NeemAzal®-T/S Can Trigger Early Defense Responses in Susceptible Sunflower Seedlings Inoculated with Plasmopara halstedii: An Approach Based on the Enzymatic ROS Scavenging System
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Pathogen Inoculation and Experimental Conditions
2.3. Preparation of NeemAzal®-T/S (AZA) and Mefenoxam (MEF)
2.4. Treatments and Pathogen Inoculation
- Seedlings treated with bidistilled water (CONTROL).
- Seedlings inoculated with P. halstedii sporangial suspension (INO).
- Seedlings pre-treated with MEF (standard dose of 3 mg/kg seeds) and inoculated with P. halstedii sporangial suspension (INO + MEF).
- Seedlings pre-treated with NeemAzal®-T/S (AZA) and inoculated with P. halstedii sporangial suspension (INO + AZA).
- Seedlings pre-treated with NeemAzal®-T/S (AZA) + MEF (1.5 mg/kg seeds—50% of the standard dose) and inoculated with P. halstedii sporangial suspension (INO + AZA + MEF).
2.5. Assessing Disease Incidence
2.6. Lipid Peroxidation (MDA) and Hydrogen Peroxide (H2O2) Content
2.7. Determination of Total Soluble Proteins
2.8. Antioxidant Enzymes
2.9. Statistical Analyses
3. Results
3.1. Disease Incidence
3.2. Seedling Growth (Initial and Final Plant Height)
3.3. Lipid Peroxidation and H2O2 Content
3.4. Antioxidant Enzymes in Healthy, Treated and/or Infected Sunflower Seedlings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debaeke, P.; Casadebaig, P.; Langlade, N.B. New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL-Oilseeds Fats Crops Lipids 2021, 28, 29. [Google Scholar] [CrossRef]
- Niu, R.; Gao, S.; He, J.; Wang, M. From Oil Crops to Nutraceutical Powerhouse: Multifaceted Bioactives and Disease-Modulating Mechanisms of Sunflower (Helianthus annuus L.) Seeds and Sprouts. Food Nutr. 2025, 1, 100016. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Foreign Agricultural Service. Production: Commodity 2224000. Available online: https://www.fas.usda.gov/data/production/commodity/2224000 (accessed on 21 June 2025).
- Gascuel, Q.; Martinez, Y.; Boniface, M.C.; Vear, F.; Pichon, M.; Godiard, L. The sunflower downy mildew pathogen Plasmopara halstedii. Mol. Plant Pathol. 2015, 16, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Körösi, K.; Kovács, A.; Nisha, N.; Bóta, I.; Perczel, M.; Yousif, A.I.A.; Kiss, J.; Bán, R. New data on pathotype distribution and mefenoxam tolerance of Plasmopara halstedii in Hungary. Plant Prot. Sci. 2021, 57, 31–37. [Google Scholar] [CrossRef]
- Viranyi, F.; Spring, O. Advances in sunflower downy mildew research. Eur. J. Plant Pathol. 2011, 129, 207–220. [Google Scholar] [CrossRef]
- Doshi, P.; Nisha, N.; Yousif, A.I.A.; Körösi, K.; Bán, R.; Turóczi, G. Preliminary investigation of effect of neem-derived pesticides on plasmopara halstedii pathotype 704 in sunflower under in vitro and in vivo conditions. Plants 2020, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Bán, R.; Kiss, J.; Pálinkás, Z.; Körösi, K. Placing Management of Sunflower Downy Mildew (Plasmopara halstedii (Farl.) Berl. et de Toni) under an Integrated Pest Management (IPM) System Approach: Challenges and New Perspectives. Agronomy 2023, 13, 1029. [Google Scholar] [CrossRef]
- Adusei, S.; Azupio, S. Neem: A Novel Biocide for Pest and Disease Control of Plants. J. Chem. 2022, 2022, 6778554. [Google Scholar] [CrossRef]
- Ali, J.; Hussain, A.; Siddique, M.; Rahman, Z.U.; Ikram, M.; Zahoor, M.; Ullah, R.; Gulfam, N.; Shah, A.B. Fungicidal effect of Azadirachta indica extracts against pathogenic fungi Rhizopus stolonifer and Monilinia fructicola in postharvest peaches. Discov. Plants 2025, 2, 126. [Google Scholar] [CrossRef]
- Singh, U.P.; Singh, H.B.; Singh, R.B. Mycological Society of America the Fungicidal Effect of Neem (Azadirachta indica) Extracts on Some Soil-Borne Pathogens of Gram (Cicer arietinum). Mycologia 1980, 72, 1077–1093. [Google Scholar] [CrossRef]
- Álvarez-Caballero, J.M.; Coy-Barrera, E. Chemical and antifungal variability of several accessions of Azadirachta indica a. Juss. from six locations across the Colombian caribbean coast: Identification of antifungal azadirone limonoids. Plants 2019, 8, 555. [Google Scholar] [CrossRef] [PubMed]
- Bán, R.; Doshi, P.; Berisha, A.; Körösi, K.; Kiss, J.; Turóczi, G.; Šerá, B.; Skornyik, A.; Nisha, N. Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni. Agriculture 2025, 15, 1248. [Google Scholar] [CrossRef]
- Goel, N.; Paul, P.K.; Anukrati, K. Anti-phytopathogenic and SAR inducing properties of Neem: A review. Artic. J. Chem. Pharm. Sci. 2016, 9, 2547–2555. [Google Scholar]
- Kleeberg, H.; Hummel, E.; Ruch, B.; Walther, N. NeemAzal-T/S-current status of registration and maximum residue levels in the EU. Small Fruits (exc. Strawb.) 2010, 4, 15. [Google Scholar]
- Lubaina, A.S.; Murugan, K. Biochemical Characterization of Oxidative Burst During Interaction Between Sesame (Sesamum indicum L.) in Response to Alternaria sesami. In Prospects in Bioscience: Addressing the Issues; Springer: New Delhi, India, 2012; pp. 243–250. [Google Scholar]
- Gullner, G.; Juhász, C.; Németh, A.; Barna, B. Reactions of tobacco genotypes with different antioxidant capacities to powdery mildew and Tobacco mosaic virus infections. Plant Physiol. Biochem. 2017, 119, 232–239. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Harrach, B.D.; Pogány, M.; Király, Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol. Biochem. 2012, 59, 37–43. [Google Scholar] [CrossRef]
- Künstler, A.; Bacsó, R.; Albert, R.; Barna, B.; Király, Z.; Hafez, Y.M.; Fodor, J.; Schwarczinger, I.; Király, L. Superoxide (O2.−) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens. Plant Physiol. Biochem. 2018, 128, 115–125. [Google Scholar] [CrossRef]
- Herbette, S.; Lenne, C.; De Labrouhe, D.T.; Drevet, J.R.; Roeckel-Drevet, P. Transcripts of sunflower antioxidant scavengers of the SOD and GPX families accumulate differentially in response to downy mildew infection, phytohormones, reactive oxygen species, nitric oxide, protein kinase and phosphatase inhibitors. Physiol. Plant. 2003, 119, 418–428. [Google Scholar] [CrossRef]
- Naz, R.; Bano, A.; Nosheen, A.; Yasmin, H.; Keyani, R.; Shah, S.T.A.; Anwar, Z.; Roberts, T.H. Induction of defense-related enzymes and enhanced disease resistance in maize against Fusarium verticillioides by seed treatment with Jacaranda mimosifolia formulations. Sci. Rep. 2021, 11, 59. [Google Scholar] [CrossRef]
- Körösi, K.; Bán, R.; Barna, B.; Virányi, F. Biochemical and molecular changes in downy mildew-infected sunflower triggered by resistance inducers. J. Phytopathol. 2011, 159, 471–478. [Google Scholar] [CrossRef]
- Körösi, K.; Virányi, F.; Barna, B.; Bán, R. Induction of resistance with benzothiadiazole in sunflower: A comparison of biotrophic vs. necrotrophic pathosystems. Acta Phytopathol. Entomol. Hung. 2016, 51, 13–27. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; Mandzhieva, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Bleau, J.R.; Spoel, S.H. Selective redox signaling shapes plant-pathogen interactions. Plant Physiol. 2021, 186, 53–65. [Google Scholar] [CrossRef]
- Tör, M.; Wood, T.; Webb, A.; Göl, D.; McDowell, J.M. Recent developments in plant-downy mildew interactions. Semin. Cell Dev. Biol. 2023, 148−149, 42–50. [Google Scholar] [CrossRef]
- Cohen, Y.; Sackston, W.E. Factors affecting infection of sunflowers by Plasrnopara halstedii. Can. J. Bot. 1973, 51, 15–22. [Google Scholar] [CrossRef]
- Gratão, P.L.; Monteiro, C.C.; Carvalho, R.F.; Tezotto, T.; Piotto, F.A.; Peres, L.E.P.; Azevedo, R.A. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol. Biochem. 2012, 56, 79–96. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Boaretto, L.F.; Carvalho, G.; Borgo, L.; Creste, S.; Landell, M.G.A.; Mazzafera, P.; Azevedo, R.A. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol. Biochem. 2014, 74, 165–175. [Google Scholar] [CrossRef]
- Rendón, M.Y.; Gratão, P.L.; Salva, T.J.G.; Azevedo, R.A.; Bragagnolo, N. Antioxidant enzyme activity and hydrogen peroxide content during the drying of Arabica coffee beans. Eur. Food Res. Technol. 2013, 236, 753–758. [Google Scholar] [CrossRef]
- Nogueirol, R.C.; Monteiro, F.A.; Gratão, P.L.; Borgo, L.; Azevedo, R.A. Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environ. Monit. Assess. 2015, 187, 73. [Google Scholar] [CrossRef]
- Rathmell, W.G.; Sequeira, L. Soluble Peroxidase in Fluid from the Intercellular Spaces of Tobacco Leaves1. Plant Physiol. 1974, 53, 317–318. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Maldonado Junior, W. AgroEstat—Sistema Para Análises Estatísticas de Ensaios Agronômicos; Version 1.1.0.694; Internet Archive: San Francisco, CA, USA, 2015. [Google Scholar]
- Dhakad, A.K.; Kumar, R.; Choudhary, R.; Singh, S.; Khan, S.; Poonia, P.K. Traditional to modern perspectives on Neem (Azadirachta indica): A gateway to bioactive compounds, sustainable agrochemicals and industrial applications. Ind. Crops Prod. 2025, 231, 121155. [Google Scholar] [CrossRef]
- Cohen’, Y.; Ibrahim, D.R.K. Changes in phenolic compounds of sunflowers infected by Plasmopara halstedii. Can. J. Bot. 1975, 53, 2625–2630. [Google Scholar] [CrossRef]
- Appu, M.; Ramalingam, P.; Sathiyanarayanan, A.; Huang, J. An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene 2021, 27, 100302. [Google Scholar] [CrossRef]
- Nowogórska, A.; Patykowski, J. Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection. Acta Physiol. Plant 2015, 37, 1725. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Pogány, M.; Király, Z. Role of reactive oxygen species and antioxidants in plant disease resistance. Pest. Manag. Sci. 2003, 59, 459–464. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Wei, W.; Shen, Q.; Ji, P.; Yang, Y.; et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Bozsó, Z.; Barna, B. Diverse Effect of Two Cytokinins, Kinetin and Benzyladenine, on Plant Development, Biotic Stress Tolerance, and Gene Expression. Life 2021, 11, 1404. [Google Scholar] [CrossRef]
- Torres, M.A.; Jones, J.D.G.; Dangl, J.L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141, 373–378. [Google Scholar] [CrossRef]
- Caverzan, A.; Passaia, G.; Barcellos Rosa, S.; Ribeiro, C.W.; Lazzarotto, F.; Margis-Pinheiro, M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [CrossRef]
- de Cássia Alves, R.; dos Santos Zucco, M.F.; Oliveira, K.R.; Checchio, M.V.; Franco, C.A.; Körösi, K.; Gratão, P.L. Seed Priming with Silicon Improves Plant Resistance to Downy Mildew (Bremia lactucae) in Lettuce Seedlings by Intensifying Antioxidant Defense Systems. Silicon 2022, 14, 12721–12731. [Google Scholar] [CrossRef]
- Shetty, N.P.; Jørgensen, H.J.L.; Jensen, J.D.; Collinge, D.B.; Shetty, H.S. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol. 2008, 121, 267–280. [Google Scholar] [CrossRef]
- Vargas, W.A.; Sanz Martín, J.M.; Rech, G.E.; Rivera, L.P.; Benito, E.P.; Díaz-Mínguez, J.M.; Thon, M.R.; Sukno, S.A. Plant defense mechanisms are activated during biotrophic and necrotrophic development of colletotricum graminicola in maize. Plant Physiol. 2012, 158, 1342–1358. [Google Scholar] [CrossRef] [PubMed]
- Leiva-Mora, M.; Capdesuñer, Y.; Villalobos-Olivera, A.; Moya-Jiménez, R.; Saa, L.R.; Martínez-Montero, M.E. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J. Fungi 2024, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Haghpanah, M.; Namdari, A.; Kaleji, M.K.; Nikbakht-dehkordi, A.; Arzani, A.; Araniti, F. Interplay Between ROS and Hormones in Plant Defense Against Pathogens. Plants 2025, 14, 1297. [Google Scholar] [CrossRef]
- Bhuvaneshwari, V.; Goel, N.; Paul, P.K. Protein–protein and DNA–protein interactions mediate induction of defense genes by fruit extract of Azadirachta indica A. Juss. in Solanum lycopersicum L. Plant Cell Rep. 2015, 34, 1735–1745. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, K.R.; Körösi, K.; Barna, B.; Bán, R.; Bennett, S.J.; Gratão, P.L. NeemAzal®-T/S Can Trigger Early Defense Responses in Susceptible Sunflower Seedlings Inoculated with Plasmopara halstedii: An Approach Based on the Enzymatic ROS Scavenging System. Plants 2025, 14, 3481. https://doi.org/10.3390/plants14223481
Oliveira KR, Körösi K, Barna B, Bán R, Bennett SJ, Gratão PL. NeemAzal®-T/S Can Trigger Early Defense Responses in Susceptible Sunflower Seedlings Inoculated with Plasmopara halstedii: An Approach Based on the Enzymatic ROS Scavenging System. Plants. 2025; 14(22):3481. https://doi.org/10.3390/plants14223481
Chicago/Turabian StyleOliveira, Kevein Ruas, Katalin Körösi, Balazs Barna, Rita Bán, Sarita Jane Bennett, and Priscila Lupino Gratão. 2025. "NeemAzal®-T/S Can Trigger Early Defense Responses in Susceptible Sunflower Seedlings Inoculated with Plasmopara halstedii: An Approach Based on the Enzymatic ROS Scavenging System" Plants 14, no. 22: 3481. https://doi.org/10.3390/plants14223481
APA StyleOliveira, K. R., Körösi, K., Barna, B., Bán, R., Bennett, S. J., & Gratão, P. L. (2025). NeemAzal®-T/S Can Trigger Early Defense Responses in Susceptible Sunflower Seedlings Inoculated with Plasmopara halstedii: An Approach Based on the Enzymatic ROS Scavenging System. Plants, 14(22), 3481. https://doi.org/10.3390/plants14223481

