Drone Delivery of Insecticide Is Uneven Yet Sufficiently Controls Subterranean Weevils Infesting Sweet Potato Plants
Abstract
1. Introduction
2. Results
2.1. Distribution of Insecticide Droplets
2.2. Quantity of Insecticide Applied
2.3. Occurrence of Weevils at Each Site
2.4. Quantification of Insecticide and Occurrence of Weevils
2.5. The Drone-Based Pesticide Application on the Grower’s Farm
3. Discussions
4. Materials and Methods
4.1. Study Site
4.2. Chlorantraniliprole Application by Drone in 2019 and 2020
4.3. Cyantraniliprole Application by Drone
4.4. The Field Trial on a Grower’s Farm
4.5. Data Collection and Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiongkui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent development of un- manned aerial vehicle for plant protection in East Asia. Intern. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Iost Filho, F.H.; Heldens, W.B.; Kong, Z.L.; de Lange, E.S. Drones: Innovative Technology for use in precision pest management. J. Econ. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef]
- Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L.E.; Guglieri, G.; et al. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, Y.; Yan, W.; Chen, J.; Zhang, Z.; Xu, H. Drip chemigation of flonicamid effectively controls cotton aphid (Aphis gossypii) and is benign to lady beetle (Coccinella septempunctata) and lacewing larva (Chrysoperla sinica). Crop Prot. 2020, 129, 105039. [Google Scholar] [CrossRef]
- Johnson, B.J.; Manby, R.; Devine, G.J. Performance of an aerially applied liquid Bacillus thuringiensis var. israelensis formulation (strain AM65-52) against mosquitoes in mixed saltmarsh–mangrove systems and fine-scale mapping of mangrove canopy cover using affordable drone-based imagery. Pest Manag. Sci. 2020, 76, 3822–3831. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S.K. Implementation of drone technology for farm monitoring and pesticide spraying: A review. Inf. Process Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Cunha, J.P.A.R.; Nascimento, A.P.C. Aerial, ground and chemigation spray deposition on corn for the control of Spodoptera frugiperda (Lepidoptera: Noctuidae). Ciência Agrotecnologia 2013, 37, 123–129. [Google Scholar] [CrossRef]
- Yang, F.; Xue, X.; Cai, C.; Sun, Z.; Zhou, Q. Numerical simulation and analysis on spray drift movement of multirotor plant protection unmanned aerial vehicle. Energies 2018, 11, 2399. [Google Scholar] [CrossRef]
- Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.Y.; Pessin, G.; de Carvalho, A.C.P.L.F.; Krishnamachari, B.; Ueyama, J. An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.; Liu, Q.; Yi, T.; Han, P.; Zhang, R.; Pan, L. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Front. Plant Sci. 2022, 13, 981494. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, L.; Wang, Z.; Han, H.; Müller, J.; Li, T.; Wang, C.; Huang, Z.; He, M.; Liu, Y.; et al. Effect of operational parameters of unmanned aerial vehicle (UAV) on droplet deposition in trellised pear orchard. Drones 2023, 7, 57. [Google Scholar] [CrossRef]
- Paul, R.A.I.; Palanisamy, M.A.; Peramaiyan, P.; Kumar, V.; Bagavathiannan, M.; Gurjar, B.; Vijayakumar, S.; Djanaguiraman, M.; Pazhanivelan, S.; Ramasamy, K. Spray volume optimization with UAV-based herbicide application for effective droplet deposition and weed control in direct-seeded rice. Front. Agron. 2024, 6, 1491842. [Google Scholar] [CrossRef]
- O’Hair, S.K. Growth of sweet potato in relation to attack by sweet potato weevils. In Sweet Potato Pest Management: A Global Perspective; Jansson, R.K., Raman, K.V., Eds.; Westview Press: Boulder, CO, USA, 1991; pp. 59–78. [Google Scholar]
- Raman, K.V.; Alleyne, E.H. Biology and management of the West Indian sweet potato weevil, Euscepes postfasciatus. In Sweet Potato Pest Management: A Global Perspective; Jansson, R.K., Raman, K.V., Eds.; Westview Press: Boulder, CO, USA, 1991; pp. 263–281. [Google Scholar]
- Korada, R.R.; Naskar, S.K.; Palaniswami, M.S.; Ray, R.C. Management of sweet potato weevil [Cylas formicarius (Fab.)]: An overview. J. Root Crops 2010, 36, 14–26. [Google Scholar]
- Yasuda, K.; Kohama, T. Distribution of the sweet-potato weevil, Cylas formicarius (Fabricius) and the West Indian sweet-potato weevil, Euscepes postfasciatus (Fairmaire) in Okinawa Prefecture. Proc. Assoc. Plant Prot. Kyushu 1990, 36, 123–125. (In Japanese) [Google Scholar] [CrossRef]
- Talekar, N.S. Characteristics of infestation of sweet potato by sweet potato weevil Cylas formicarius (Coleoptera: Apionidae). Int. J. Pest Manag. 1995, 41, 238–242. [Google Scholar] [CrossRef]
- Hue, S.M.; Low, M.Y. An insight into sweet potato weevils management: A review. Psyche A J. Entomol. 2015, 2015, 849560. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C. Insecticidal effect of chlorantraniliprole against major stored-product insect pests in different grain commodities under laboratory tests. Pest Manag. Sci. 2013, 69, 1141–1154. [Google Scholar] [CrossRef]
- Douressamy, S.; Vinothkumar, B.; Kuttalam, S. Efficacy of chlorantraniliprole 35 WG against borers of sugarcane. J. Sugarcane Res. 2018, 8, 185–194. [Google Scholar]
- Gonring, A.H.R.; Silva, F.M.A.; Picelli, E.M.; Plata-Rueda, R.A.; Gorri, J.E.R.; Fernandes, F.L. Comparative bioassay methods to determine diamide susceptibility for two coffee pests. Crop Prot. 2019, 121, 34–38. [Google Scholar] [CrossRef]
- Ichinose, K.; Fukami, K. Efficacy of aerially applied chlorantraniliprole for control of two sweetpotato weevil species, 2019. Arthropod Manag. Tests 2020, 45, tsaa076. [Google Scholar] [CrossRef]
- Jansson, R.K. Biological approaches for management of weevils of root and tuber crops: A review. Fla. Entomol. 1992, 75, 568–584. [Google Scholar] [CrossRef]
- Weichel, L.; Nauen, R. Uptake, translocation and bioavailability of imidacloprid in several hop varieties. Pest Manag. Sci. 2004, 60, 440–446. [Google Scholar] [CrossRef]
- Schmidt-Jeffris, R.A.; Nault, B.A. Anthranilic diamide insecticides delivered via multiple approaches to control vegetable pests: A case study in snap bean. J. Econ. Entomol. 2016, 109, 2479–2488. [Google Scholar] [CrossRef]
- Nansen, C.; Vaughn, K.; Xue, Y.; Rush, C.; Workneh, F.; Goolsby, J.; Troxclair, N.; Anciso, J.; Gregory, A.; Holman, D.; et al. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance. J. Econ. Entomol. 2011, 104, 1138–1145. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Song, X.P.; Liang, Y.J.; Qin, Z.Q.; Zhang, B.Q.; Wei, J.J.; Li, Y.R.; Wu, J.M. Effects of spray parameters of drone on the droplet deposition in sugarcane canopy. Sugar Tech 2020, 22, 583–588. [Google Scholar] [CrossRef]
- Jiang, Y.; He, X.; Song, J.; Liu, Y.; Wang, C.; Li, T.; Qi, P.; Yu, C.; Chen, F. Comprehensive assessment of intelligent unmanned vehicle techniques in pesticide application: A case study in pear orchard. Front. Plant Sci. 2022, 13, 959429. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lan, Y.; Zhang, H.; Zhang, Y.; Wen, S.; Yao, W.; Deng, J. Drift and deposition of pesticide applied by UAV on pineapple plants und different meteorological conditions. Int. J. Agric. Biol. Eng. 2018, 11, 5–12. [Google Scholar]
- Hunter, J.E., III; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technol. 2019, 34, 235–240. [Google Scholar] [CrossRef]
- Richardson, B.; Rolando, C.A.; Somchit, C.; Dunker, C.; Strand, T.M.; Kimberley, M.O. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Pest Manag. Sci. 2020, 76, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Dengeru, Y.; Ramasamy, K.; Allimuthu, S.; Balakrishnan, S.; Kumar, A.P.M.; Kannan, B.; Karuppasami, K.M. Study on spray deposition and drift characteristics of UAV agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy 2022, 12, 3196. [Google Scholar] [CrossRef]
- Yasuda, K. Control threshold on sweet potato, Ipomoea batatas L., damaged by the West Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae). Jpn. J. Appl. Entomol. Zool. 1997, 41, 201–207. (In Japanese) [Google Scholar] [CrossRef]
- Menezes, E.L.A. A broca da batata-doce (Euscepes postfasciatus): Descrição, bionomia e controle. Circ. Técnica 2002, 6, 1–12. [Google Scholar]
- Reding, M.E.; Persad, A.B. Systemic insecticides for control of black vine weevil (Coleoptera: Curculionidae) in container- and field-grown nursery crops. J. Econ. Entomol. 2009, 102, 927–933. [Google Scholar] [CrossRef]
- Reding, M.E.; Ranger, C.M. Systemic insecticides reduce feeding, survival, and fecundity of adult black vine weevils (Coleoptera: Curculionidae) on a variety of ornamental nursery crops. J. Econ. Entomol. 2011, 104, 405–413. [Google Scholar] [CrossRef]
- Adams, A.; Gore, J.; Catchot, A.; Musser, F.; Cook, D.; Krishnan, N.; Irby, T. Residual and systemic efficacy of chlorantraniliprole and flubendiamide against corn earworm (Lepidoptera: Noctuidae) in soybean. J. Econ. Entomol. 2016, 109, 2411–2417. [Google Scholar] [CrossRef]
- Pes, M.P.; Melo, A.A.; Stacke, R.S.; Zanella, R.; Perini, C.R.; Silva, F.M.A.; Carús Guedes, J.V.C. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2020, 15, e0229151. [Google Scholar] [CrossRef]
- Oliveira, C.; Orozco-Restrepo, S.M.; Alves, A.C.L.; Pinto, B.S.; Miranda, M.S.; Barbosa, M.H.P.; Picanço, M.C.; Pereira, E.J.G. Seed treatment for managing fall armyworm as a defoliator and cutworm on maize: Plant protection, residuality, and the insect life history. Pest Manag. Sci. 2022, 78, 1240–1250. [Google Scholar] [CrossRef]
- Gill, G.S.; Chong, J.H. Efficacy of selected insecticides as replacement for neonicotinoids in managing sweetpotato whitefly on poinsettia. HortTechnology 2021, 31, 745–752. [Google Scholar] [CrossRef]
- Ichinose, K.; Shima, K. Cyantraniliprole for the control of sweetpotato weevil, 2017. Arthropod Manag. Tests 2020, 45, tsaa001. [Google Scholar] [CrossRef]
- Pretzsch, H.J.; Bibera, P.; Uhla, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown size and growing space requirement of common tree species inurban centres, parks, and forests. Urban Forest. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- Moulana, S.; Kumar, P.S.; Vedhantham, V. Cultivation practices of vegetable crops. Krishi Sci. 2020, 1, 41–43. [Google Scholar]
- Liebisch, F.; Kirchgessner, N.; Schneider, D.; Walter, A.; Hund, A. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods. 2015, 11, 9. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Paterson, A.H.; Sun, S.; Xu, R.; Robertson, J. Quantitative analysis of cotton canopy size in field conditions using a consumer-grade RGB-D camera. Front. Plant Sci. 2018, 30, 2233. [Google Scholar] [CrossRef]
- Potgieter, A.B.; George-Jaeggli, B.; Chapman, S.C.; Laws, K.; Suárez Cadavid, L.A.; Wixted, J.; Watson, J.; Eldridge, M.; Jordan, D.R.; Hammer, G.L. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front. Plant Sci. 2017, 8, 1532. [Google Scholar] [CrossRef]
- de Jesus Colwell, F.; Souter, J.; Bryan, G.J.; Compton, L.J.; Boonham, N.; Prashar, A. development and validation of methodology for estimating potato canopy structure for field crop phenotyping and improved breeding. Front. Plant Sci. 2021, 10, 612843. [Google Scholar] [CrossRef]
- Iradukunda, M.; van Iersel, M.W.; Seymour, L.; Lu, G.; Ferrarezi, R.S. The use of imaging to quantify the impact of seed aging on lettuce seed germination and seedling vigor. Sensors 2024, 29, 4235. [Google Scholar] [CrossRef]
- Kubota, Y.; Usui, Y.; Hayashi, K.; Mizukami, T.; Miyahara, S.; Osato, D.; Nakano, K. Development of image-processing software for simple and high-precision measurement of cover-area ratio on water-sensitive paper. Agric. Inf. Res. 2010, 19, 16–22. (In Japanese) [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukami, K.; Takahashi, K.; Guan, S.; Ichinose, K. Drone Delivery of Insecticide Is Uneven Yet Sufficiently Controls Subterranean Weevils Infesting Sweet Potato Plants. Plants 2025, 14, 3511. https://doi.org/10.3390/plants14223511
Fukami K, Takahashi K, Guan S, Ichinose K. Drone Delivery of Insecticide Is Uneven Yet Sufficiently Controls Subterranean Weevils Infesting Sweet Potato Plants. Plants. 2025; 14(22):3511. https://doi.org/10.3390/plants14223511
Chicago/Turabian StyleFukami, Koichiro, Kimiyasu Takahashi, Senlin Guan, and Katsuya Ichinose. 2025. "Drone Delivery of Insecticide Is Uneven Yet Sufficiently Controls Subterranean Weevils Infesting Sweet Potato Plants" Plants 14, no. 22: 3511. https://doi.org/10.3390/plants14223511
APA StyleFukami, K., Takahashi, K., Guan, S., & Ichinose, K. (2025). Drone Delivery of Insecticide Is Uneven Yet Sufficiently Controls Subterranean Weevils Infesting Sweet Potato Plants. Plants, 14(22), 3511. https://doi.org/10.3390/plants14223511

