Local-Scale Soil Heterogeneity Differentially Influenced Assimilative Branch Stoichiometry of Three Dominant Shrubs in a Central Asian Desert
Abstract
1. Introduction
2. Results
2.1. Differences in Soil Properties at Three Sampling Sites
2.2. Differences in ABs’ Stoichiometry Among Different Species and Sites
2.3. Differences in Stoichiometric Scaling Exponents in ABs Among Different Species and Sites
2.4. Stoichiometric Homeostasis in the ABs of Three Shrubs
2.5. Influencing Factors of ABs’ Stoichiometry of Three Shrubs
2.6. Relative Influences of Different Environmental Types on ABs’ Stoichiometry of Three Shrubs
3. Discussion
3.1. Stoichiometry Characteristics in ABs of Three Desert Shrubs Under Different Soil Conditions
3.2. Soil Properties Differentially Influenced Nutrient Traits in the ABs of Three Desert Shrubs
3.3. Potential Influence of Plant Size on Nutrient Traits in the ABs of Three Shrubs
4. Materials and Methods
4.1. Study Area
4.2. Survey and Collection in ABs of Three Desert Shrubs
4.3. Determination of C, N, P, and K Concentrations in ABs
4.4. Collection and Determination of Soils
4.5. Calculation of Allometric Growth and the Stoichiometric Homeostasis Index
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elser, J.J.; Acquisti, C.; Kumar, S. Stoichiogenomics: The evolutionary ecology of macromolecular elemental composition. Trends Ecol. Evol. 2011, 26, 38–44. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Sardans, J.; Grau, O.; Chen, H.Y.H.; Janssens, I.A.; Ciais, P.; Piao, S.L.; Peñuelas, J. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 2017, 23, 3849–3856. [Google Scholar] [CrossRef]
- Elser, J.J.; Sterner, R.W.; Gorokhova, E.; Fagan, W.F.; Markow, T.A.; Cotner, J.B.; Harrison, J.F.; Hobbie, S.E.; Odell, G.M.; Weider, L.W. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 2000, 3, 540–550. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Wang, N.; Wang, G.X. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review. Chin. J. Plant Ecol. 2012, 36, 1205–1216. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Review on characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Guo, Y.P.; Yan, Z.B.; Gheyret, G.; Zhou, G.Y.; Xie, Z.Q.; Tang, Z.Y. The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. J. Ecol. 2020, 108, 1276–1286. [Google Scholar] [CrossRef]
- Schade, J.D.; Kyle, M.; Hobbie, S.E.; Fagan, W.F.; Elser, J.J. Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol. Lett. 2003, 6, 96–101. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Plant stoichiometry: A research frontier in ecology. Chin. J. Nat. 2018, 40, 235–241. [Google Scholar] [CrossRef]
- He, J.S.; Han, X.G. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Acta Scien Circum. 2010, 34, 2–6. [Google Scholar] [CrossRef]
- Liu, P.; Ma, H.; Zhi, Y.B.; Cui, Y.; Sun, A.A.; Guo, Y.N.; Li, Q.; Gao, T.Y.; Zhang, H.L.; Liu, H.Y. Ecological stoichiometric differences of nine typical eremophyte species. Arid. Zone Res. 2018, 35, 207–216. [Google Scholar] [CrossRef]
- Zhi, Y.B.; Liu, P.; Ma, H.; Lu, Z.Y.; Cui, Y.; Sun, A.A.; Yao, Y.P.; Zhang, D.J.; Liu, H.Y.; Hong, G.; et al. The Eco-stoichiometric characteristics and driving factors of desert plants in China. J. Inn. Mong. Univ. (Nat. Sci. Ed.) 2017, 48, 97–105. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Xu, W.T.; Zhou, G.Y.; Bai, Y.F.; Li, J.X.; Tang, X.L.; Chen, D.M.; Liu, Q.; Ma, W.H.; Xiong, G.M.; et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033–4038. [Google Scholar] [CrossRef]
- Ge, N.N.; Wei, X.R.; Wang, X.R.; Liu, X.T.; Shao, M.A.; Jia, X.X.; Li, X.Z.; Zhang, Q.Y. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, Y.B.; Wu, G.L.; Zhang, Y.M. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, China. Acta Prataculturae Sin. 2016, 25, 13–23. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, X.B.; Zhang, S.H.; Lu, H.Y.; Shao, H.B. Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. Catena 2020, 195, 104847. [Google Scholar] [CrossRef]
- Wang, X.G.; Lü, X.T.; Zhang, H.Y.; Dijkstra, F.A.; Jiang, Y.G.; Wang, X.B.; Lu, J.Y.; Wu, Y.N.; Wang, Z.W.; Han, X.G. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 2020, 361, 114087. [Google Scholar] [CrossRef]
- Wang, X.G.; Lü, X.T.; Dijkstra, F.A.; Zhang, H.Y.; Wang, X.B.; Wu, Y.N.; Wang, Z.W.; Feng, J.; Han, X.G. Changes of plant N:P stoichiometry across a 3000-km aridity transect in grasslands of northern China. Plant Soil. 2019, 443, 107–119. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.R.; An, S.S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 2018, 166, 328–338. [Google Scholar] [CrossRef]
- Cai, Q.; Ding, J.X.; Xiao, J.; Yin, H.J. Leaf N and P resorption efficiency of major subalpine coniferous species on the eastern Tibetan Plateau, China. J. Ecol. 2020, 39, 2546–2555. [Google Scholar] [CrossRef]
- Fang, Z.; Li, D.D.; Jiao, F.; Yao, J.; Du, H.T. The Latitudinal Patterns of Leaf and Soil C:N:P Stoichiometry in the Loess Plateau of China. Front. Plant Sci. 2019, 10, 85. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, L.; Zhu, M.L.; An, S.Q. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert. Acta Ecol. Sin. 2017, 37, 8326–8335. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.Q.; Wang, J.Y.; Wang, G.G.; Yu, M.K.; Wu, T.G. Leaf N and P stoichiometry in relation to leaf shape and plant size for Quercus acutissima provenances across China. Sci. Rep. 2017, 7, 46133. [Google Scholar] [CrossRef]
- Meng, H.H.; Yin, B.F.; Li, Y.G.; Zhou, X.B.; Zhang, Y.M.; Tao, Y.; Zhou, D. Differences and allometric relationships among assimilative branch traits of four shrubs in Central Asia. Front. Plant Sci. 2022, 13, 1064504. [Google Scholar] [CrossRef]
- Meng, H.H.; Yin, B.F.; Tao, Y.; Zhou, X.B.; Zang, Y.X.; Zhang, Y.M. Stoichiometric patterns of assimilative branches of four dominant shrubs and the drivers in a Central Asian desert. Environ. Exp. Bot. 2024, 219, 105622. [Google Scholar] [CrossRef]
- Jiashalaiti, A.; Lu, Y.; Zhang, B.; Zhang, Z.H.; Li, L. Seasonal variation of C, N, and P ecological stoichiometric characteristics of 8 plant species in the oasis-desert transitional zone on the southern margin of the Tarim Basin. Acta Ecol. Sin. 2024, 44, 1–12. [Google Scholar] [CrossRef]
- Niu, D.C.; Li, Q.; Jiang, S.G.; Chang, P.J.; Fu, H. Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chin. J. Plant Ecol. 2013, 37, 317–325. [Google Scholar] [CrossRef]
- Sun, S.X.; Yun, X.J.; Wu, X.H.; Wei, Z.J.; Jiang, C.; Liu, W.T. Seasonal variations of ecological stoichiometry characteristics of major plant populations in desert steppe. Ecol. Environ. Sci. 2018, 27, 47–54. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhao, G.X.; Li, M.; Zhang, M.T.; Zhang, L.F.; Zhang, X.F.; An, L.Z.; Xu, S.J. C:N:P Stoichiometry and Leaf Traits of Halophytes in an Arid Saline Environment, Northwest China. PLoS ONE 2015, 10, e0119935. [Google Scholar] [CrossRef]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2010, 179, 945–963. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil. Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Pi, F.J.; Yuan, C.J.; Yu, L.F.; Yan, L.B.; Wu, L.; Yang, R. Ecological stoichiometry characteristics of plant leaves from the main dominant species of natural secondary forest in the central of Guizhou. Ecol. Environ. Sci. 2016, 25, 801–807. [Google Scholar] [CrossRef]
- Yan, K.; Fu, D.G.; He, F.; Duan, C.Q. Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chin. J. Plant Ecol. 2011, 35, 353–361. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 2000, 30, 1–67. [Google Scholar] [CrossRef]
- Liu, C.J.; Berg, B.; Kutsch, W.; Westman, C.J.; Ilvesniemi, H.; Shen, X.H.; Shen, G.R.; Chen, X.B. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecol. Biogeogr. 2006, 15, 438–444. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Venterink, H.O.; Wassen, M.J.; Verkroost, A.W.M.; de Ruiter, P.C. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar] [CrossRef]
- Li, R.; Shan, L.S.; Xie, T.T.; Ma, L.; Yang, J.; Li, Q.G. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient. Arid Zone Res. 2023, 40, 425–435. [Google Scholar] [CrossRef]
- Niklas, K.J. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot. 2006, 97, 155–163. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J.; Wright, I.J.; Niklas, K.J.; Hedin, L.; Elser, J.J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. Royal Soc. B 2010, 277, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.S.; Reich, P.B.; Reich, P.B.; Chen, H.Y.H.; Xiang, Y.Z.; Luo, Y.Q.; Shen, Y.; Meng, C.; Han, W.X.; Niu, S.L. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 2019, 221, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Dhanker, O.P.; Siddique, K.H.M.; Hanumantharao, B.; Nair, R.M.; Pandey, S.; Singh, S.; Varshney, R.K.; Prasad, P.V.V.; Nayyar, H. Drought and heat stress-related proteins: An update about their functional relevance in imparting stress tolerance in agricultural crops. Theor. Appl. Genet. 2019, 132, 1607–1638. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J.; Cobb, E.D. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. Am. J. Bot. 2005, 92, 1256–1263. [Google Scholar] [CrossRef]
- Tian, D.; Kattge, J.; Chen, Y.H.; Han, W.X.; Luo, Y.K.; He, J.S.; Hu, H.F.; Tang, Z.Y.; Ma, S.H.; Yan, Z.B.; et al. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology 2019, 100, e02812. [Google Scholar] [CrossRef]
- Ågren, G.I.; Weih, M. Multi-Dimensional Plant Element Stoichiometry-Looking Beyond Carbon Nitrogen and Phosphorus. Front. Plant Sci. 2020, 11, 915. [Google Scholar] [CrossRef]
- Luo, W.T.; Zuo, X.A.; Ma, W.; Xu, C.; Li, A.; Yu, Q.; Knapp, A.K.; Tognetti, R.; Dijkstra, F.A.; Li, M.H.; et al. Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology 2018, 99, 2230–2239. [Google Scholar] [CrossRef]
- Xiao, Y.; Tao, Y.; Zhang, Y.M. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantunggut Desert, China. Chin. J. Plant Ecol. 2014, 38, 929–940. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Niklas, K.J.; Han, W.X.; Kattge, J.; Reich, P.B.; Luo, Y.K.; Chen, Y.H.; Tang, Z.Y.; Hu, H.F.; et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl Sci Rev. 2018, 5, 728–739. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, X.B.; Zhang, Y.M.; Yin, B.F.; Li, Y.G.; Zang, Y.X. Foliar C:N:P stoichiometric traits of herbaceous synusia and the spatial patterns and drivers in a temperate desert in Central Asia. Glob. Ecol. Conserv. 2021, 28, e01620. [Google Scholar] [CrossRef]
- Yuan, S.F.; Tang, H.P. Research advances in the eco-physiological characteristics of ephemerals adaptation to habitats. Acta Prataculturae Sin. 2010, 19, 240–247. [Google Scholar]
- Yu, Q.A.; Elser, J.J.; He, N.P.; Wu, H.H.; Chen, Q.S.; Zhang, G.M.; Han, X.G. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 2011, 166, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Wang, X.F.; Wang, Y.H.; Yuan, X.Z.; Li, Y.B.; Wang, K.H. Ecological stoichiometry and interrelation of Cynodon dactylon and soil in the three Gorges hydro-fluctuation zone under different slopes. Acta Ecol. Sin. 2023, 43, 4798–4811. [Google Scholar] [CrossRef]
- Hessen, D.O.; Agren, G.I.; Anderson, T.R.; Elser, J.J.; De Ruiter, P.C. Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology 2004, 85, 1179–1192. [Google Scholar] [CrossRef]
- Yu, Q.; Wilcox, K.; La Pierre, K.; Knapp, A.K.; Han, X.G.; Smith, M.D. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology 2015, 96, 2328–2335. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, Q.S.; Elser, J.J.; He, N.P.; Wu, H.H.; Zhang, G.M.; Wu, J.G.; Bai, Y.F.; Han, X.G. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett. 2010, 13, 1390–1399. [Google Scholar] [CrossRef]
- Ning, Z.Y.; Li, Y.L.; Yang, H.L.; Zhang, Z.Q. Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chin. J. Plant Ecol. 2019, 43, 46–54. [Google Scholar] [CrossRef]
- Jia, T.; Chen, M.Y.; Zhang, L.; Yi, M.; Guo, S.M.; Cheng, Z.S.; Li, X.; Zhong, Q.W. Ecological Stoichiometry and Homeostasis Index of Needles, Branches, Roots and Soil in Pinus elliottii Plantations of Different Ages. J. Nucl. Agric. Sci. 2023, 37, 397–404. [Google Scholar] [CrossRef]
- Chen, R.L.; Yin, B.F.; Yang, W.; Li, J.L.; Li, Z.T.; Zhang, Y.M.; Chen, J. Mapping the successional stages of biological soil crusts at 3-m resolution in the Gurbantunggut Desert, China through hydration-induced spectral response. Remote Sens. Environ. 2024, 310, 114230. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wu, N.; Zhang, B.C.; Zhang, J. Species composition, distribution patterns and ecological functions of biological soil crusts in the Gurbantunggut Desert. J. Arid. Land 2010, 2, 180–189. [Google Scholar] [CrossRef]
- Kidron, G.J.; Yair, A. Rainfall-Runoff relationship over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surf. Process Landf. 1997, 22, 1169–1184. [Google Scholar] [CrossRef]
- Yair, A. Runoff generation in a sandy area—The nizzana sands, Western Negev, Israel. Earth Surf. Process. Landf. 1990, 15, 597–609. [Google Scholar] [CrossRef]
- Tian, L.M.; Zhao, L.; Wu, X.D.; Fang, H.B.; Zhao, Y.H.; Hu, G.J.; Yue, G.Y.; Sheng, Y.; Wu, J.C.; Chen, J.; et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci. Total Environ. 2018, 622, 192–202. [Google Scholar] [CrossRef]
- He, M.Z.; Dijkstra, F.A.; Zhang, K.; Tan, H.J.; Zhao, Y.; Li, X.R. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant Soil. 2016, 398, 339–350. [Google Scholar] [CrossRef]
- Sun, L.; Gong, L.; Zhu, M.L.; Xie, L.N.; Li, H.L.; Luo, Y. Leaf stoichiometric characteristics of typical desert plants and their relationships to soil environmental factors in the northern margin of the Tarin Basin. Chin. J. Ecol. 2017, 36, 1208–1214. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Luo, Y.K.; Chen, Y.H.; Shen, H.H.; Zhao, X.; Fang, J.Y.; Hu, H.F. Varied nitrogen versus phosphorus scaling exponents among shrub organs across eastern China. Ecol. Indic. 2021, 121, 107024. [Google Scholar] [CrossRef]
- Garnier, E.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Fortunel, C.; Freitas, H.; Golodets, C.; et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Ann. Bot. 2007, 99, 967–985. [Google Scholar] [CrossRef]
- Ordoñez, J.C.; van Bodegom, P.M.; Witte, J.P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Westoby, M.; Wright, I.J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 2006, 21, 261–268. [Google Scholar] [CrossRef]
- Tian, Q.L.; Liu, T. Relationship between the distribution characteristics of fine roots of Haloxylon persicum and soil moisture under extreme drought conditions. J. Shihezi Univ. Nat. Sci. 2020, 38, 75–82. [Google Scholar] [CrossRef]
- Zhang, W.B.; Liu, T.; Li, K.L.; Xu, M.H.; Si, L.M. Difference of rainfall use strategy between Haloxylon ammodendron and Haloxylon persicum in Gurbantonggut Desert. Chin. J. Ecol. 2011, 30, 1612–1619. [Google Scholar] [CrossRef]
- Li, T.; Peng, L.P.; Shi, Q.D.; Marhaba, N.; Dai, Y. Water sources of Haloxylon ammodendron and H. persicum of different diameter classes in Junggar Basin, Xinjiang. Acta Ecol. Sin. 2020, 40, 2099–2110. [Google Scholar] [CrossRef]
- Peng, L.P.; Dai, Y.; Shi, Q.D. Water Sources of Five Typical Plant Species in Desert in the East Junggar Basin, Xinjiang. Arid. Zone Res. 2018, 35, 1146–1152. [Google Scholar] [CrossRef]
- Sha, G.; Huang, Q.Y.; Xu, M.Y.; Xie, L.H.; Yang, F.; Cao, H.J. Stoichiometry and homeostasis characteristics of four arbor species at the new stage Volcanic Lava Platform of the Wudalianchi area. J. Cent. South. Univ. For. Technol. 2022, 42, 127–138. [Google Scholar] [CrossRef]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Guo, C.; Yan, E.R.; Cornelissen, J.H.C. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. 2022, 37, 803–813. [Google Scholar] [CrossRef]
- Baoyintaogetao Xing, X.Q.; Shi, G. Effects of mowing on the Mowing Reducing Productivity Index. Acta Agrestia Sin. 2019, 41, 111–115. [Google Scholar] [CrossRef]
- Wang, X.Q.; Jiang, J.; Lei, J.Q.; Zhang, W.M.; Qian, Y.B. Distribution of ephemeral plants and their significance in dune stabilization in Gurbantunggut Desert. J. Geog Sci. 2003, 13, 323–330. [Google Scholar] [CrossRef]
- Li, G.L.; Zhang, D.H.; Zhang, Z.S.; Hu, Y.G.; Huang, L.; Lu, L.N. Population dynamics of main sand-fixing shrubs in the Gurbantunggut Desert. J. Desert Res. 2021, 41, 129–137. [Google Scholar] [CrossRef]
- Lu, L.N.; Zhang, D.H.; Li, G.L. Crown prediction models of the sand-fixing shrubs in Gurbantunggut Desert. Ecol. Sci. 2022, 41, 81–89. [Google Scholar] [CrossRef]
- Fu, D.S.; Ren, X.M.; Wang, Y.L.; Zhang, C.Y.; Meng, Z.J. Distribution characteristics of soil particle size in farming-pastoral ecotone: A case study of Wuchuan County in Inner Mongolia. Arid. Zone Res. 2022, 39, 1322–1332. [Google Scholar] [CrossRef]
- He, B.; Yu, W.; Yan, Y.D.; Zhang, B. Study on sediment composition and grain size characteristics at river confluence A case study on Xindi Village Reach of the Xi River, Fuxin City. Int. J. Sediment. Res. 2018, 43, 46–51. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Zhang, Y.; Liu, B.L. Biological soil crusts and their potential applications in the sand land over Qinghai-Tibet Plateau. Res. Cold Arid. Reg. 2024, 16, 20–29. [Google Scholar] [CrossRef]
- Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid. Environ. 2008, 72, 1257–1264. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.M.; Downing, A. Similarity and difference in vegetation structure of three desert shrub communities under the same temperate climate but with different microhabitats. Bot. Stud. 2013, 54, 59. [Google Scholar] [CrossRef] [PubMed]







| Site | <0.05 mm | 0.05–0.1 mm | 0.1–0.25 mm | 0.25–0.45 mm | 0.45–1 mm | >1 mm | >0.45 mm | <0.25 mm |
|---|---|---|---|---|---|---|---|---|
| NS | 1.40 ± 0.16 a | 21.56 ± 2.45 a | 28.78 ± 2.45 c | 14.29 ± 1.29 b | 32.43 ± 2.47 a | 0.97 ± 0.29 | 33.40 ± 2.64 a | 51.73 ± 2.68 c |
| MS | 2.09 ± 0.13 a | 20.35 ± 1.20 a | 40.36 ± 2.46 b | 25.97 ± 2.30 a | 10.24 ± 1.17 b | 0 | 10.24 ± 1.17 b | 62.79 ± 3.32 b |
| SS | 2.19 ± 0.56 a | 26.98 ± 5.45 a | 62.21 ± 4.67 a | 7.71 ± 2.10 c | 0.156 ± 0.04 c | 0 | 0.16 ± 0.04 c | 91.38 ± 2.03 a |
| Index | Site | ||
|---|---|---|---|
| NS | MS | SS | |
| OC (g kg−1) | 0.73 ± 0.06 b | 1.03 ± 0.04 ab | 1.32 ± 0.19 a |
| TN (g kg−1) | 0.12 ± 0.01 b | 0.11 ± 0.01 b | 0.17 ± 0.01 a |
| TP (g kg−1) | 0.28 ± 0.02 b | 0.31 ± 0.03 b | 0.39 ± 0.02 a |
| TK (g kg−1) | 10.46 ± 0.14 c | 11.78 ± 0.15 b | 13.39 ± 0.18 a |
| AN (mg kg−1) | 0.33 ± 0.03 b | 0.48 ± 0.06 a | 0.51 ± 0.03 a |
| AP (mg kg−1) | 1.91 ± 0.18 b | 2.98 ± 0.18 a | 3.76 ± 0.41 a |
| AK (mg kg−1) | 83.0 ± 4.07 b | 94.17 ± 12.56 b | 150.0 ± 7.70 a |
| pH | 7.76 ± 0.07 c | 8.10 ± 0.05 b | 8.36 ± 0.03 a |
| EC (μS cm−1) | 44.83 ± 1.96 b | 60.17 ± 6.05 a | 73.00 ± 5.50 a |
| DLB | 1.33 ± 0.33 c | 3.33 ± 0.33 b | 5.0 ± 0.36 a |
| Source | C | N | P | K | C:N | |||||
| F | P | F | P | F | P | F | P | F | P | |
| Site | 5.14 | 0.006 | 24.01 | 2.35 × 10−10 | 127.91 | 2.92e × 10−40 | 72.25 | 4.65 × 10−26 | 31.60 | 4.13 × 10−13 |
| Species | 119.65 | 2.38 × 10−38 | 73.01 | 2.82 × 10−26 | 421.13 | 2.06 × 10−85 | 355.60 | 7.99 × 10−78 | 86.03 | 6.78 × 10−30 |
| Site ∗ Species | 2.85 | 0.0241 | 8.16 | 3.07 × 10−6 | 40.08 | 1.42 × 10−26 | 21.15 | 2.87 × 10−15 | 14.46 | 9.38 × 10−11 |
| Source | C:P | C:K | N:P | N:K | P:K | |||||
| F | P | F | P | F | P | F | P | F | P | |
| Site | 82.05 | 8.21 × 10−29 | 112.20 | 1.42 × 10−36 | 14.74 | 8.16 × 10−7 | 34.81 | 3.07 × 10−14 | 9.56 | 9.67 × 10−5 |
| Species | 205.59 | 8.43 × 10−56 | 758.61 | 3.3 × 10−114 | 103.46 | 2.01 × 10−34 | 361.05 | 1.71 × 10−78 | 646.09 | 5.02 × 10−106 |
| Site ∗ Species | 46.81 | 3.78 × 10−30 | 62.01 | 1.53 × 10−37 | 4.05 | 0.0033 | 11.61 | 9.62e × 10−9 | 4.80 | 0.001 |
| Elemental Pair | Species | R2 | p | Slope | S.D. | Type |
|---|---|---|---|---|---|---|
| N–C | EP | 0.008 | 0.393 | – | – | – |
| CM | 0.007 | 0.405 | – | – | – | |
| HP | 0.003 | 0.572 | – | – | – | |
| P–C | EP | 0.006 | 0.472 | – | – | – |
| CM | 0.069 | 0.010 | 3.411 | 0.678 | Hyperallometric | |
| HP | 0.000 | 0.935 | – | – | – | |
| K–C | EP | 0.008 | 0.406 | – | – | – |
| CM | 0.022 | 0.152 | – | – | – | |
| HP | 0.053 | 0.019 | 2.814 | 1.174 | Hyperallometric | |
| N–P | EP | 0.382 | 0.000 | 0.712 b | 0.117 | Hypoallometric |
| CM | 0.292 | 0.000 | 1.012 a | 0.175 | Isometric | |
| HP | 0.119 | 0.000 | 1.281 a | 0.236 | Hyperallometric | |
| K–N | EP | 0.390 | 0.000 | 1.767 a | 0.289 | Hyperallometric |
| CM | 0.201 | 0.000 | 1.443 a | 0.266 | Hyperallometric | |
| HP | 0.004 | 0.544 | – | – | – | |
| K–P | EP | 0.712 | 0.000 | 1.258 a | 0.142 | Hyperallometric |
| CM | 0.646 | 0.000 | 1.460 a | 0.179 | Hyperallometric | |
| HP | 0.016 | 0.207 | – | – | – |
| Species | |HC| | |HN| | |HP| | |HK| | |HC:N| | |HC:P| | |HC:K| | |HN:P| | |HN:K| | |HP:K| |
|---|---|---|---|---|---|---|---|---|---|---|
| EP | – | 1.894 | 0.445 | 0.294 | 1.221 | 0.907 | 0.420 | 0.229 | 1.093 | – |
| CM | 10.870 | – | 0.824 | 0.384 | 1.425 | 0.767 | 0.552 | 1.736 | – | – |
| HP | – | 5.236 | – | 1.484 | – | – | – | – | 0.706 | 0.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Zhang, X.-L.; Tao, Y.; Dai, L.; Meng, H.-H.; Zhou, X.-B.; Zhang, Y.-M. Local-Scale Soil Heterogeneity Differentially Influenced Assimilative Branch Stoichiometry of Three Dominant Shrubs in a Central Asian Desert. Plants 2025, 14, 3363. https://doi.org/10.3390/plants14213363
Wang C-C, Zhang X-L, Tao Y, Dai L, Meng H-H, Zhou X-B, Zhang Y-M. Local-Scale Soil Heterogeneity Differentially Influenced Assimilative Branch Stoichiometry of Three Dominant Shrubs in a Central Asian Desert. Plants. 2025; 14(21):3363. https://doi.org/10.3390/plants14213363
Chicago/Turabian StyleWang, Cheng-Cheng, Xue-Lian Zhang, Ye Tao, Ling Dai, Huan-Huan Meng, Xiao-Bing Zhou, and Yuan-Ming Zhang. 2025. "Local-Scale Soil Heterogeneity Differentially Influenced Assimilative Branch Stoichiometry of Three Dominant Shrubs in a Central Asian Desert" Plants 14, no. 21: 3363. https://doi.org/10.3390/plants14213363
APA StyleWang, C.-C., Zhang, X.-L., Tao, Y., Dai, L., Meng, H.-H., Zhou, X.-B., & Zhang, Y.-M. (2025). Local-Scale Soil Heterogeneity Differentially Influenced Assimilative Branch Stoichiometry of Three Dominant Shrubs in a Central Asian Desert. Plants, 14(21), 3363. https://doi.org/10.3390/plants14213363

