Microalgae-Based Biostimulants: Effects on Growth and Stress Resistance in Agricultural Crops
Abstract
1. Introduction
Importance of Biostimulants in Modern Agriculture
2. Microalgae as a Source of Biostimulants
2.1. Main Genera and Species Used
2.2. Bioactive Compounds of Agricultural Interest
2.2.1. Phytohormones
Auxins
Cytokinins
Gibberellins
Abscisic Acid (ABA)
2.2.2. Polysaccharides and Exopolysaccharides
2.2.3. Amino Acids and Bioactive Peptides
2.2.4. Antioxidant Compounds and Pigments
3. Applications in Agricultural Crops
Experimental Evidence in Horticultural Crops
4. Mechanisms of Action in Plants
4.1. Induction of Tolerance to Abiotic Stress
4.1.1. Drought
4.1.2. Salinity
4.1.3. Extreme Temperatures
5. Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valoppi, F.; Agustin, M.; Abik, F.; Morais de Carvalho, D.; Sithole, J.; Bhattarai, M.; Varis, J.J.; Arzami, A.; Pulkkinen, E.E.; Mikkonen, K.S. Insight on current advances in food science and technology for feeding the world population. Front. Sustain. Food Syst. 2021, 5, 626227. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Soil microalgae and cyanobacteria: The biotechnological potential in maintaining soil fertility and health. Crit. Rev. Biotechnol. 2019, 39, 981–998. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Anand, U.; López-Bucio, J.; Radha Kumar, M.; Lal, M.K.; Tiwari, R.K.; Dey, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environ. Res. 2023, 233, 116357. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.E.; Teo, W.F.A.; Teoh, E.Y.; Tan, B.C. Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov. Food 2022, 2, 9. [Google Scholar] [CrossRef]
- Bisht, N.; Chauhan, P.S. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Prakash, O. The impact of chemical fertilizers on our environment and ecosystem. Chief Ed. 2019, 35, 1173–1189. [Google Scholar]
- Wu, H.; MacDonald, G.K.; Galloway, J.N.; Zhang, L.; Gao, L.; Yang, L.; Yang, J.; Li, X.; Li, H.; Yang, T. The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: A partial life-cycle assessment of fertilizer production and use in China. Resour. Conserv. Recycl. 2021, 168, 105303. [Google Scholar] [CrossRef]
- Bomfim, C.A.; Coelho, L.G.F.; do Vale, H.M.M.; de Carvalho Mendes, I.; Megías, M.; Ollero, F.J.; dos Reis Junior, F.B. Brief history of biofertilizers in Brazil: From conventional approaches to new biotechnological solutions. Braz. J. Microbiol. 2021, 52, 2215–2232. [Google Scholar] [CrossRef]
- European Commission. Regulation of the European Parliament and of the Council laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, 62, 1–114. [Google Scholar]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General principles to justify plant biostimulant claims. Front. Plant Sci. 2019, 10, 494. [Google Scholar] [CrossRef]
- Adoko, M.Y.; Agbodjato, N.A.; Noumavo, A.P.; Olaréwadjou, A.; Adjanohoun, A.; Baba-Moussa, L. Bioformulations based on plant growth promoting rhizobacteria for sustainable agriculture: Biofertilizer or biostimulant? Afr. J. Agric. Res. 2021, 17, 1256–1260. [Google Scholar] [CrossRef]
- Ruzzi, M.; Colla, G.; Rouphael, Y. Editorial: Biostimulants in agriculture II: Towards a sustainable future. Front. Plant Sci. 2024, 15, 1427283. [Google Scholar] [CrossRef]
- Johnson, R.; Joel, J.M.; Puthur, J.T. Biostimulants: The futuristic sustainable approach for alleviating crop productivity and abiotic stress tolerance. J. Plant Growth Regul. 2024, 43, 659–674. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef]
- Du Jardin, P.; Xu, L.; Geelen, D. Agricultural functions and action mechanisms of plant biostimulants (PBs): An introduction. In Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 3–30. [Google Scholar]
- Chabili, A.; Minaoui, F.; Hakkoum, Z.; Douma, M.; Meddich, A.; Loudiki, M. A comprehensive review of microalgae- and cyanobacteria-based biostimulants for agricultural uses. Plants 2024, 13, 159. [Google Scholar] [CrossRef]
- Wozniak, E.; Blaszczak, A.; Wiatrak, P.; Canady, M. Biostimulant mode of action: Impact of biostimulant on whole-plant level. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 205–227. [Google Scholar]
- Gonçalves, A.L. The use of microalgae and cyanobacteria in improving agricultural practices: A review of their biofertilizer, biostimulant, and biopesticide functions. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Sánchez-Quintero, Á.; Fernandes, S.C.M.; Beigbeder, J.-B. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO2 streams towards sustainable agriculture: A review. Microbiol. Res. 2023, 277, 127505. [Google Scholar] [CrossRef]
- Berthon, J.-Y.; Michel, T.; Wauquier, A.; Joly, P.; Gerbore, J.; Filaire, E. Seaweeds and microalgae as key players in blue biotechnology for plant stimulation and pest and pathogen biocontrol: A review of recent advances and future perspectives. J. Agric. Sci. 2021, 159, 523–534. [Google Scholar] [CrossRef]
- Cadoret, J.-P.; Bernard, O. La production de biocarburant lipidique avec des microalgues: Promesses et défis. J. Société Biol. 2008, 202, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Microalgal biorefineries for industrial products. In Microalgae Cultivation for Biofuels Production; Academic Press: Cambridge, MA, USA, 2020; pp. 187–195. [Google Scholar]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Microalgae: New source of plant biostimulants. Agronomy 2020, 10, 1240. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef]
- Prisa, D.; Spagnuolo, D. Plant production with microalgal biostimulants. Horticulturae 2023, 9, 829. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Torres, M.J.; Llamas, A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024, 13, 1137. [Google Scholar] [CrossRef]
- Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.P. The biomass of algae and algal extracts in agricultural production. In Algae Biomass: Characteristics and Applications; Borowitzka, M.A., Beardall, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 8, pp. 103–114. [Google Scholar]
- Dineshkumar, R.; Duraimurugan, M.; Sharmiladevi, N.; Lakshmi, L.P.; Rasheeq, A.A.; Arumugam, A.; Sampathkumar, P. Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L): An experimental cultivation. Biomass Convers. Biorefinery 2022, 12, 3007–3027. [Google Scholar] [CrossRef]
- Gitau, M.M.; Farkas, A.; Balla, B.; Ördög, V.; Futó, Z.; Maróti, G. Strain-specific biostimulant effects of Chlorella and Chlamydomonas green microalgae on Medicago truncatula. Plants 2021, 10, 1060. [Google Scholar] [CrossRef] [PubMed]
- Rachidi, F.; Benhima, R.; Sbabou, L.; El Arroussi, H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol. Rep. 2020, 25, e00426. [Google Scholar] [CrossRef]
- Refaay, D.A.; El-Marzoki, E.M.; Abdel-Hamid, M.I.; Haroun, S.A. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. J. Appl. Phycol. 2021, 33, 3807–3815. [Google Scholar] [CrossRef]
- Rupawalla, Z.; Shaw, L.; Ross, I.L.; Schmidt, S.; Hankamer, B.; Wolf, J. Germination screen for microalgae-generated plant growth biostimulants. Algal Res. 2022, 66, 102784. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Udayan, A.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresour. Technol. 2022, 344, 126406. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Nagarajan, D.; Chang, J.S. Exploitation and Biorefinery of Microalgae; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Torres, M.J.; Bellido-Pedraza, C.M.; Llamas, A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life 2024, 14, 940. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Regmi, R.; Sharma, A.; Qi, Y. Epigenetic regulations during plant-microbe interactions. In Epigenetics in Biological Communication; Witzany, G., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 399–419. [Google Scholar] [CrossRef]
- Tan, C.-Y.; Dodd, I.C.; Chen, J.E.; Phang, S.-M.; Chin, C.F.; Yow, Y.-Y.; Ratnayeke, S. Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: An overview. J. Appl. Phycol. 2021, 33, 2995–3023. [Google Scholar] [CrossRef]
- Gomes, G.L.B.; Scortecci, K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021, 23, 894–904. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef]
- Morillas-España, A.; Pérez-Crespo, R.; Villaró-Cos, S.; Rodríguez-Chikri, L.; Lafarga, T. Integrating microalgae-based wastewater treatment, biostimulant production, and hydroponic cultivation: A sustainable approach to water management and crop production. Front. Bioeng. Biotechnol. 2024, 12, 1364490. [Google Scholar] [CrossRef]
- Amaya-Santos, G.; Ruiz-Nieto, Á.; Sánchez-Zurano, A.; Ciardi, M.; Gómez-Serrano, C.; Acién, G.; Lafarga, T. Production of Chlorella vulgaris using urban wastewater: Assessment of the nutrient recovery capacity of the biomass and its plant biostimulant effects. J. Appl. Phycol. 2022, 34, 2971–2979. [Google Scholar] [CrossRef]
- Li, S.M.; Zheng, H.X.; Zhang, X.S.; Sui, N. Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep. 2021, 40, 271–282. [Google Scholar] [CrossRef]
- Sosnowski, J.; Truba, M.; Vasileva, V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 2023, 13, 724. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Mekureyaw, M.F.; Pandey, C.; Roitsch, T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 2020, 10, 1777. [Google Scholar] [CrossRef]
- Babu, S.; Bidyarani, N.; Chopra, P.; Monga, D.; Kumar, R.; Prasanna, R.; Kranthi, S.; Saxena, A.K. Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur. J. Plant Pathol. 2015, 142, 345–362. [Google Scholar] [CrossRef]
- Chowdhury, M.M.H.; Kubra, K.; Hossain, M.B.; Mustafa, M.G.; Jainab, T.; Karim, M.R.; Mehedy, M.E. Screening of antibacterial and antifungal activity of freshwater and marine algae as a prominent natural antibiotic available in Bangladesh. Int. J. Pharmacol. 2015, 11, 828–833. [Google Scholar] [CrossRef]
- Iqbal, N.; Nazar, R.; Khan, M.I.R.; Masood, A.; Khan, N.A. Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr. Sci. 2011, 100, 998–1007. [Google Scholar]
- Han, X.; Zeng, H.; Bartocci, P.; Fantozzi, F.; Yan, Y. Phytohormones and effects on growth and metabolites of microalgae: A review. Fermentation 2018, 4, 25. [Google Scholar] [CrossRef]
- Navarro-López, E.; Ruiz-Nieto, A.; Ferreira, A.; Acién, F.G.; Gouveia, L. Biostimulant potential of Scenedesmus obliquus grown in brewery wastewater. Molecules 2020, 25, 664. [Google Scholar] [CrossRef]
- Puglisi, I.; Barone, V.; Fragalà, F.; Stevanato, P.; Baglieri, A.; Vitale, A. Effect of microalgal extracts from Chlorella vulgaris and Scenedesmus quadricauda on germination of Beta vulgaris seeds. Plants 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Ciardi, M.; Gómez-Serrano, C.; Morales-Amaral, M.M.; Acién, G.; Lafarga, T.; Fernandez-Sevilla, J.M. Optimisation of Scenedesmus almeriensis production using pig slurry as the sole nutrient source. Algal Res. 2022, 61, 102580. [Google Scholar] [CrossRef]
- Alling, T.; Funk, C.; Gentili, F.G. Nordic microalgae produce biostimulant for the germination of tomato and barley seeds. Sci. Rep. 2023, 13, 3509. [Google Scholar] [CrossRef] [PubMed]
- Alwutayd, K.M.; Rawat, A.A.; Sheikh, A.H.; Almeida-Trapp, M.; Veluchamy, A.; Jalal, R.; Karampelias, M.; Froehlich, K.; Alzaed, W.; Tabassum, N.; et al. Microbe-induced drought tolerance by ABA-mediated root architecture and epigenetic reprogramming. EMBO Rep. 2023, 24, e56754. [Google Scholar] [CrossRef]
- Mekureyaw, M.F.; Pandey, C.; Hennessy, R.C.; Nicolaisen, M.H.; Liu, F.; Nybroe, O.; Roitsch, T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022, 270, 153629. [Google Scholar] [CrossRef]
- Chanda, M.-J.; Merghoub, N.; El Arroussi, H. Microalgae polysaccharides: The new sustainable bioactive products for the development of plant biostimulants? World J. Microbiol. Biotechnol. 2019, 35, 177. [Google Scholar] [CrossRef]
- Moreira, J.B.; Vaz, B.d.S.; Cardias, B.B.; Cruz, C.G.; de Almeida, A.C.A.; Costa, J.A.V.; de Morais, M.G. Microalgae polysaccharides: An alternative source for food production and sustainable agriculture. Polysaccharides 2022, 3, 441–457. [Google Scholar] [CrossRef]
- Parwani, L.; Bhatt, M.; Singh, J. Potential biotechnological applications of cyanobacterial exopolysaccharides. Braz. Arch. Biol. Technol. 2021, 64, e21200401. [Google Scholar] [CrossRef]
- El Arroussi, H.; Elmernissi, N.; Benhima, R.; El Kadmiri, I.M.; Bendaou, N.; Smouni, A.; Wahby, I. Microalgae polysaccharides: A promising plant growth biostimulant. J. Algal Biomass Util. 2016, 7, 55–63. [Google Scholar]
- Farid, R.; Mutale-Joan, C.; Redouane, B.; Najib, E.M.; Abderahime, A.; Laila, S.; Hicham, E.A. Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl. Biochem. Biotechnol. 2019, 188, 225–240. [Google Scholar] [CrossRef]
- Rachidi, F.; Benhima, R.; Kasmi, Y.; Sbabou, L.; El Arroussi, H. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci. Rep. 2021, 11, 930. [Google Scholar] [CrossRef] [PubMed]
- Drira, M.; Elleuch, J.; Ben Hlima, H.; Hentati, F.; Gardarin, C.; Rihouey, C.; Le Cerf, D.; Michaud, P.; Abdelkafi, S.; Fendri, I. Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum. Biomolecules 2021, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef]
- Guedes, W.A.; Araújo, R.H.C.R.; Rocha, J.L.A.; de Lima, J.F.; Dias, G.A.; de Oliveira, Á.M.F.; de Lima, R.F.; Oliveira, L.M. Production of papaya seedlings using Spirulina platensis as a biostimulant applied on leaf and root. J. Exp. Agric. Int. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Wijffels, R.H.; Dominguez, M.; Barbosa, M.J. Heterotrophic vs autotrophic production of microalgae: Bringing some light into the everlasting cost controversy. Algal Res. 2022, 64, 102698. [Google Scholar] [CrossRef]
- Lau, K.Y.; Pleissner, D.; Lin, C.S.K. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour. Technol. 2014, 170, 144–151. [Google Scholar] [CrossRef]
- Cai, Y.; Zhai, L.; Wu, K.; Li, Z.; Gu, Z.; Wang, Y.; Cui, X.; Zhou, T.; Ruan, R.; Liu, T.; et al. Mechanisms of promotion in the heterotrophic growth of Chlorella vulgaris by the combination of sodium acetate and hydrolysate of broken rice. Bioresour. Technol. 2022, 364, 127965. [Google Scholar] [CrossRef] [PubMed]
- Villaró, S.; Acién, G.; Alarcón, J.; Ruiz, Á.; Rodríguez-Chikri, L.; Viviano, E.; Lafarga, T. A zero-waste approach for the production and use of Arthrospira platensis as a protein source in foods and as a plant biostimulant in agriculture. J. Appl. Phycol. 2023, 35, 2619–2630. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Puchkov, M.; Shcherbakova, N.; Pakina, E.; Zargar, M.; Lyashko, M. Seed priming with exogenous amino acids improves germination rates and enhances photosynthetic pigments of onion seedlings (Allium cepa L.). Horticulturae 2023, 9, 80. [Google Scholar] [CrossRef]
- Ferreira, A.; Corrêa, D.O.; Ribeiro, B.; Lopes da Silva, T.; Marques-dos-Santos, C.; Acién, F.G.; Gouveia, L. Bioprocess to produce biostimulants/biofertilizers based on microalgae grown using piggery wastewater as nutrient source. Bioresour. Technol. 2024, 414, 131619. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Vidyashankar, S.; Daris, P.S.; Mallikarjuna, K.; Sarada, R. Microalgae as a source of nutritional and therapeutic metabolites. In Plant Secondary Metabolites; Apple Academic Press: Burlington, ON, Canada, 2017; Volume 1, pp. 21–82. [Google Scholar]
- Cezare-Gomes, E.A.; Mejia-da-Silva, L.; Pérez-Mora, L.S.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Singh, A.K.; de Carvalho, J.C.M. Potential of microalgae carotenoids for industrial application. Appl. Biochem. Biotechnol. 2019, 188, 602–634. [Google Scholar] [CrossRef] [PubMed]
- Mutale-Joan, C.; Rachidi, F.; Mohamed, H.A.; Mernissi, N.E.; Aasfar, A.; Barakate, M.; Mohammed, D.; Sbabou, L.; El Arroussi, H. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J. Appl. Phycol. 2021, 33, 3779–3795. [Google Scholar] [CrossRef]
- Puglisi, I.; La Bella, E.; Rovetto, E.I.; Stevanato, P.; Fascella, G.; Baglieri, A. Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: Foliar spray or root drench? J. Appl. Phycol. 2022, 34, 889–901. [Google Scholar] [CrossRef]
- Suchithra, M.; Muniswami, D.M.; Sri, M.S.; Usha, R.; Rasheeq, A.A.; Preethi, B.A.; Dineshkumar, R. Effectiveness of green microalgae as biostimulants and biofertilizer through foliar spray and soil drench method for tomato cultivation. S. Afr. J. Bot. 2021, 143, 35–42. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; Ikiz, B.; Gruda, N.S. Biofertilizers improve the leaf quality of hydroponically grown baby spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Plaza, B.M.; Gómez-Serrano, C.; Acién-Fernández, F.G.; Jiménez-Becker, S. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia × hybrida growth. J. Appl. Phycol. 2018, 30, 2359–2365. [Google Scholar] [CrossRef]
- Mazepa, E.; Malburg, B.V.; Mógor, G.; de Oliveira, A.C.; Amatussi, J.O.; Corrêa, D.O.; Lemos, J.S.; Ducatti, D.R.B.; Duarte, M.E.R.; Mógor, Á.F.; et al. Plant growth biostimulant activity of the green microalga Desmodesmus subspicatus. Algal Res. 2021, 59, 102434. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.; del Pozo, A.; Cabeza, R.A. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef]
- Li, J.; Lardon, R.; Mangelinckx, S.; Geelen, D. A practical guide to the discovery of biomolecules with biostimulant activity. J. Exp. Bot. 2024, 75, 3797–3817. [Google Scholar] [CrossRef]
- Tabacchioni, S.; Passato, S.; Ambrosino, P.; Huang, L.; Caldara, M.; Cantale, C.; Hett, J.; Del Fiore, A.; Fiore, A.; Schlüter, A.; et al. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 2021, 9, 426. [Google Scholar] [CrossRef]
- Singh, D.; Thapa, S.; Singh, J.P.; Mahawar, H.; Saxena, A.K.; Singh, S.K.; Mahla, H.R.; Choudhary, M.; Parihar, M.; Choudhary, K.B.; et al. Prospecting the Potential of Plant Growth-Promoting Microorganisms for Mitigating Drought Stress in Crop Plants. Curr. Microbiol. 2024, 81, 84. [Google Scholar] [CrossRef]
- Kumar, S.; Korra, T.; Singh, U.B.; Singh, S.; Bisen, K. Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–216. [Google Scholar]
- Kumari, M.; Swarupa, P.; Kesari, K.K.; Kumar, A. Microbial inoculants as plant biostimulants: A review on risk status. Life 2023, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Bhupenchandra, I.; Devi, S.H.; Basumatary, A.; Dutta, S.; Singh, L.K.; Kalita, P.; Bora, S.S.; Saikia, A.; Sharma, P.; Bhagowati, S. Biostimulants: Potential and prospects in agriculture. Int. Res. J. Pure Appl. Chem. 2020, 21, 20–35. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: A critical view. Environ. Sci. Adv. 2023, 2, 586–611. [Google Scholar] [CrossRef]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of microalgae in foods, pharma and feeds and their use as fertilizers and biostimulants: Legislation and regulatory aspects for consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef]
- Abbasi, S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: A review. Front. Plant Sci. 2023, 14, 1074279. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Cassan, F.; Kostić, T.; Johnson, L.; Brader, G.; Trognitz, F.; Sessitsch, A. Harnessing the plant microbiome for sustainable crop production. Nat. Rev. Microbiol. 2025, 23, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2021, 41, 1–31. [Google Scholar] [CrossRef]
- Dehghanian, Z.; Habibi, K.; Dehghanian, M.; Aliyar, S.; Lajayer, B.A.; Astatkie, T.; Minkina, T.; Keswani, C. Reinforcing the bulwark: Unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon 2022, 8, e09094. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef]
- Yang, W.; Cortijo, S.; Korsbo, N.; Roszak, P.; Schiessl, K.; Gurzadyan, A.; Wightman, R.; Jönsson, H.; Meyerowitz, E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science 2021, 371, 1350–1355. [Google Scholar] [CrossRef]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef]
- Stephan, A.B.; Kunz, H.H.; Yang, E.; Schroeder, J.I. Rapid hyperosmotic-induced Ca2⁺ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc. Natl. Acad. Sci. USA 2016, 113, E5242–E5249. [Google Scholar] [CrossRef]
- Volkov, V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front. Plant Sci. 2015, 6, 873. [Google Scholar] [CrossRef] [PubMed]
- Gedeon, S.; Ioannou, A.; Balestrini, R.; Fotopoulos, V.; Antoniou, C. Application of Biostimulants in Tomato Plants (Solanum lycopersicum) to Enhance Plant Growth and Salt Stress Tolerance. Plants 2022, 11, 3082. [Google Scholar] [CrossRef]
- Turan, M.; Yildirim, E.; Ekinci, M.; Argin, S. Effect of Biostimulants on Yield and Quality of Cherry Tomatoes Grown in Fertile and Stressed Soils. HortSci. Horts 2021, 56, 414–423. [Google Scholar] [CrossRef]
- Babaei, S.; Singh, M.B.; Bhalla, P.L. Role of long non-coding RNAs in rice reproductive development. Front. Plant Sci. 2022, 13, 1040366. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Zhou, J.; Zhou, Y.H.; Yu, J.Q. Role of hormones in plant adaptation to heat stress. In Plant Hormones Under Challenging Environmental Factors; Ahammed, G.J., Yu, J.Q., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–23. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Vangenechten, B.; De Coninck, B.; Ceusters, J. How to improve the potential of microalgal biostimulants for abiotic stress mitigation in plants? Front. Plant Sci. 2025, 16, 1568423. [Google Scholar] [CrossRef]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. Environ. Biodivers. Soil Secur. 2017, 1, 83–89. [Google Scholar] [CrossRef]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- El Arroussi, H.; Benhima, R.; Elbaouchi, A.; Sijilmassi, B.; El Mernissi, N.; Aafsar, A.; Meftah-Kadmiri, I.; Bendaou, N.; Smouni, A. Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J. Appl. Phycol. 2018, 30, 2929–2941. [Google Scholar] [CrossRef]
- Kopta, T.; Pavlíková, M.; Skarǎ, A.; Pokluda, R.; Maršálek, B. Effect of bacterial–algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 615–621. [Google Scholar] [CrossRef]
- Yao, L.; Liang, D.; Xia, H.; Pang, Y.; Xiao, Q.; Huang, Y.; Zhang, W.; Pu, C.; Wang, J.; Lv, X. Biostimulants promote the accumulation of carbohydrates and biosynthesis of anthocyanins in ‘Yinhongli’ plum. Front. Plant Sci. 2023, 13, 1074965. [Google Scholar] [CrossRef] [PubMed]
- Kholssi, R.; Ramos, P.V.; Marks, E.A.; Montero, O.; Rad, C. Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatal. Agric. Biotechnol. 2021, 36, 102114. [Google Scholar] [CrossRef]
- Mitter, E.K.; Tosi, M.; Obregón, D.; Dunfield, K.E.; Germida, J.J. Rethinking crop nutrition in times of modern microbiology: Innovative biofertilizer technologies. Front. Sustain. Food Syst. 2021, 5, 606815. [Google Scholar] [CrossRef]
- Future Market Insights Demand for Microalgae in Fertilizers Sector Outlook (2025 to 2035). Available online: https://www.futuremarketinsights.com/reports/microalgae-fertilizers-sector (accessed on 25 August 2023).

| Microalgae Strain | Growth Medium | Application (Plant/Seed) | Application Method | Effect | References |
|---|---|---|---|---|---|
| Chlorella vulgaris Spirulina platensis | N/A | Mung beans (Vigna radiata L.) | Foliar spraying | -Significant increase in root nodules and fresh weight of nodules in treated plant -Increase in the number of pods and seeds per treated plant | [30] |
| Chlorella (MACC-360) | Tris-acetate-phosphate with a pH 7.0 at 25 °C | Medicago truncatula | Soil drench method | -Increase in overall plant length by 11% -Up to 36% more flowers per plant -Total fresh weight increase by 36% Carotenoids increase by 31% | [31] |
| Arthrospira platensis (MS001) Dunaleilla salina (MS002) Porphyridium sp. (MS099) | Zarrouk medium in pH 9.0 at 30 °C (A. platensis) Walne’s medium with pH 8.2 at 25 °C (Porphyridium sp., D. salina) | Tomato (Solanum lycopersicum) | Irrigation | -Up to 25.26% increase in shoot length -46.61% shoot dry weight -75% increase in number of nodes. | [32] |
| Chlorella vulgaris Arthrospira platensis Tetradesmus dimorphus | Zarrouk’s medium pH 9.0 at 35 °C (A. platensis) Modified navicula medium pH 7.0 at 25 °C (C. vulgaris, T. dimorphus) | Beans (Phaseolus vulgaris) | Foliar Spraying | -Up to 27% increase in total plant length -37.3% increase in dry weight during vegetative state significant increase in total protein, total carbohydrates, total soluble sugars and polysaccharides across all treatments compared to control group. | [33] |
| Chlorococcum sp. Micractinium pusillum Scenedesmus sp. Chlorella sp. | Tris-acetate-phosphate pH 7.0 at 23 °C | Spinach (Spinacia oleracea L.) | Seed priming | -Up to 1.7 times more germinating seed by day 5 compared to control -3-fold increase in green cotyledon emergence by day 6 compared to water control -2.1 fold increase in total biomass by day 9 compared to control | [34] |
| Microalgae/Bacteria | Plant Studied | Type of Compound Applied | Main Effects Observed | References |
|---|---|---|---|---|
| Arthrospira sp., Scenedesmus sp. | Petunia × hybrida | Hydrolysates with phytohormones (foliar application) | Accelerated growth, reduced flowering time, increased development of roots, leaves and shoots | [85] |
| Desmodesmus subspicatus | Solanum lycopersicum (tomato) | Extracts with glycosides and zeatin (cytokinin) | Increased germination and root length; 1.5 g/L increased hypocotyl volume. | [86] |
| Arthrospira platensis, Dunaliella salina, Porphyridium sp. | Solanum lycopersicum (tomato) | Polysaccharides (extracts) | Larger shoot size and root dry weight; Porphyridium (1 mg/mL) with greater biochemical and enzymatic effect | [32] |
| Tetradesmus obliquus | Garden cress, mung beans, cucumber | Biomass (0.2 g/L) | Better germination and growth; more efficient biomass than supernatant; supply of macro and micronutrients | [77] |
| Rhizobium (symbiotic bacteria) | Legumes | Association symbiotic (nodules) | Nitrogen fixation, ammonia supply to the plant, metabolite exchange (e.g., sucrose) | [87] |
| Microbial consortium (not just microalgae) | Wheat (Triticum aestivum) | Organic fertilizer + microbial consortium (20% less chemical fertilizer) | Increased biomass and yield in the field compared to chemical fertilization alone | [88] |
| Biostimulant/Extract | Crop/Plant | Type of Stress | Effect Observed | Reference |
|---|---|---|---|---|
| Chlorella vulgaris, Scenedesmus quadricauda | Lettuce, beetroot sugar bowl | General | ↑ PAL activity, synthesis of phenolic compounds and flavonoids | [56] |
| Chlorella vulgaris (foliar vs. root) | Lettuce | General | Faster enzymatic response by foliar application | [82] |
| Nanofertilizers (Nanoparticles in foliar application) | Several crops | General | Faster growth than soil application | [112] |
| Ascophyllum nodosum extract | Tomato | Drought | ↑ tolerance to water stress, accumulation of proline and protective proteins | [100] |
| Chlorella vulgaris | Broccoli | Drought | ↑ absorption of nutrients, secondary metabolites and antioxidant defense | [113] |
| Mixture: Dunaliella salina + Chlorella ellipsoidea + Arthrospira maxima + Aphanothece sp. (5%) | Tomato | Salinity | ↑ tolerance, nutrient absorption and growth | [81] |
| Exopolysaccharides of Dunaliella salina | Tomato | Salinity | ↑ tolerance, biostimulant effect of polysaccharides | [114] |
| C. vulgaris + bacteria in consortium | Lettuce | Thermal | ↑ yields, ↑antioxidant activity, ↑carotenoid levels | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas Colarte, C.; Balic, I.; Díaz, Ó.; Cortes, I.; Moreno, A.A.; Amenabar, M.J.; Retamal, M.C.; Fuentes, N.C. Microalgae-Based Biostimulants: Effects on Growth and Stress Resistance in Agricultural Crops. Plants 2025, 14, 3488. https://doi.org/10.3390/plants14223488
Arenas Colarte C, Balic I, Díaz Ó, Cortes I, Moreno AA, Amenabar MJ, Retamal MC, Fuentes NC. Microalgae-Based Biostimulants: Effects on Growth and Stress Resistance in Agricultural Crops. Plants. 2025; 14(22):3488. https://doi.org/10.3390/plants14223488
Chicago/Turabian StyleArenas Colarte, Carla, Iván Balic, Óscar Díaz, Ignacio Cortes, Adrián A. Moreno, Maximiliano J. Amenabar, Miguel Castro Retamal, and Nelson Caro Fuentes. 2025. "Microalgae-Based Biostimulants: Effects on Growth and Stress Resistance in Agricultural Crops" Plants 14, no. 22: 3488. https://doi.org/10.3390/plants14223488
APA StyleArenas Colarte, C., Balic, I., Díaz, Ó., Cortes, I., Moreno, A. A., Amenabar, M. J., Retamal, M. C., & Fuentes, N. C. (2025). Microalgae-Based Biostimulants: Effects on Growth and Stress Resistance in Agricultural Crops. Plants, 14(22), 3488. https://doi.org/10.3390/plants14223488

