrum intermedium and Its Potential Progenitor Species Using Oligo-FISH. Plants 2023, 12, 3705. [Google Scholar] [CrossRef]
- Kroupin, P.Y.; Ulyanov, D.S.; Karlov, G.I.; Divashuk, M.G. The Launch of Satellite: DNA Repeats as a Cytogenetic Tool in Discovering the Chromosomal Universe of Wild Triticeae. Chromosoma 2023, 132, 65–88. [Google Scholar] [CrossRef]
- Liu, J.; Lin, X.; Wang, X.; Feng, L.; Zhu, S.; Tian, R.; Fang, J.; Tao, A.; Fang, P.; Qi, J.; et al. Genomic and Cytogenetic Analyses Reveal Satellite Repeat Signature in Allotetraploid Okra (Abelmoschus esculentus). BMC Plant Biol. 2024, 24, 71. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Razumova, O.V.; González Franco, M.J.; Sokolova, V.M.; Yurkina, A.I.; Belousova, M.K.; Chikida, N.N.; Dragovich, A.Y.; Fisenko, A.V.; Amosova, A.V.; et al. Dynamics of Repetitive DNA Sequences over the Course of Evolution and Intraspecific Divergence of Tetraploid Goat-Grass Species Aegilops biuncialis Vis. BMC Plant Biol. 2025. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Charlesworth, B.; Sniegowski, P.; Stephan, W. The Evolutionary Dynamics of Repetitive DNA in Eukaryotes. Nature 1994, 371, 215–220. [Google Scholar] [CrossRef]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J. Repetitive DNA in Eukaryotic Genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef]
- Hartley, G.; O’Neill, R.J. Centromere Repeats: Hidden Gems of the Genome. Genes 2019, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Koo, D.-H.; Tiwari, V.K.; Hřibová, E.; Doležel, J.; Friebe, B.; Gill, B.S. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat. Cytogenet. Genome Res. 2016, 148, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, Y.; Liu, C.; Shi, Q.; Huang, Y.; Han, F. Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 2019, 31, 2035–2051. [Google Scholar] [CrossRef] [PubMed]
- Divashuk, M.G.; Nikitina, E.A.; Sokolova, V.M.; Yurkina, A.I.; Kocheshkova, A.A.; Razumova, O.V.; Karlov, G.I.; Kroupin, P.Y. qPCR as a Selective Tool for Cytogenetics. Plants 2022, 12, 80. [Google Scholar] [CrossRef]
- Kroupin, P.Y.; Badaeva, E.D.; Sokolova, V.M.; Chikida, N.N.; Belousova, M.K.; Surzhikov, S.A.; Nikitina, E.A.; Kocheshkova, A.A.; Ulyanov, D.S.; Ermolaev, A.S.; et al. Aegilops crassa Boiss. Repeatome Characterized Using Low-Coverage NGS as a Source of New FISH Markers: Application in Phylogenetic Studies of the Triticeae. Front. Plant Sci. 2022, 13, 980764. [Google Scholar] [CrossRef]
- Song, S.; Liu, H.; Miao, L.; He, L.; Xie, W.; Lan, H.; Yu, C.; Yan, W.; Wu, Y.; Wen, X.; et al. Molecular Cytogenetic Map Visualizes the Heterozygotic Genome and Identifies Translocation Chromosomes in Citrus Sinensis. J. Genet. Genom. 2023, 50, 410–421. [Google Scholar] [CrossRef]
- Lapitan, N.; Gill, B.; Sears, R. Genomic and Phylogenetic Relationships among Rye and Perennial Species in the Triticeae 1. Crop. Sci. 1987, 27, 682–687. [Google Scholar] [CrossRef]
- Katsiotis, A.; Hagidimitriou, M.; Heslop-Harrison, J. The Close Relationship Between the A and B Genomes in Avena L. (Poaceae) Determined by Molecular Cytogenetic Analysis of Total Genomic, Tandemly and Dispersed Repetitive DNA Sequences. Ann. Bot. 1997, 79, 103–109. [Google Scholar] [CrossRef]
- Badaeva, E.; Amosova, A.; Samatadze, T.; Zoshchuk, S.; Shostak, N.; Chikida, N.; Zelenin, A.; Raupp, W.; Friebe, B.; Gill, B. Genome Differentiation in Aegilops. 4. Evolution of the U-Genome Cluster. Plant Syst. Evol. 2004, 246, 45–76. [Google Scholar] [CrossRef]
- Komuro, S.; Endo, R.; Shikata, K.; Kato, A. Genomic and Chromosomal Distribution Patterns of Various Repeated DNA Sequences in Wheat Revealed by a Fluorescence in Situ Hybridization Procedure. Genome 2013, 56, 131–137. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Feng, Y.; Bie, T.; Chen, P. Distribution of Highly Repeated DNA Sequences in Haynaldia villosa and Its Application in the Identification of Alien Chromatin. Chin. Sci. Bull. 2013, 58, 890–897. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, J.; Dou, Q.; Wang, J.; Zhang, Z. Diversification of the P Genome among Agropyron gaertn. (Poaceae) Species Detected by FISH. Comp. Cytogenet. 2017, 11, 495. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, X.; Tan, L.; Zhang, H.; Sha, L.; Fan, X.; Wang, Y.; Kang, H.; Lu, J.; Zhou, Y. Characterization of Each St and Y Genome Chromosome of Roegneria grandis Based on Newly Developed FISH Markers. Cytogenet. Genome Res. 2021, 161, 213–222. [Google Scholar] [CrossRef]
- Du, P.; Zhuang, L.; Wang, Y.; Yuan, L.; Wang, Q.; Wang, D.; Dawadondup, X.; Tan, L.; Shen, J.; Xu, H.; et al. Development of Oligonucleotides and Multiplex Probes for Quick and Accurate Identification of Wheat and Thinopyrum bessarabicum Chromosomes. Genome 2017, 60, 93–103. [Google Scholar] [CrossRef]
- Chen, J.; Tang, Y.; Yao, L.; Wu, H.; Tu, X.; Zhuang, L.; Qi, Z. Cytological and Molecular Characterization of Thinopyrum bessarabicum Chromosomes and Structural Rearrangements Introgressed in Wheat. Mol. Breed. 2019, 39, 146. [Google Scholar] [CrossRef]
- Wu, D.; Yang, N.; Xiang, Q.; Zhu, M.; Fang, Z.; Zheng, W.; Lu, J.; Sha, L.; Fan, X.; Cheng, Y.; et al. Pseudorogneria libanotica Intraspecific Genetic Polymorphism Revealed by Fluorescence in Situ Hybridization with Newly Identified Tandem Repeats and Wheat Single-Copy Gene Probes. Int. J. Mol. Sci. 2022, 23, 14818. [Google Scholar] [CrossRef] [PubMed]
- Kroupin, P.Y.; Yurkina, A.I.; Ulyanov, D.S.; Karlov, G.I.; Divashuk, M.G. Comparative Characterization of Pseudoroegneria libanotica and Pseudoroegneria tauri Based on Their Repeatome Peculiarities. Plants 2023, 12, 4169. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Li, G.; Wang, H.; Yu, Z.; Chen, Q.; Yang, E.; Fu, S.; Tang, Z.; Yang, Z. Physical Location of Tandem Repeats in the Wheat Genome and Application for Chromosome Identification. Planta 2019, 249, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, H.; Jiang, W.; Jiang, C.; Yuan, W.; Li, G.; Yang, Z. Karyotyping Dasypyrum breviaristatum Chromosomes with Multiple Oligonucleotide Probes Reveals the Genomic Divergence in Dasypyrum. Genome 2021, 64, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Salina, E.; Adonina, I.; Vatolina, T.Y.; Kurata, N. A Comparative Analysis of the Composition and Organization of Two Subtelomeric Repeat Families in Aegilops Speltoides Tausch. and Related Species. Genetica 2004, 122, 227–237. [Google Scholar] [CrossRef]
- Linc, G.; Gaál, E.; Molnár, I.; Icsó, D.; Badaeva, E.; Molnár-Láng, M. Molecular Cytogenetic (FISH) and Genome Analysis of Diploid Wheatgrasses and Their Phylogenetic Relationship. PLoS ONE 2017, 12, e0173623. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Zoshchuk, S.A.; Paux, E.; Gay, G.; Zoshchuk, N.V.; Roger, D.; Zelenin, A.V.; Bernard, M.; Feuillet, C. Fat Element—A New Marker for Chromosome and Genome Analysis in the Triticeae. Chromosome Res. 2010, 18, 697–709. [Google Scholar] [CrossRef]
- Khuat, T.M.L. Analysis of the Organization of Repeated DNA Sequences in the Genomes of Wild Wheat Relatives. Abstract of the Dissertation of the Candidate of Biological Sciences. Ph.D. Thesis, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Moscow, Russia, 2015. (In Russian). [Google Scholar]
- Tang, Z.; Yang, Z.; Fu, S. Oligonucleotides Replacing the Roles of Repetitive Sequences pAs1, pSc119. 2, pTa-535, pTa71, CCS1, and pAWRC. 1 for FISH Analysis. J. Appl. Genet. 2014, 55, 313–318. [Google Scholar] [CrossRef]
- Rayburn, A.L.; Gill, B. Molecular Identification of the D-Genome Chromosomes of Wheat. J. Hered. 1986, 77, 253–255. [Google Scholar] [CrossRef]
- Sharma, S.; Raina, S. Organization and Evolution of Highly Repeated Satellite DNA Sequences in Plant Chromosomes. Cytogenet. Genome Res. 2005, 109, 15–26. [Google Scholar] [CrossRef]
- Busch, W.; Herrmann, R.G.; Hohmann, U. Repeated DNA Sequences Isolated by Microdissection. II. Comparative Analysis in Hordeum Vulgare and Triticum Aestivum. Theor. Appl. Genet. 1996, 93, 164–171. [Google Scholar] [CrossRef]
- Kuo, Y.-T.; Ishii, T.; Fuchs, J.; Hsieh, W.-H.; Houben, A.; Lin, Y.-R. The Evolutionary Dynamics of Repetitive DNA and Its Impact on the Genome Diversification in the Genus Sorghum. Front. Plant Sci. 2021, 12, 729734. [Google Scholar] [CrossRef] [PubMed]
- Villasante, A.; Abad, J.P.; Méndez-Lago, M. Centromeres Were Derived from Telomeres during the Evolution of the Eukaryotic Chromosome. Proc. Natl. Acad. Sci. USA 2007, 104, 10542–10547. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from Milligram Amounts of Fresh, Herbarium and Mummified Plant Tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef]
- Kroupin, P.Y.; Divashuk, M.; Belov, V.; Glukhova, L.; Aleksandrov, O.; Karlov, G. Comparative Molecular Cytogenetic Characterization of Partial Wheat-Wheatgrass Hybrids. Russ. J. Genet. 2011, 47, 432–437. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Razumova, O.; Karlov, G.; Dang, T.; Kroupin, P.Y.; Divashuk, M. Some Peculiarities in Application of Denaturating and Non-Denaturating in Situ Hybridization on Chromosomes of Cereals. Mosc. Univ. Biol. Sci. Bull. 2019, 74, 75–80. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.; Li, D.; Gao, D.; Zhang, J.; Yang, E.; Yang, Z. Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit. Genes 2015, 6, 1242–1255. [Google Scholar] [CrossRef]
- Li, G.; Gao, D.; Zhang, H.; Li, J.; Wang, H.; La, S.; Ma, J.; Yang, Z. Molecular Cytogenetic Characterization of Dasypyrum breviaristatum Chromosomes in Wheat Background Revealing the Genomic Divergence between Dasypyrum Species. Mol. Cytogenet. 2016, 9, 6. [Google Scholar] [CrossRef]
- Li, G.; Zhang, T.; Yu, Z.; Wang, H.; Yang, E.; Yang, Z. An Efficient Oligo-FISH Painting System for Revealing Chromosome Rearrangements and Polyploidization in Triticeae. Plant J. 2021, 105, 978–993. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P.; Macas, J. Global Analysis of Repetitive DNA from Unassembled Sequence Reads Using RepeatExplorer2. Nat. Protoc. 2020, 15, 3745–3776. [Google Scholar] [CrossRef]
- Novák, P.; Ávila Robledillo, L.; Koblížková, A.; Vrbová, I.; Neumann, P.; Macas, J. TAREAN: A Computational Tool for Identification and Characterization of Satellite DNA from Unassembled Short Reads. Nucleic Acids Res. 2017, 45, e111. [Google Scholar] [CrossRef]


| Repeat | Primers |
|---|---|
| CL9 | F: 5′-TTCGGACGAAAACCCGTCTG-3′ |
| R: 5′-GACGTGGCTTTGAATGGTGC-3′ | |
| CL95 | F: 5′-GCGTTGGAAAGCTATTGGGG-3′ |
| R: 5′-GCCGGCTCATCGAAATTTGA-3′ | |
| CL100 | F: 5′-GCCCGTTTCGTGGACTATTAC-3′ |
| R: 5′-AAACTGCGAGTGTTGATGACC-3′ | |
| CL110 | F: 5′-AGAGCCTCCTCCTTCTATGC-3′ |
| R: 5′-CGGCTTCGGTAACATTTTGG-3′ | |
| CL127 | F: 5′-ATGAGTAGACGCGTAGTGCG-3′ |
| R: 5′-CGGGGTGGTGTCGAAAATTG-3′ | |
| CL133 | F: 5′-GGACACACACCCCTCACAAA-3′ |
| R: 5′-TGAAGGCCGTAAGAGGAAGC-3′ | |
| CL134 | F: 5′-TCCGGGAAATCCCATTTGGC-3′ |
| R: 5′-ATGCCCTTTGGTTCATGGCT-3′ | |
| CL135 | F: 5′-CCAACGAATCCTAAACCGCC-3′ |
| R: 5′-ACATGGATGGACACAATAGGGT-3′ | |
| CL147 | F: 5′-CGACTGGAGCGGTTTAGGAA-3′ |
| R: 5′-CTTTCTCGGGGTTTGTGTGC-3′ | |
| CL153 | F: 5′-ATGCTTGGCAAACAACCTTTAGC-3′ |
| R: 5′-CCTAGACTTGGTCTGTCATCT-3′ | |
| CL165 | F: 5′-TACCCTTCGTCCCCTGTTGA-3′ |
| R: 5′-AATTGACACGTCGCTGGACT-3′ | |
| CL197 | F: 5′-CATGAGTTGACCGCGAAGC-3′ |
| R: 5′-ATGATTTCCGTACAGCGGCG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurkina, A.I.; Sokolova, V.M.; Badaeva, E.D.; Ulyanov, D.S.; Karlov, G.I.; Divashuk, M.G.; Kroupin, P.Y. Comparative Analysis of Satellite DNA in Dasypyrum Species: Identification of Chromosomal Markers for V and Vb Subgenomes. Plants 2025, 14, 3819. https://doi.org/10.3390/plants14243819
Yurkina AI, Sokolova VM, Badaeva ED, Ulyanov DS, Karlov GI, Divashuk MG, Kroupin PY. Comparative Analysis of Satellite DNA in Dasypyrum Species: Identification of Chromosomal Markers for V and Vb Subgenomes. Plants. 2025; 14(24):3819. https://doi.org/10.3390/plants14243819
Chicago/Turabian StyleYurkina, Anna I., Viktoria M. Sokolova, Ekaterina D. Badaeva, Daniil S. Ulyanov, Gennady I. Karlov, Mikhail G. Divashuk, and Pavel Yu. Kroupin. 2025. "Comparative Analysis of Satellite DNA in Dasypyrum Species: Identification of Chromosomal Markers for V and Vb Subgenomes" Plants 14, no. 24: 3819. https://doi.org/10.3390/plants14243819
APA StyleYurkina, A. I., Sokolova, V. M., Badaeva, E. D., Ulyanov, D. S., Karlov, G. I., Divashuk, M. G., & Kroupin, P. Y. (2025). Comparative Analysis of Satellite DNA in Dasypyrum Species: Identification of Chromosomal Markers for V and Vb Subgenomes. Plants, 14(24), 3819. https://doi.org/10.3390/plants14243819

