Pharmacological Potential of Peruvian Eustephia Species (Amaryllidaceae): Alkaloid Diversity, Cholinesterase Inhibition, and Anti-Trypanosoma cruzi Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Alkaloid Profile by GC-MS and UPLC-MS/MS
2.2. Cholinesterases Inhibitory Bioassay
2.3. Anti-T. cruzi Activity
2.4. Total Phenolic Content (TPC), Flavonoid Content (FC), and Antioxidant Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Extraction
3.4. Gas Chromatography Coupled to Mass Spectrometry (GC-MS) and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) Analysis
3.5. AChE and BuChE Inhibition Assays
3.6. In Vitro Trypanocidal Activity Assay
3.6.1. Anti-Epimastigote Assay
3.6.2. Anti-Amastigote Assay
3.6.3. Vero Cell Cytotoxicity Assay
3.7. Total Phenolic Content (TPC) and Total Flavonoid Content (FC)
3.8. Antioxidant Assays
3.8.1. Radical-Scavenging Activity (DPPH)
3.8.2. Ferric Reducing Antioxidant Power (FRAP)
3.8.3. Radical-Cation Decolorization Assay (ABTS)
3.9. Statistical Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In Comprehensive Pharmacology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 408–422. [Google Scholar] [CrossRef]
- Berkov, S.; Osorio, E.; Viladomat, F.; Bastida, J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. In Alkaloids: Chemistry and Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 83, pp. 113–185. ISBN 9780128209813. [Google Scholar] [CrossRef]
- Jin, Z.; Yang, H.-D.; Xu, X.-H.; Yao, G. Amaryllidaceae Alkaloids. In Natural Products: Phytochemistry, Botany, Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–38. ISBN 978-3-642-36202-6. [Google Scholar] [CrossRef]
- Evidente, A. Advances on the Amaryllidacea Alkaloids Collected in South Africa, Andean South America and the Mediterranean Basin. Molecules 2023, 28, 4055. [Google Scholar] [CrossRef]
- WHO Chagas Disease (Also Known as American Trypanosomiasis). Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 26 October 2025).
- Hernández-Flores, A.; Elías-Díaz, D.; Cubillo-Cervantes, B.; Ibarra-Cerdeña, C.N.; Morán, D.; Arnal, A.; Chaves, A. Fighting Strategies Against Chagas’ Disease: A Review. Pathogens 2025, 14, 183. [Google Scholar] [CrossRef]
- de Sousa, A.S.; Vermeij, D.; Ramos, A.N., Jr.; Luquetti, A.O. Chagas disease. Lancet 2024, 403, 203–218. [Google Scholar] [CrossRef]
- Piñeiro, M.; Ortiz, J.E.; Spina Zapata, R.M.; Barrera, P.A.; Sosa, M.A.; Roitman, G.; Bastida, J.; Feresin, G.E. Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms 2023, 11, 144. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Piñeiro, M.; Kaiser, M.; Mäser, P.; Bastida, J.; Feresin, G.E. Anti-Trypanosomatid and Antiplasmodial Activities of Alkaloids From Hippeastrum Species. Chem. Biodivers. 2025, 22, e202500015. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Gómez-Barrio, A.; Fonseca-Berzal, C. Natural products for the treatment of Chagas disease: A review of plant-derived compounds and related synthetic derivatives as potential trypanocidal drugs. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Ibrakaw, A.S.; Akinfenwa, A.O.; Hussein, A.A. A comprehensive review of non-alkaloidal metabolites from the subfamily Amaryllidoideae (Amaryllidaceae). Open Chem. 2023, 21, 20220252. [Google Scholar] [CrossRef]
- Meerow, A.W. Classification and phylogeny of Amaryllidaceae, the modern synthesis and the road ahead: A review. Boletín Soc. Argent. Bótanica 2023, 58, 355–373. [Google Scholar] [CrossRef]
- WCSP World Checklist of Selected Plant Families. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:1608-1 (accessed on 8 August 2025).
- Soukup, J. Vocabulario de los Nombres Vulgares de la Flora Peruana y Catálogo de los Géneros; Editorial Salesiana: Lima, Peru, 1987. [Google Scholar]
- Bussmann, R.W.; Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. J. Ethnopharmacol. 2010, 132, 101–108. [Google Scholar] [CrossRef]
- Xie, W.; Sun, M.; Fan, J.; Wang, Z.; Xie, Z.; Tao, Y.; Wu, J. Transcriptomics and network pharmacology analysis reveal key genes in alkaloid biosynthesis in Zephyranthes candida and therapeutic targets for LIHC. Planta 2025, 262, 45. [Google Scholar] [CrossRef] [PubMed]
- Centeno-betanzos, L.Y.; Reyes-chilpa, R.; Pigni, N.B. Plants of the ‘Libellus de Medicinalibus Indorum Herbis’ from Mexico, 1552. Zephyranthes fosteri (Amaryllidaceae) Alkaloids. Chem. Biodivers. 2021, 18, e2000834. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Garro, A.; Pigni, N.B.; Agüero, M.B.; Roitman, G.; Slanis, A.; Enriz, R.D.; Feresin, G.E.; Bastida, J.; Tapia, A. Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine 2018, 39, 66–74. [Google Scholar] [CrossRef]
- Hotchandani, T.; de Villers, J.; Desgagné-Penix, I. Developmental regulation of the expression of amaryllidaceae alkaloid biosynthetic genes in Narcissus papyraceus. Genes 2019, 10, 594. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Li, J.; Yan, L.X.; Deng, H.P.; Quan, M.H.; Zuo, Y.W. Impact of rhizosphere quantitative microbiome and soil properties on alkaloid levels in Lycoris aurea herb. Sci. Rep. 2025, 15, 25806. [Google Scholar] [CrossRef] [PubMed]
- López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.E.; Piñeiro, M.; Martinez-Peinado, N.; Barrera, P.; Sosa, M.; Bastida, J.; Alonso-Padilla, J.; Feresin, G.E. Candimine from Hippeastrum escoipense (Amaryllidaceae): Anti-Trypanosoma cruzi activity and synergistic effect with benznidazole. Phytomedicine 2023, 114, 154788. [Google Scholar] [CrossRef]
- Al, F.; Mehrukh, A.; Sherouk, Z.; Sweilam, H. Therapeutic potential of flavonoids in neuroprotection: Brain and spinal cord injury focus. Naunyn. Schmiedebergs. Arch. Pharmacol. 2025, 398, 8215–8240. [Google Scholar] [CrossRef]
- Nájera-Maldonado, J.M.; Salazar, R.; Alvarez-fitz, P.; Acevedo-quiroz, M.; Flores-alfaro, E.; Hernández-Sotelo, D.; Espinoza-Rojo, M.; Ramírez, M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J. Xenobiot. 2024, 14, 227–246. [Google Scholar] [CrossRef]
- Llalla-Cordova, O.; Ortiz, J.E.; Tallini, L.R.; Torras-Claveria, L.; Bastida, J.; Luna, L.C.; Feresin, G.E. Alkaloid Profile, Anticholinesterase and Antioxidant Activities, and Sexual Propagation in Hieronymiella peruviana (Amaryllidaceae). Plants 2025, 14, 281. [Google Scholar] [CrossRef]
- Boshra, Y.R.; Attia, E.Z.; Darwish, A.G.; Boshra, M.R.; Amin, M.N.; Hamed, A.N.E.; Desoukey, S.Y.; Fahim, J.R. Narcissus pseudonarcissus L. (Amaryllidaceae) bulbs metabolite profiling and biological activities. S. Afr. J. Bot. 2023, 160, 633–644. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Pal, S. Review on Unraveling the Relationship Between Abiotic Stress and Secondary Metabolite Biosynthesis in Medicinal Plants. Next Res. 2025, 2, 100320. [Google Scholar] [CrossRef]
- Orhan, I.E.; Yilmaz, B.S.; Altun, M.L.; Saltan, G.; Şener, B. Anti-acetylcholinesterase and antioxidant appraisal of the bulb extracts of five Sternbergia species. Rec. Nat. Prod. 2011, 5, 193–201. [Google Scholar]
- Ghane, S.G.; Attar, U.A.; Yadav, P.B.; Lekhak, M.M. Antioxidant, anti-diabetic, acetylcholinesterase inhibitory potential and estimation of alkaloids (lycorine and galanthamine) from Crinum species: An important source of anticancer and anti-Alzheimer drug. Ind. Crops Prod. 2018, 125, 168–177. [Google Scholar] [CrossRef]
- NASA POWER Prediction of Worldwide Energy Resources (POWER) Data Access Viewer. NASA Langley Research Center. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 27 October 2025).
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Ismail, H.I.; Chan, K.W.; Mariod, A.A.; Ismail, M. Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chem. 2010, 119, 643–647. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Luna, L.C.; Pigni, N.B.; Torras-Claveria, L.; Monferran, M.V.; Maestri, D.; Wunderlin, D.A.; Feresin, G.E.; Bastida, J.; Tapia, A. Ramorinoa girolae Speg (Fabaceae) seeds, an Argentinean traditional indigenous food: Nutrient composition and antioxidant activity. J. Food Compos. Anal. 2013, 31, 120–128. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]



| Alkaloids | [M+] | Ion Base | RI | EB1 | EB2 | EB3 | EB4 | EB5 | EL1 | EL2 | EL5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Homolycorine-type | |||||||||||
| O-Methyllycorenine (1) | 331 | 109 | 2483.4 | 0.2 | |||||||
| Nerinine (2) | 347 | 109 | 2515.6 | 3.9 | 1.3 | ||||||
| Homolycorine (3) | 315 | 109 | 2765.5 | 0.2 | 0.4 | 4.1 | 7.4 | ||||
| 8-O-Demethylhomolycorine (4) | 301 | 109 | 2794.8 | 0.9 | 22.7 | 46.5 | 61.8 | ||||
| 2-Methoxy-8-O-Demethylhomolycorine (5) | 331 | 139 | 2825.1 | 0.3 | |||||||
| Hippeastrine (6) | 315 | 125 | 2867.6 | 10.7 | 0.8 | 13.1 | |||||
| 2-Hydroxyhomolycorine (7) | 331 | 125 | 2978.2 | 13.6 | 0.8 | 24.8 | 3.9 | 0.5 | 7.8 | ||
| Candimine (8) | 345 | 125 | 3078.4 | 13.6 | 15.4 | 16 | 19 | 15.9 | |||
| Lycorine-type | |||||||||||
| Anhydrolycorine (9) | 251 | 250 | 2521.2 | 0.1 | 0.1 | ||||||
| Kirkine (10) | 273 | 252 | 2573.4 | 1.1 | |||||||
| Assoanine (11) | 267 | 266 | 2578.4 | 1.2 | 25.9 | 0.5 | 54.4 | 1.2 | |||
| Galanthine (12) | 317 | 242 | 2705.2 | 19.1 | 1.8 | 4.5 | |||||
| Sternbergine (13) | 331 | 228 | 2710.9 | 1.3 | 33.8 | ||||||
| Incartine (14) | 333 | 332 | 2761.6 | 0.2 | |||||||
| Lycorine (15) | 287 | 226 | 2767.6 | 0.5 | |||||||
| Pseudolycorine (16) | 289 | 228 | 2823.0 | 0.9 | |||||||
| Oxoassoanine (17) | 281 | 281 | 2934.4 | 0.4 | 1.3 | ||||||
| Haemanthamine-type | |||||||||||
| 8-O-Demethylmaritidine (18) | 273 | 273 | 2532.0 | 0.1 | 3.9 | 7.6 | |||||
| Haemanthamine (19) | 301 | 272 | 2641.0 | 14.5 | 17.4 | 11.6 | 25.7 | 0.6 | |||
| Haemanthidine (20) | 317 | 115 | 2733.1 | 0.3 | |||||||
| Galanthamine-type | |||||||||||
| Galanthamine (21) | 287 | 286 | 2398.6 | 7.8 | 0.1 | 0.6 | |||||
| Chlidanthine (22) | 287 | 287 | 2404.0 | 0.4 | 0.2 | ||||||
| Sanguinine (23) | 273 | 273 | 2415.9 | 0.3 | 0.9 | ||||||
| Narwedine (24) | 285 | 284 | 2475.3 | 1 | |||||||
| Other-type | |||||||||||
| Vittatine/crinine (25a/25b) | 271 | 271 | 2476.7 | 0.5 | |||||||
| Tazettine (26) | 331 | 247 | 2649.3 | 0.4 | 3.2 | ||||||
| Not identified | |||||||||||
| NI-1 (27) | 329 | 268 | 2521.0 | 22.3 | 8.3 | 10.2 | 1.2 | ||||
| NI-2 (28) | 301 | 301 | 2539.6 | 5.5 | 16.4 | 39.3 | 40.1 | 9.2 | |||
| NI-3 (29) | 287 | 286 | 2556.8 | 11.9 | 5.9 | ||||||
| NI-4, lycorine-type (30) | 327 | 266 | 2579.7 | 6.7 | |||||||
| Total alkaloid | 90.7 | 94.8 | 93.4 | 80.6 | 87.9 | 95.6 | 89.7 | 95.3 |
| Species | Sample | Yield (%) | AChE | BuChE |
|---|---|---|---|---|
| Bulbs | ||||
| E. coccinea (Taray) | EB1 | 0.44 | 4.56 ± 0.0 d,e,f | 61.22 ± 4.40 d |
| E. coccinea (Pisac) | EB2 | 0.17 | 2.89 ± 0.65 e,f | >200 a |
| E. coccinea (Tinta) | EB3 | 0.19 | 57.22 ± 1.03 c | 125.14 ± 4.27 c |
| E. darwinii | EB4 | 0.65 | 7.47 ± 0.60 d,e | >200 a |
| E. hugoei | EB5 | 0.19 | 9.04 ± 0.49 d | >200 b |
| Leaves | ||||
| E. coccinea (Taray) | EL1 | 0.81 | 170.53 ± 5.32 b | >200 b |
| E. coccinea (Pisac) | EL2 | 0.37 | 1.82 ± 0.06 f | 180.33 ± 2.47 b,c |
| E. hugoei | EL5 | 0.10 | 195.72 ± 1.21 a | >200 b |
| Galanthamine | Gal | 0.39 ± 0.006 | 5.35 ± 0.15 | |
| Species | Sample | IC50 (µg/mL) | SI | |||
|---|---|---|---|---|---|---|
| Epis | Amas | Vero | Epis | Amas | ||
| Bulbs | ||||||
| E. coccinea (Taray) | EB1 | 4.21 ± 0.003 b | 2.7 ± 0.006 b | 13.59 ± 0.01 b | 3.22 | 5.03 |
| E. coccinea (Pisac) | EB2 | 17.52 ± 0.02 d | 5.58 ± 0.02 c | 14.08 ± 0.001 b | 0.80 | 2.52 |
| E. coccinea (Tinta) | EB3 | 3.45 ± 0.002 a | 1.69 ± 0.001 a | 3.692 ± 0.01 a | 1.07 | 2.19 |
| E. darwinii | EB4 | 3.73 ± 0.002 a | 2.1 ± 0.002 a | 18.55 ± 0.004 c | 4.97 | 8.83 |
| E. hugoei | EB5 | 8.93 ± 0.01 c | 5.73 ± 0.02 c | 17.24 ± 0.004 c | 1.93 | 3.01 |
| Leaves | ||||||
| E. coccinea (Taray) | EL1 | 39.35 ± 0.07 e | 28.02± 0.001 e | 63.61 ± 0.013 d | 1.62 | 2.27 |
| E. coccinea (Pisac) | EL2 | 40.35 ± 0.04 e | 9.01 ± 0.004 d | 55.47 ± 0.02 d | 1.37 | 6.15 |
| E. hugoei | EL5 | 68.20 ± 0.04 f | 40.39 ± 0.001 f | 117.8 ± 0.0003 e | 1.72 | 2.92 |
| Benznidazole | Bzn | 6.46 ± 0.001 | 8.74 ± 0.003 | 19.42 ± 0.11 | 3.01 | 2.22 |
| Sample | Yield % | TPC 1 (mg GAE/g) | FC 2 (mg QE/g) | DPPH 3 % | ABTS 4 % | FRAP 5 (mg TE/g) |
|---|---|---|---|---|---|---|
| EB1 | 21.21 | 11.30 ± 1.53 c | 1.89 ± 0.16 b | 21.21 ± 1.81 ab | 13.38 ± 2.12 b | 3.36 ± 0.08 a |
| EB2 | 9.88 | 18.45 ± 2.15 a | 2.12 ± 0.03 ab | 19.26 ± 2.68 ab | 18.38 ± 1.49 ab | 3.35 ± 0.02 a |
| EB3 | 13.96 | 22.41 ± 1.67 ab | 2.12 ± 0.08 ab | 22.85 ± 2.32 a | 20.83 ± 1.34 a | 3.45 ± 0.15 a |
| EB4 | 10.58 | 11.14 ± 0.48 c | 2.19 ± 0.05 a | 17.22 ± 0.69 b | 19.54 ± 3.23 ab | 3.35 ± 0.05 a |
| EB5 | 8.04 | 23.20 ± 1.92 b | 1.93 ± 0.06 b | 19.00 ± 0.20 ab | 20.79 ± 2.96 a | 3.35 ± 0.05 a |
| Species | Location | Part | Sample Code | Phenology | Altitude (m.a.s.l.) |
|---|---|---|---|---|---|
| E. coccinea | Taray—Cusco | Bulb and Leaves | EB1, EL1 | Vegetative (March) | 3 332 |
| E. coccinea | Pisac—Cusco | Bulb and Leaves | EB2, EL2 | Vegetative (March) | 3 062 |
| E. coccinea | Tinta—Cusco | Bulb | EB3 | Flowering (September) | 3 523 |
| E. darwinii | Circa—Apurimac | Bulb | EB4 | Vegetative (March) | 2 200 |
| E. hugoei | Lambrama—Apurimac | Bulb and leaves | EB5, EL5 | Vegetative (March) | 2 713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llalla-Cordova, O.; Ortiz, J.E.; Piñeiro, M.; Tallini, L.R.; Torras-Claveria, L.; Huaylla, H.; Mejía-Jaramillo, A.M.; Triana-Chávez, O.; Osorio, E.; Luna, L.C.; et al. Pharmacological Potential of Peruvian Eustephia Species (Amaryllidaceae): Alkaloid Diversity, Cholinesterase Inhibition, and Anti-Trypanosoma cruzi Activity. Plants 2025, 14, 3510. https://doi.org/10.3390/plants14223510
Llalla-Cordova O, Ortiz JE, Piñeiro M, Tallini LR, Torras-Claveria L, Huaylla H, Mejía-Jaramillo AM, Triana-Chávez O, Osorio E, Luna LC, et al. Pharmacological Potential of Peruvian Eustephia Species (Amaryllidaceae): Alkaloid Diversity, Cholinesterase Inhibition, and Anti-Trypanosoma cruzi Activity. Plants. 2025; 14(22):3510. https://doi.org/10.3390/plants14223510
Chicago/Turabian StyleLlalla-Cordova, Olimpia, Javier E. Ortiz, Mauricio Piñeiro, Luciana R. Tallini, Laura Torras-Claveria, Hibert Huaylla, Ana María Mejía-Jaramillo, Omar Triana-Chávez, Edison Osorio, Lorena Celina Luna, and et al. 2025. "Pharmacological Potential of Peruvian Eustephia Species (Amaryllidaceae): Alkaloid Diversity, Cholinesterase Inhibition, and Anti-Trypanosoma cruzi Activity" Plants 14, no. 22: 3510. https://doi.org/10.3390/plants14223510
APA StyleLlalla-Cordova, O., Ortiz, J. E., Piñeiro, M., Tallini, L. R., Torras-Claveria, L., Huaylla, H., Mejía-Jaramillo, A. M., Triana-Chávez, O., Osorio, E., Luna, L. C., & Feresin, G. E. (2025). Pharmacological Potential of Peruvian Eustephia Species (Amaryllidaceae): Alkaloid Diversity, Cholinesterase Inhibition, and Anti-Trypanosoma cruzi Activity. Plants, 14(22), 3510. https://doi.org/10.3390/plants14223510

