Anatomical Variation in Root Traits Reflects the Continuum from Slow to Fast Growth Strategies Among Tropical Tree Species
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Design and Data Collection
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Average Values of the Properties Studied in 20 Tree Species
| Species | N° Ind. | Alumen (%) | Vdens (n mm−2) | Vdia (µm) | Ks (kg m−1 MPa−1 s−1) | WSG (g cm−3) |
|---|---|---|---|---|---|---|
| Saurauia sp. | 8 | 14.06 | 55.77 | 52.23 | 18.64 | 0.36 |
| Guatteria pastazae | 6 | 11.46 | 32.08 | 57.70 | 39.10 | 0.47 |
| Aspidosperma rigidum | 8 | 18.42 | 194.92 | 34.32 | 12.09 | 0.68 |
| Chrysochlamys membranacea | 8 | 15.78 | 53.75 | 57.00 | 28.30 | 0.43 |
| Alchornea glandulosa | 8 | 24.20 | 89.05 | 61.32 | 73.87 | 0.39 |
| Pseudopiptadenia suaveolens | 8 | 8.91 | 27.81 | 59.18 | 25.01 | 0.60 |
| Ocotea sp. | 8 | 14.15 | 41.73 | 67.55 | 34.10 | 0.41 |
| Grias peruviana | 5 | 14.40 | 75.06 | 48.01 | 20.23 | 0.62 |
| Mollia gracilis | 8 | 14.25 | 42.51 | 61.25 | 54.58 | 0.50 |
| Miconia aff punctata | 8 | 11.61 | 105.91 | 37.23 | 11.08 | 0.56 |
| Guarea macrophylla | 8 | 12.10 | 78.45 | 39.72 | 17.77 | 0.51 |
| Clarisia racemosa | 8 | 14.93 | 61.47 | 53.62 | 30.63 | 0.59 |
| Pseudolmedia laevis | 6 | 13.71 | 55.55 | 50.96 | 21.17 | 0.70 |
| Otoba parvifolia | 7 | 12.77 | 49.70 | 53.75 | 17.53 | 0.40 |
| Hieronyma oblonga | 5 | 17.95 | 86.75 | 48.23 | 23.02 | 0.56 |
| Ladenbergia oblongifolia | 7 | 15.62 | 93.44 | 45.92 | 20.21 | 0.49 |
| Warszewiczia coccinea | 8 | 9.50 | 105.01 | 31.45 | 5.51 | 0.54 |
| Pouteria torta | 7 | 10.09 | 60.22 | 43.00 | 13.29 | 0.79 |
| Pourouma cecropiifolia | 3 | 13.24 | 33.82 | 63.44 | 35.50 | 0.37 |
| Leonia crassa | 7 | 22.42 | 185.49 | 37.93 | 14.87 | 0.52 |
Appendix B. Listing of Species According to Their Ecological Strategies
| Family | Species | Succession Status: Early (E), Intermediate (I), Late (L). | Life Strategy: Acquisitive (A), Intermediate (I), Conservative (C). | Size: Undergrowth (U), Intermediate (I), Canopy (C). |
|---|---|---|---|---|
| Actinidiaceae | Saurauia sp. | E | A | U |
| Annonaceae | Guatteria pastazae | I | I | C |
| Apocynaceae | Aspidosperma rigidum | L | C | C |
| Clusiaceae | Chrysochlamys membranacea | L | C | U |
| Euphorbiaceae | Alchornea glandulosa | E | A | I |
| Fabaceae | Pseudopiptadenia suaveolens | I | I | C |
| Lauraceae | Ocotea sp. | L | C | C |
| Lecythidaceae | Grias peruviana | L | C | U |
| Malvaceae | Mollia gracilis | E | A | C |
| Melastomataceae | Miconia aff punctata | E | I | U |
| Meliaceae | Guarea macrophylla | I | I | U |
| Moraceae | Clarisia racemosa | L | C | C |
| Moraceae | Pseudolmedia laevis | I | I | C |
| Myristicaceae | Otoba parvifolia | E | A | C |
| Phyllanthaceae | Hieronyma oblonga | I | I | C |
| Rubiaceae | Ladenbergia oblongifolia | I | I | C |
| Rubiaceae | Warszewiczia coccinea | L | I | I |
| Sapotaceae | Pouteria torta | L | C | C |
| Urticaceae | Pourouma cecropiifolia | E | A | I |
| Violaceae | Leonia crassa | L | C | C |
Appendix C. Principal Component Analysis Loading Scores
| Variable | PC1 | PC2 |
|---|---|---|
| Vessel diameter | +0.89 | −0.12 |
| Vessel density | −0.76 | +0.82 |
| Vessel lumen fraction | +0.45 | +0.76 |
| Hydraulic conductivity | +0.91 | −0.08 |
| Variable | PC1 | PC2 |
|---|---|---|
| Vessel diameter | −0.68 | +0.62 |
| Vessel density | +0.71 | −0.23 |
| Vessel lumen fraction | +0.58 | +0.34 |
| Hydraulic conductivity | −0.73 | +0.58 |
| Stem wood density | +0.79 | −0.18 |
| Specific leaf area | −0.15 | +0.81 |
| Leaf nitrogen | −0.09 | +0.77 |
References
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austral. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Violle, C.; Navas, M.L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Ann. Rev. Ecolog. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 2009, 97, 311–325. [Google Scholar] [CrossRef]
- Hernández, E.I.; Vilagrosa, A.; Pausas, J.G.; Bellot, J. Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant. Ecol. 2010, 207, 233–244. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.A.-S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Freschet, G.T.; Bellingham, P.J.; Lyver, P.O.; Bonner, K.I.; Wardle, D.A. Plasticity in above-and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. Ecol. Evol. 2013, 3, 1065–1078. [Google Scholar] [CrossRef]
- de Paula, M.D.; Reichert, T.; Lugli, L.F.; McGale, E.; Pierick, K.; Darela-Filho, J.P.; Langan, L.; Homeier, J.; Rammig, A.; Hickler, T. The fungal collaboration gradient drives root trait distribution and ecosystem processes in a tropical montane forest. Biogeosciences 2025, 22, 2707–2732. [Google Scholar] [CrossRef]
- Tobner, C.M.; Paquette, A.; Messier, C. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species. Front Plant Sci. 2013, 4, 242. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil. 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Roumet, C.; Birouste, M.; Picon-Cochard, C.; Ghestem, M.; Osman, N.; Vrignon-Brenas, S.; Cao, K.-F.; Stokes, A. Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytol. 2016, 210, 815–826. [Google Scholar] [CrossRef]
- Olson, M.; Rosell, J.A.; Martínez-Pérez, C.; León-Gómez, C.; Fajardo, A.; Isnard, S.; Cervantes-Alcayde, M.A.; Echeverría, A.; Abundiz, V.A.F.; Segovia-Rivas, A.; et al. Xylem vessel-diameter-shoot-length scaling: Ecological significance of porosity types and other traits. Ecol. Monogr. 2020, 90, e01410. [Google Scholar] [CrossRef]
- Preston, K.A.; Cornwell, W.K.; Denoyer, J.L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 2006, 170, 807–818. [Google Scholar] [CrossRef]
- Poorter, L.; Mcdonald, I.; Alarco, A.; Fichtler, E.; Licona, J.; Peña-Claros, M.; Sterk, F.; Villegas, Z.; Sass-Klaassen, U. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 2010, 185, 481–492. [Google Scholar] [CrossRef]
- Sperry, J.S.; Meinzer, F.C.; Mcculloh, K.A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 2008, 31, 632–645. [Google Scholar] [CrossRef]
- Ewers, F.W.; Ewers-, J.M.; Jacobsen’, A.L.; Öpez-Portillo, J.L. Vessel redundancy: Modeling safety in numbers. Iawa J. 2007, 28, 373–378. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.M. Using root form to improve our understanding of root function. New Phytol. 2014, 203, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Addo-Danso, S.D.; Prescott, C.E.; Adu-Bredu, S.; Duah-Gyamfi, A.; Moore, S.; Guy, R.D.; Forrester, D.I.; Owusu-Afriyie, K.; Marshall, P.L.; Malhi, Y. Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica 2018, 50, 606–615. [Google Scholar] [CrossRef]
- Kramer-Walter, K.R.; Bellingham, P.J.; Millar, T.R.; Smissen, R.D.; Richardson, S.J.; Laughlin, D.C. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1299–1310. [Google Scholar] [CrossRef]
- Hogan, J.A.; Valverde-Barrantes, O.J.; Ding, Q.; Xu, H.; Baraloto, C. Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island, China. Ann. For. Sci. 2020, 77, 79. [Google Scholar] [CrossRef]
- Lugli, L.F.; Rosa, J.S.; Andersen, K.M.; Di Ponzio, R.; Almeida, R.V.; Pires, M.; Cordeiro, A.L.; Cunha, H.F.; Martins, N.P.; Assis, R.L.; et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 2021, 230, 116–128. [Google Scholar] [CrossRef]
- Pierick, K.; Leuschner, C.; Homeier, J. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytol. 2021, 230, 129–138. [Google Scholar] [CrossRef]
- Pierick, K.; Leuschner, C.; Link, R.M.; Báez, S.; Velescu, A.; Wilcke, W.; Homeier, J. Above-and belowground strategies of tropical montane tree species are coordinated and driven by small-scale nitrogen availability. Funct Ecol. 2024, 38, 1364–1377. [Google Scholar] [CrossRef]
- Carmona, C.P.; Bueno, C.G.; Toussaint, A.; Träger, S.; Díaz, S.; Moora, M.; Munson, A.D.; Pärtel, M.; Zobel, M.; Tamme, R. Fine-root traits in the global spectrum of plant form and function. Nature 2021, 597, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. A starting guide to root ecology: Strengthening ecological concepts and standardising root classification. New Phytol. 2021, 232, 973–1001. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L. A new method to optimize root order classification based on the diameter interval of fine root. Sci. Rep. 2018, 8, 2960. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- Schuldt, B.; Leuschner, C.; Brock, N.; Horna, V. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiol. 2013, 33, 161–174. [Google Scholar] [CrossRef]
- Kotowska, M.M.; Hertel, D.; Rajab, Y.A.; Barus, H.; Schuldt, B. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Front Plant Sci. 2015, 6, 191. [Google Scholar] [CrossRef] [PubMed]
- Longui, E.L.; Rajput, K.S.; Galvão de Melo, A.C.; de Araújo Alves, L.; do Nascimento, C.B. Variación anatómica de madera desde la raíz a la rama y su influencia en la conductividad hidráulica en cinco especies de Cerrado Brasileño. Bosque 2017, 38, 183–193. [Google Scholar] [CrossRef]
- Emck, P. A Climatology of South Ecuador. Ph.D. Thesis, University of Erlangen-Nuremberg, Erlangen, Germany, 2007. [Google Scholar]
- Bendix, J.; Rollenbeck, R.; Fabian, P.; Emck, P.; Richter, M.; Beck, E. Climate variability. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 281–290. [Google Scholar]
- Wolf, K.; Veldkamp, E.; Homeier, J.; Martinson, G.O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 2011, 25, 4. [Google Scholar] [CrossRef]
- Pierick, K.; Link, R.M.; Leuschner, C.; Homeier, J. Elevational trends of tree fine root traits in species-rich tropical Andean forests. Oikos 2023, 2023, e08975. [Google Scholar] [CrossRef]
- Addo-Danso, S.D.; Defrenne, C.E.; McCormack, M.L.; Ostonen, I.; Addo-Danso, A.; Foli, E.G.; Borden, K.A.; Isaac, M.E.; Prescott, C.E. Fine-root morphological trait variation in tropical forest ecosystems: An evidence synthesis. Plant Ecol. 2020, 221, 1–13. [Google Scholar] [CrossRef]
- Pierce, S.; Brusa, G.; Vagge, I.; Cerabolini, B.E.L. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 2013, 27, 1002–1010. [Google Scholar] [CrossRef]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B.; et al. Three keys to the radiation of angiosperms into freezing environments. Nature 2014, 506, 89–92. [Google Scholar] [CrossRef]
- Weemstra, M.; Mommer, L.; Visser, E.J.; van Ruijven, J.; Kuyper, T.W.; Mohren, G.M.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, H.; Zhu, B.; Koide, R.T.; Eissenstat, D.M.; Guo, D. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 2015, 208, 125–136. [Google Scholar] [CrossRef]
- Liese, R.; Alings, K.; Meier, I.C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant Sci. 2017, 8, 315. [Google Scholar] [CrossRef]
- Zanne, A.E.; Falster, D.S. Plant functional traits—Linkages among stem anatomy, plant performance and life history. New Phytol. 2010, 185, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.-H.; Zhang, S.-B.; Hao, G.-Y.; Slik, J.W.F.; Cao, K.-F. Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. J. Ecol. 2012, 100, 732–741. [Google Scholar] [CrossRef]
- Martínez-Cabrera, H.; Schenk, J.; Cevallos-Ferriz, S.R.; Jones, C. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees; Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. Am. J. Bot. 2011, 98, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.; Sperry, J.; Pockman, W.; Oecologia, S.D. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef]
- López-Camacho, R.; Quintero-Gómez, A.; Amado-Ariza, S. Functional traits of wood in three forests in Colombia: Dry, andean and high andean forests. Cienc. Florest. 2020, 30, 856–872. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C. Sampling roots to capture plant and soil functions. Funct. Ecol. 2017, 31, 1506–1518. [Google Scholar] [CrossRef]
- Valverde-Barrantes, O.J.; Freschet, G.T.; Roumet, C.; Blackwood, C.B. A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol. 2017, 215, 1562–1573. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Zhao, N.; Xu, Z.; Zhu, X.; Jiao, C.; Yu, G.; He, N. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: Evidence of multidimensional root traits. Funct. Ecol. 2018, 32, 29–39. [Google Scholar] [CrossRef]
- Brundrett, M.; Tedersoo, L.; Brundrett, M.C. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018, 220, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Shibata, M.; Kitajima, K.; Ichie, T.; Kitayama, K.; Turner, B.L. Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol. Res. 2018, 33, 149–160. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Konings, A.G.; Trugman, A.T.; Yu, K.; Bowling, D.R.; Geschwender, R.; Hicke, J.A.; Meddens, A.J.; Parazoo, N.C.; Sperry, J.S.; et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 2018, 561, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.S.; Vargas-G, G.; Brodribb, T.J.; Schwartz, N.B.; Pérez-Aviles, D.; Smith-Martin, C.M.; Becknell, J.M.; Aureli, F.; Blanco, R.; Calderón-Morales, E.; et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 2020, 26, 3122–3133. [Google Scholar] [CrossRef]
- Homeier, J.; Werner, F.A.; Gradstein, S.R.; Breckle, S.; Richter, M. Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. Ecol. Stud. 2008, 198, 87–100. [Google Scholar]
- Scholz, A.; Klepsch, M.; Karimi, Z.; Jansen, S. How to quantify conduits in wood? Front. Plant Sci. 2013, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Homeier, J.; Seeler, T.; Pierick, K.; Leuschner, C. Leaf trait variation in species-rich tropical Andean forests. Sci. Rep. 2021, 11, 9993. [Google Scholar] [CrossRef] [PubMed]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 28 October 2025).





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina, J.; Montalván, E.G.; Pierick, K.; Benítez, Á.; Cumbicus, N.; Homeier, J. Anatomical Variation in Root Traits Reflects the Continuum from Slow to Fast Growth Strategies Among Tropical Tree Species. Plants 2025, 14, 3590. https://doi.org/10.3390/plants14233590
Medina J, Montalván EG, Pierick K, Benítez Á, Cumbicus N, Homeier J. Anatomical Variation in Root Traits Reflects the Continuum from Slow to Fast Growth Strategies Among Tropical Tree Species. Plants. 2025; 14(23):3590. https://doi.org/10.3390/plants14233590
Chicago/Turabian StyleMedina, Jefferson, Elizabeth Gusmán Montalván, Kerstin Pierick, Ángel Benítez, Nixon Cumbicus, and Jürgen Homeier. 2025. "Anatomical Variation in Root Traits Reflects the Continuum from Slow to Fast Growth Strategies Among Tropical Tree Species" Plants 14, no. 23: 3590. https://doi.org/10.3390/plants14233590
APA StyleMedina, J., Montalván, E. G., Pierick, K., Benítez, Á., Cumbicus, N., & Homeier, J. (2025). Anatomical Variation in Root Traits Reflects the Continuum from Slow to Fast Growth Strategies Among Tropical Tree Species. Plants, 14(23), 3590. https://doi.org/10.3390/plants14233590

