Allelopathic Effects of Dominant Native Invaders on Forage Establishment: Implications for Alpine Meadow Restoration on the Qinghai-Xizang Plateau
Abstract
1. Introduction
2. Results
2.1. Seed Germination Dynamics: Daily Germination Patterns Under Allelochemical Treatments
2.2. Germination Parameters: Final Germination Rate (GR) and Germination Potential (GP) Across Concentrations
2.3. Dose-Dependent Effects on Seedling Growth Traits: Root/Stem Length and Weight
2.4. Allelopathic Response Index (RI) of Seedling Functional Traits
2.5. Multi-Factors That Affect Germination and Growth Conditions
3. Discussion
3.1. Species- and Organ-Specific Responses to Allelochemicals
3.2. Plant-Specific Sensitivity to Different Allelochemicals
3.3. Concentration-Dependent Effects of Allelochemicals on Plants
3.4. Practical Implications and Applications
4. Materials and Methods
4.1. Experimental Plants and Reagents
4.2. Experimental Designs
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BA | benzoic acid |
| CA | caffeic acid |
| HA | p-hydroxybenzoic acid |
| FE | Festuca elata Keng ex E. B. Alexeev |
| LP | Lolium perenne L. |
| MS | Medicago sativa L. |
| TR | Trifolium repens L. |
| GR | germination rate |
| GP | germination potential |
| RI | response index |
| LMMS | linear mixed effects model |
| QXP | Qinghai-Xizang Plateau |
References
- Diagne, C.; Leroy, B.; Vaissiere, A.; Gozlan, R.; Roiz, D.; Jaric, I.; Salles, J.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Y.; You, J.; Li, J.; Xiong, L.; Li, C. Species composition, flora and invasion hazard of alien plants in Huangjinhe National Wetland Park. Chin. J. Ecol. 2020, 39, 3613–3622. [Google Scholar] [CrossRef]
- Daniel, S.; Lara, S.; Martín, A.N.; Barrios-Garcia, M.N.; Windy, B. The natives are restless, but not often and mostly when disturbed. Ecology 2012, 93, 598–607. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Wang, S.; Liao, Z.-Y.; Parepa, M.; Zhang, L.; Cao, P.; Bi, J.; Guo, Y.; Bossdorf, O.; Richards, C.L.; et al. Geographic variation in leaf traits and palatability of a native plant invader during domestic expansion. Ecology 2024, 105, e4425. [Google Scholar] [CrossRef] [PubMed]
- Pivello, V.R.; Vieira, M.V.; Grombone-Guaratini, M.T.; Silva Matos, D.M. Thinking about super-dominant populations of native species—Examples from Brazil. Perspect. Ecol. Conserv. 2018, 16, 74–82. [Google Scholar] [CrossRef]
- Piñar Fuentes, J.C.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C.; Spampinato, G.; Cano, E. Rupicolous habitats of interest for conservation in the central-southern Iberian peninsula. Plant Sociol. 2017, 54, 29–42. [Google Scholar]
- Carey, M.P.; Sanderson, B.L.; Barnas, K.A.; Olden, J.D. Native invaders—Challenges for science, management, policy, and society. Front. Ecol. Environ. 2012, 10, 373–381. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.G.; Song, B.; Zhang, Y.Z.; Niu, Y.; Jiang, Z.H.; Sun, H. The Qinghai-Tibet Plateau: Climate change, human activity, and plant diversity. Plant Divers. 2025; in press. [Google Scholar] [CrossRef]
- Xiong, W.Y.; Cheng, T.; Liu, S.J.; Liu, X.; Ding, H.C.; Yin, M.D.; Sun, W.G.; Zhang, Y.Z. Diversity patterns, abiotic and biotic drivers, and future dynamics of native invasive plants on the Qinghai-Tibet Plateau. Front. Plant Sci. 2025, 16, 1715360. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Wang, X.; Yao, W.; Tu, Y.; Sun, Z.; Feng, X. Evaluation of ecosystem quality and stability based on key indicators and ideal reference frame: A case study of the Qinghai-Tibet Plateau. J. Environ. Manag. 2024, 370, 122460. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, X.; Liao, L.; Li, J.; Luo, G.; Li, B.; Ma, Z.; Wang, Z. Grazing decreases carbon storage in the Qinghai-Tibet Plateau grasslands. Commun. Earth Environ. 2025, 6, 198. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Lin, R.; Zhang, Y.; Ren, J.; Dai, H. Allelopathic Effects of Ligularia cymbulifera Extracts on Seed Germination and Seedling Growth of Three Forages. Acta Agrestia Sin. 2022, 30, 93–99. [Google Scholar] [CrossRef]
- Revillini, D.; David, A.S.; Reyes, A.L.; Knecht, L.D.; Vigo, C.; Allen, P.; Searcy, C.A.; Afkhami, M.E. Allelopathy-selected microbiomes mitigate chemical inhibition of plant performance. New Phytol. 2023, 240, 2007–2019. [Google Scholar] [CrossRef]
- Akbar, R.; Sun, J.; Bo, Y.; Khattak, W.A.; Khan, A.A.; Jin, C.; Zeb, U.; Ullah, N.; Abbas, A.; Liu, W.; et al. Understanding the Influence of Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review. Plants 2024, 13, 3162. [Google Scholar] [CrossRef]
- Wang, P.; Liang, W.; Kong, C.H.; Jiang, Y.; Zhang, M.; Zhang, C. Chemical mechanism of exotic weed invasion. Chin. J. Appl. Ecol. 2004, 15, 707–711. [Google Scholar]
- Zhang, Y.; Hogan, J.A.; Ye, Y.; Liu, X.; Song, M.; Chen, J.; Sun, H. Decoupled responses of soil microbial diversity and ecosystem functions to successive degeneration processes in alpine pioneer community. Sci. China-Life Sci. 2025, 68, 1873–1888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, L.; Spalink, D.; Sun, L.; Chen, J.; Sun, H. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. 2021, 43, 181–191. [Google Scholar] [CrossRef]
- Niu, Q.M.; Duan, Q.S.; Chen, Z.F.; Liu, Y.; Xie, Y.; Liu, J.; Chu, X.H.; Shan, G.L. Effects of Toxic Weeds Invasion and Expansion on Subalpine Meadow Plant Communities and Soil Properties. J. Yunnan Agric. Univ. (Nat. Sci.) 2025, 40, 135–141. [Google Scholar]
- Mou, D.; Zhang, S.; Ou, W.; Tang, J.; Cairang, D.; Xie, J. Prospects for replacement control for native invader Ligularia virgaurea. J. Biosaf. 2020, 29, 235–241. [Google Scholar]
- Shi, G.; Wang, W.; Jiang, S.; Cheng, G.; Yao, B.; Feng, H.; Zhou, H. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity. Chin. J. Plant Ecol. 2018, 42, 126–132. [Google Scholar]
- Yin, Z.H.; Chen, X.F.; La, D. Analysis on the Niche and Interspecific Association of Dominant Plant Species in Alpine Meadow under Simulated Warming and Grazing. Acta Agrestia Sin. 2023, 31, 1302–1313. [Google Scholar]
- Ren, Y.D.; Shang, Z.H.; Long, R.J. Progress of allelopathy in grassland ecosystem of China. Pratacult. Sci. 2014, 31, 993–1002. [Google Scholar]
- Wang, S.X. Research on the Allelopathic Effects of Ligularia sagitta and Potential Allellochemicals Isolation and Identification. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2024. [Google Scholar]
- Zheng, X.B.; He, C.L. Common high quality forage grass and its application in beef cattle breeding. Anim. Breed. Feed 2025, 24, 33–36. [Google Scholar]
- Wang, Y.; Xue, K.; Hu, R.; Ding, B.; Zeng, H.; Li, R.; Xu, B.; Pang, Z.; Song, X.; Li, C.; et al. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years. Sci. Bull. 2023, 68, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Geng, X. Study on the Introduction and Cultivation of 9 Alfalfa Varieties in the Hexi Region of Gansu Province. China Herbiv. Sci. 2023, 43, 59–64. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, H.; Tang, T.; Zhang, H.; Peng, Y. Distribution characteristics and phenotypic variation of wild trifolium repens population in Ganzi Tibetan autonomous prefecture, Sichuan province. Chin. J. Grassl. 2023, 45, 21–29. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, Y.; Zhai, S.; Xu, Q.; Wang, Y.; Hao, X.; Gao, W. Comparison of Growth Adaptability and Feeding Value of Different Grasses in Coal Mine Subsidence Area. Chin. J. Grassl. 2022, 44, 64–70. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, D.; Chen, L.; Wang, J.; Zhang, W.-H. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theor. Appl. Genet. 2022, 135, 853–864. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Y.; Chai, J.; Liu, L.; Li, J.; Ren, Y.; Guo, C. MsAREB1 enhances combined cold and saline-alkali stress tolerance by promoting ascorbic acid biosynthesis in alfalfa. Plant Biotechnol. J. 2025, 23, 3349–3362. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, L.; Chen, Q.; Miao, Y.; Peng, Z.; Huang, B.; Guo, L.; Liu, D.; Du, H. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Sci. Rep. 2021, 11, 4303. [Google Scholar] [CrossRef]
- Abdelrazig, S.; Safo, L.; Rance, G.A.; Fay, M.W.; Theodosiou, E.; Topham, P.D.; Kim, D.-H.; Fernandez-Castane, A. Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling. RSC Adv. 2020, 10, 32548–32560. [Google Scholar] [CrossRef]
- Yan, S.B.; Wang, P. Effects of alleolchemicals on morphological traits of roots: A meta-analysis. Chin. J. Appl. Ecol. 2020, 31, 2168–2174. [Google Scholar]
- El-Shora, H.M.; El-Gawad, A.M.A. Physiological and biochemical responses of Cucurbita pepo L. mediated by Portulaca oleracea L. Fresenius Environ. Bull. 2015, 24, 386–393. [Google Scholar]
- Ansar, J.; Mehak, S.; Nobeel, K.B.; Bingnan, H. Alkaloids as natural anti-allergy agents: A mini review. Allergy Med. 2024, 2, 100014. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, B.-S.; Manne, R.K.; Chen, J.; Lv, D.; Wang, M.; Tran, P.; Weldemichael, T.; Yan, W.; Zhou, H.; et al. CD36-mediated endocytosis of proteolysis-targeting chimeras. Cell 2025, 188, 3219–3237.e18. [Google Scholar] [CrossRef]
- Duan, R.; Luo, Q.; Xiao, X.; Niu, Q.M.; Liu, Y.; Yang, X.; Liu, J.G.; Chu, X.h.; Shan, G.L. Effects of Main Allelopathic Substances of Euphorbia jolkinii on Species Diversity of Soil Microorganisms in Montane Meadow. Acta Agrestia Sin. 2025, 33, 10–20. [Google Scholar]
- Ahmad, R.; Lone, S.A.; Rashid, I.; Khuroo, A.A. A global synthesis of the ecological effects of co-invasions. J. Ecol. 2025, 113, 570–581. [Google Scholar] [CrossRef]
- He, H.Q.; Lin, W.X. Preliminary studies on allelopathic potential in rice. Chin. J. Eco-Agric. 2001, 9, 47–49. [Google Scholar]
- Lin, W.X.; He, H.Q.; Guo, Y.C.; Liang, Y.Y.; Chen, F.Y. Rice allelopathy and its physiobiochemical characteristics. Chin. J. Appl. Ecol. 2001, 12, 871–875. [Google Scholar]
- Ma, R.J.; Li, G.; Zhu, H.; Zhang, H.; Wang, N.L. Allelopathic effects of aqueous extracts from Ligularia sagitta on seed of nine pasture plants. Acta Pratacult. Sin. 2007, 16, 88–93. [Google Scholar]
- Mattson, M.P. Hormesis defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Hormesis and disease resistance: Activation of cellular stress response pathways. Hum. Exp. Toxicol. 2008, 27, 155–162. [Google Scholar] [CrossRef]
- Yang, J.; Cai, Y.; Zhao, K.; Xie, H.; Chen, X. Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discov. Today 2022, 27, 103356. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, Z.-G.; Bao, X.-G.; Sun, J.-H.; Yang, S.-C.; Wang, P.; Wang, C.-B.; Wu, J.-P.; Liu, X.-R.; Tian, X.-L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, G.; Wei, Y.; Wilson, G.W.T.; Wei, B.; He, Y.; Yu, H.; Liu, N.; Zhang, Y. Low legume-grass seeding ratio combined with phosphorus fertilization promotes forage yield and soil quality in managed grasslands. Agron. Sustain. Dev. 2024, 44, 36. [Google Scholar] [CrossRef]
- Xu, W.H.; Liu, W.; Ma, X.L.; Chen, G.; Zhou, K.; Luo, F.C. Allelopathic Interactions Between Lolium perenne and Trifolium repens and Interspecific Competition in Polyculture Systems. Yunnan J. Anim. Sci. Vet. Med. 2025, 3, 1–4. [Google Scholar]
- Cabral, L.; Yu, R.-Q.; Crane, S.; Giovanella, P.; Barkay, T.; Camargo, F.A.O. Methylmercury degradation by Pseudomonas putida V1. Ecotoxicol. Environ. Saf. 2016, 130, 37–42. [Google Scholar] [CrossRef]
- Li, Y.; Chu, X.; Li, J.; Ma, Z.; Niu, Q.; Shan, G.L. Allelopathic Effects of Euphorbia jolkinii on Seed Germination and Seedling Growth of Alfalfa. Acta Agrestia Sin. 2022, 30, 394–402. [Google Scholar] [CrossRef]
- Williamson, G.B.; Richardson, D. Bioassays For Allelopathy—Measuring Treatment Responses with Independent Controls. J. Chem. Ecol. 1988, 14, 181–187. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z.; Dang, X.; Song, W.; Zhai, B. Allelopathic effects of Stellera chamaejasme on seed germination and seedling growth of alfalfa and two forage grasses. Acta Pratacult. Sin. 2019, 28, 130–138. [Google Scholar]
- Luo, Y.; Xu, Q.; Dong, L.; Zhou, Z.; Tan, J. Triterpenic Acids from Spermacoce latifolia. J. Trop. Subtrop. Bot. 2015, 23, 463–468. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Ginestet, C. ggplot2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A (Stat. Soc.) 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Nan, X. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ‘ggplot2’. R Package Version 3.2.0. 2024. Available online: https://CRAN.R-project.org/package=ggsci (accessed on 25 October 2025).
- Kolde, R. pheatmap: Pretty Heatmaps. R Package Version 1.0.13. 2025. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 8 June 2025).





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ye, Y.; Yang, Z.; Zhang, Y. Allelopathic Effects of Dominant Native Invaders on Forage Establishment: Implications for Alpine Meadow Restoration on the Qinghai-Xizang Plateau. Plants 2025, 14, 3506. https://doi.org/10.3390/plants14223506
Liu X, Ye Y, Yang Z, Zhang Y. Allelopathic Effects of Dominant Native Invaders on Forage Establishment: Implications for Alpine Meadow Restoration on the Qinghai-Xizang Plateau. Plants. 2025; 14(22):3506. https://doi.org/10.3390/plants14223506
Chicago/Turabian StyleLiu, Xin, Yaojun Ye, Zaihong Yang, and Yazhou Zhang. 2025. "Allelopathic Effects of Dominant Native Invaders on Forage Establishment: Implications for Alpine Meadow Restoration on the Qinghai-Xizang Plateau" Plants 14, no. 22: 3506. https://doi.org/10.3390/plants14223506
APA StyleLiu, X., Ye, Y., Yang, Z., & Zhang, Y. (2025). Allelopathic Effects of Dominant Native Invaders on Forage Establishment: Implications for Alpine Meadow Restoration on the Qinghai-Xizang Plateau. Plants, 14(22), 3506. https://doi.org/10.3390/plants14223506

