CRISPR-Mediated Genome Editing in Peanuts: Unlocking Trait Improvement for a Sustainable Future
Abstract
1. Introduction
1.1. Genome Editing Tools
1.2. Class of CRISPR/Cas Systems
1.3. Innovations on Cas Variants
2. Taxonomy of Peanut
3. Genome Structure of Peanut
4. Improvement of Peanut Traits
4.1. Reduction of Aflatoxin Contamination in Peanut Seeds
4.2. Reduction of Allergen Genes in Peanut Seeds
4.3. Seed Dormancy
4.4. Low Phytate Content
4.5. Improve Oleate Content
4.6. Productivity
4.7. Biotic and Abiotic Stress Tolerance
5. Applications of Genome Editing in Enhancing Peanut Traits
6. Conclusions: Future Challenges and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaidi, S.S.; Vanderschuren, H.; Qaim, M.; Mahfouz, M.M.; Kohli, A.; Mansoor, S.; Tester, M. New plant breeding technologies for food security. Science 2019, 363, 1390–1391. [Google Scholar] [CrossRef]
- Qaim, M. Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Karthik, S.; Chae, J.; Han, S.J.; Kim, J.H.; Kim, H.J.; Chung, Y.S.; Kim, H.U.; Heo, J.B. Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology. Plants 2024, 13, 1466. [Google Scholar] [CrossRef]
- Lewis, G.P.; Schrire, B.; Mackinder, B.; Lock, M. Legumes of the World. Richmond, UK: Royal Botanic Gardens, Kew. Edinb. J. Bot. 2005, 62, 195–196. [Google Scholar]
- Baloglu, M.C.; Celik Altunoglu, Y.; Baloglu, P.; Yildiz, A.B.; Türkölmez, N.; Özden Çiftçi, Y. Gene-editing technologies and applications in legumes: Progress, evolution, and future prospects. Front. Genet 2022, 13, 859437. [Google Scholar] [CrossRef]
- Krishna, G.; Singh, B.K.; Kim, E.K.; Morya, V.K.; Ramteke, P.W. Progress in genetic engineering of peanut (Arachis hypogaea L.)—A review. Plant Biotechnol. J. 2015, 13, 147–162. [Google Scholar] [CrossRef]
- Janila, P.; Nigam, S.N.; Pandey, M.K.; Nagesh, P.; Varshney, R.K. Groundnut improvement: Use of genetic and genomic tools. Front. Plant Sci. 2013, 25, 23. [Google Scholar] [CrossRef] [PubMed]
- Enserink, M. The peanut butter debate. Science 2008, 322, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sangh, C.; Kona, P.; Bera, S.K. Genome editing in peanuts: Advancements, challenges and applications. Nucleus 2024, 67, 127–139. [Google Scholar] [CrossRef]
- Verma, A.; Mahatma, M.K.; Thawait, L.K.; Singh, S.; Gangadhar, K.; Kona, P.; Singh, A.L. Processing techniques alter resistant starch content, sugar profile and relative bioavailability of iron in groundnut (Arachis hypogaea L.) kernels. J. Food Compos. Anal. 2022, 112, 104653. [Google Scholar] [CrossRef]
- Jung, M.; Kim, J.; Ahn, S.M. Factors associated with frequency of peanut consumption in Korea: A national population-based study. Nutrients 2020, 12, 1207. [Google Scholar] [CrossRef]
- Shalini, S.A.; Akshata, R.S.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar]
- Ran, Y.; Patron, N.; Kay, P.; Wong, D.; Buchanan, M.; Cao, Y.-Y.; Sawbridge, T.; Davies, J.P.; Mason, J.; Webb, S.R.; et al. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploidy bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol. J. 2018, 16, 2088–2101. [Google Scholar] [CrossRef]
- Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qui, J.-L. Simultaneous editing of three homoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Butler, N.M.; Baltes, N.J.; Voytas, D.F.; Douches, D.S. Geminivirus mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 2016, 7, 1045. [Google Scholar] [CrossRef]
- Jung, J.H.; Altpeter, F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol. Biol. 2016, 92, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Shan, Q.; Zhang, Y.; Chen, K.; Zhang, K.; Gao, C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 2015, 13, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, H.; Wang, H.; Lafitte, H.R.; Archibald, R.L.; Yang, M.; Hakimi, S.M.; Mo, H.; Habben, J.E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017, 15, 207–216. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Li, R.; Zhao, R.; Yang, M.; Sheng, J.; Shen, L. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J. Agric. Food Chem. 2017, 65, 8674–8682. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, W.; Fan, Z.; Zhao, X.; Zhang, Y.; Jing, Y.; Zhu, B.; Zhu, H.; Shan, W.; Chen, J.; et al. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. J. Exp. Biol. 2020, 71, 3560–3574. [Google Scholar]
- Bo, W.; Zhaohui, Z.; Huanhuan, Z.H.; Xia, W.; Binglin, L.I.; Lijia, Y.; Xiangyan, H.A.; Deshui, Y.; Xuelian, Z.; Chunguo, W.; et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci. 2019, 26, 98–108. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, Y.N.; Chen, S.; Tian, H.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 2018, 9, 559. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, F.; Kong, D.; Hou, D.; Huang, L.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; Liu, G.; et al. Mutation of DEP1 facilitates the improvement of plant architecture in Xian rice (Oryza sativa). Plant Breed. 2023, 142, 338–344. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, H.; Luo, Y.; Chen, W.; Xu, M.; Wei, H.; Chen, Z.; Xiang, T.; Wang, L.; Han, N.; et al. CRISPR/Cas9-mediated editing of barley lipoxygenase genes promotes grain fatty acid accumulation and storability. GM Crops Food 2025, 16, 482–497. [Google Scholar] [CrossRef]
- Neelakandan, A.K.; Wright, D.A.; Traore, S.M.; Ma, X.; Subedi, B.; Veeramasu, S.; Spalding, M.H.; He, G. Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants 2022, 11, 1361. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, J.; Ji, H.; Pan, L.; Hu, C.; Qiu, X.; Zhu, H.; Sui, J.; Wang, J.; Qiao, L. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Sci. 2022, 319, 111247. [Google Scholar]
- Biswas, S.; Bridgeland, A.; Irum, S.; Thomson, M.J.; Septiningsih, E.M. Optimization of prime editing in rice, peanut, chickpea, and cowpea protoplasts by restoration of GFP activity. Int. J. Mol. Sci. 2022, 23, 9809. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Xue, L.; Zhang, J.; Huang, B.; Sun, Z.; Zhang, Z.; Dai, X.; Han, S.; Dong, W.; et al. Creation of herbicide-resistance in allotetraploid peanut using CRISPR/Cas9-meditated cytosine base-editing. Plant Biotechnol. J. 2023, 21, 1923. [Google Scholar] [CrossRef] [PubMed]
- Han, H.W.; Yu, S.T.; Wang, Z.W.; Yang, Z.; Jiang, C.J.; Wang, X.Z.; Sun, X.S.; Wang, C.T. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regul. 2023, 101, 443–451. [Google Scholar] [CrossRef]
- Yu, B.; Liu, N.; Huang, L.; Luo, H.; Zhou, X.; Lei, Y.; Yan, L.; Wang, X.; Chen, W.; Kang, Y. Identification and application of a candidate gene AhAftr1 for aflatoxin production resistance in peanut seed (Arachis hypogaea L.). J. Adv. Res. 2023, 62, 15–26. [Google Scholar] [CrossRef]
- Conner, J.A.; Guimaraes, L.A.; Zhang, Z.; Marasigan, K.; Chu, Y.; Korani, W.; Ozias-Akins, P. Multiplexed silencing of 2S albumin genes in peanut. Multiplexed silencing of 2S albumin genes in peanut. Plant Biotechnol. J. 2024, 22, 2438–2440. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, J.; Gong, L.; He, L.; Lee, C.; Han, S.; Chen, C.; He, G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 2019, 19, 24. [Google Scholar] [CrossRef]
- Li, A.; Zhou, M.; Liao, G.; Li, X.; Wang, A.; Xiao, D.; He, L.; Zhan, J. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens-mediated pollen tube transformation. Plant Cell Tissue Organ. Cult. 2023, 155, 883–892. [Google Scholar] [CrossRef]
- Sarkar, T.; Thankappan, R.; Kumar, A.; Mishra, G.P.; Dobaria, J.R. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil moisture deficit stress. Front. Plant Sci. 2016, 7, 935. [Google Scholar] [CrossRef]
- Wen, S.; Liu, H.; Li, X.; Chen, X.; Hong, Y.; Li, H.; Lu, Q.; Liang, X. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol. Biol. 2018, 97, 177–185. [Google Scholar] [CrossRef]
- Shu, H.; Luo, Z.; Peng, Z.; Wang, J. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol. 2020, 20, 417. [Google Scholar] [CrossRef] [PubMed]
- Neelakandan, A.K.; Subedi, B.; Traore, S.M.; Binagwa, P.; Wright, D.A.; He, G. Base editing in peanut using CRISPR/nCas9. Front. Genome Ed. 2022, 4, 901444. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. of Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef]
- Mishra, R.; Zhao, K. Genome editing technologies and their applications in crop improvement. Plant Biotechnol. Rep. 2018, 12, 57–68. [Google Scholar] [CrossRef]
- Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 2006, 1, 7. [Google Scholar] [CrossRef]
- Huynh, N.; Depner, N.; Larson, R.; King-Jones, K. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol. 2020, 21, 279. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Zhan, X.; Lu, Y.; Zhu, J.K.; Botella, J.R. Genome editing for plant research and crop improvement. J. Integr. Plant Biol. 2021, 63, 3. [Google Scholar] [CrossRef]
- Endo, A.; Masafumi, M.; Kaya, H.; Toki, S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 2016, 6, 38169. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Wang, H.; Li, Y.; Tran, M.H.; Farzan, M. Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat. Chem. Biol. 2017, 13, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Nicole, M.C.; Meteignier, L.V.; Hong, N.; Wang, G.; Moffett, P. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. J. Exp. Bot. 2015, 66, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.; Abul-Faraj, A.; Li, L.; Ghosh, N.; Piatek, M.; Mahjoub, A.; Aouida, M.; Piatek, A.; Baltes, N.J.; Voytas, D.F.; et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 2015, 8, 1288–1291. [Google Scholar] [CrossRef]
- Vaucheret, H.; Fagard, M. Transcriptional gene silencing in plants: Targets, inducers and regulators. Trends Genet. 2001, 17, 29–35. [Google Scholar] [CrossRef]
- Peng, R.; Lin, G.; Li, J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016, 283, 1218–1231. [Google Scholar] [CrossRef]
- Kurata, M.; Yamamoto, K.; Moriarity, B.S.; Kitagawa, M.; Largaespada, D.A. CRISPR/Cas9 library screening for drug target discovery. J. Hum. Genet. 2018, 63, 179–186. [Google Scholar] [CrossRef]
- Minkenberg, B.; Wheatley, M.; Yang, Y. CRISPR/Cas9-enabled multiplex genome editing and its application. Prog. Mol. Biol. Transl. Sci. 2017, 149, 111–132. [Google Scholar]
- Baek, K.; Kim, D.H.; Jeong, J.; Sim, S.J.; Melis, A.; Kim, J.S.; Jin, E.; Bae, S. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 2016, 6, 30620. [Google Scholar] [CrossRef]
- Woo, J.W.; Kim, J.; Kwon, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.G.; Kim, S.T.; Choe, S.; Kim, J.S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Mark Cigan, A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 2016, 7, 13274. [Google Scholar] [CrossRef] [PubMed]
- Demirer, G.S.; Silva, T.N.; Jackson, C.T.; Thomas, J.B.; Ehrhardt, D.W.; Rhee, S.Y.; Mortimer, J.C.; Landry, M.P. Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat. Nanotechnol. 2021, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kiryushkin, A.S.; Ilina, E.L.; Guseva, E.D.; Pawlowski, K.; Demchenko, K.N. Hairy CRISPR: Genome editing in plants using hairy root transformation. Plants 2021, 11, 51. [Google Scholar] [CrossRef]
- Amack, S.C.; Antunes, M.S. CaMV35S promoter–A plant biology and biotechnology workhorse in the era of synthetic biology. Curr. Plant Biol. 2020, 24, 100179. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Zalatan, J.G.; Lee, M.E.; Almeida, R.; Gilbert, L.A.; Whitehead, E.H.; La Russa, M.; Tsai, J.C.; Weissman, J.S.; Dueber, J.E.; Qi, L.S.; et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015, 160, 339–350. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.T.; Seo, S.O.; Lynn, P.; Lu, T.; Jin, Y.S.; Blaschek, H.P. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol. Bioeng. 2016, 113, 2739–2743. [Google Scholar] [CrossRef]
- Tang, X.; Lowder, L.G.; Zhang, T.; Malzahn, A.A.; Zheng, X.; Voytas, D.F.; Zhong, Z.; Chen, Y.; Ren, Q.; Li, Q.; et al. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 2017, 3, 17018. [Google Scholar] [CrossRef]
- Ding, X.; Yu, L.; Chen, L.; Li, Y.; Zhang, J.; Sheng, H.; Ren, Z.; Li, Y.; Yu, X.; Jin, S.; et al. Recent progress and future prospect of CRISPR/Cas-derived transcription activation (CRISPRa) system in plants. Cells 2022, 11, 3045. [Google Scholar] [CrossRef]
- Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013, 4, 7429–7437. [Google Scholar] [CrossRef] [PubMed]
- Krapovickas, A.; Gregory, W.C. Taxonomía del género Arachis (Leguminosae). Bonplandia 1994, 8, 1–186. [Google Scholar] [CrossRef]
- Kochert, G.; Stalker, H.T.; Gimenes, M.; Galgaro, L.; Lopes, C.R.; Moore, K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 1996, 10, 1282–1291. [Google Scholar] [CrossRef]
- Ozias-Akins, P.; Breiteneder, H. The functional biology of peanut allergens and possible links to their allergenicity. Allergy 2019, 74, 888–898. [Google Scholar] [CrossRef]
- Moretzsohn, M.C.; Gouvea, E.G.; Inglis, P.W.; Leal-Bertioli, S.C.; Valls, J.F.; Bertioli, D.J. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 2013, 111, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Gregory, W.C.; Krapovickas, A.; Gregory, M.P. Structure, variation, evolution, and classification in Arachis. In Advances in Legume Science; Summerfield, R.J., Bunting, A.H., Eds.; Royal Botanic Gardens: Kew, UK, 1980; pp. 469–481. [Google Scholar]
- Singh, A.K.; Simpson, C.E. Biosystematics and genetic resources. In The Groundnut Crop: A Scientific Basis for Improvement; Smartt, J., Ed.; Chapman and Hall: London, UK, 1994; pp. 96–137. [Google Scholar]
- Nigam, S.N.; Rao, V.R.; Gibbons, R.W. Utilization of natural hybrids in the improvement of groundnuts (Arachis hypogaea). Exp. Agric. 1983, 19, 355–359. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–464. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.; Ren, L.; Farmer, A.D.; Pandey, M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [Google Scholar] [CrossRef]
- Arias, R.S.; Dang, P.M.; Sobolev, V.S. RNAi-mediated control of aflatoxins in peanut: Method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J. Vis. Exp. 2015, 106, e53398. [Google Scholar]
- Sharma, K.K.; Pothana, A.; Prasad, K.; Shah, D.; Kaur, J.; Bhatnagar, D.; Chen, Z.Y.; Raruang, Y.; Cary, J.W.; Rajasekaran, K.; et al. Peanuts that keep aflatoxin at bay: A threshold that matters. Plant Biotechnol. J. 2018, 16, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Yogendra, K.; Sanivarapu, H.; Rajasekaran, K.; Cary, J.W.; Sharma, K.K.; Bhatnagar-Mathur, P. Multiplexed host-induced gene silencing of Aspergillus flavus genes confers aflatoxin resistance in groundnut. Toxins 2023, 15, 319. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Holdford, D.; Bilaver, L.; Dyer, A.; Holl, J.L.; Meltzer, D. The economic impact of childhood food allergy in the United States. J. Am. Med. Assoc. Pediatr. 2013, 167, 1026–1031. [Google Scholar] [CrossRef]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food allergy: Immune mechanisms, diagnosis, and immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef]
- Brackett, N.F.; Pomés, A.; Chapman, M.D. New frontiers: Precise editing of allergen genes using CRISPR. Front. Allergy 2022, 2, 821107. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, G.; Sayre, P.H.; Roberts, G.; Lawson, K.; Sever, M.L.; Bahnson, H.T.; Fisher, H.R.; Feeney, M.; Radulovic, S.; Basting, M.; et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J. Allergy Clin. Immunol. 2018, 141, 1343–1353. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Munoz-Furlong, A.; Burks, A.W.; Sampson, H.A. Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey. J. Allergy Clin. Immunol. 1999, 103, 559–562. [Google Scholar] [CrossRef]
- Bunyavanich, S.; Rifas-Shiman, S.L.; Platts-Mills, T.A.; Workman, L.; Sordillo, J.E.; Gillman, M.W.; Gold, D.R.; Litonjua, A.A. Peanut allergy prevalence among school-age children in a US cohort not selected for any disease. J. Allergy Clin. Immunol. 2014, 134, 753–755. [Google Scholar] [CrossRef]
- Burks, A.W.; Williams, L.W.; Connaughton, C.; Cockrell, G.; O’Brien, T.J.; Helm, R.M. Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J. Allergy Clin. Immunol. 1992, 90, 962–969. [Google Scholar] [CrossRef]
- Dodo, H.W.; Konan, K.N.; Chen, F.C.; Egnin, M.; Viquez, O.M. Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol. J. 2008, 6, 135–145. [Google Scholar] [CrossRef]
- Kumar, R.; Janila, P.; Vishwakarma, M.K.; Khan, A.W.; Manohar, S.S.; Gangurde, S.S.; Variath, M.T.; Shasidhar, Y.; Pandey, M.K.; Varshney, R.K. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol. J. 2019, 18, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Wang, H.; Zhao, C.; Tonnis, B.; Tallury, S.; Wang, X.; Clevenger, J.; Guo, B. Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol. Biol. Rep. 2021, 40, 208–217. [Google Scholar] [CrossRef]
- Bomireddy, D.; Gangurde, S.S.; Variath, M.T.; Janila, P.; Manohar, S.S.; Sharma, V.; Parmar, S.; Deshmukh, D.; Reddisekhar, M.; Reddy, D.M.; et al. Discovery of major quantitative trait loci and candidate genes for fresh seed dormancy in groundnut. Agronomy 2022, 12, 404. [Google Scholar] [CrossRef]
- Verma, A.; Singh, S.; Thawait, L.K.; Mahatma, M.K.; Singh, A.L. An expedient ion chromatography-based method for high-throughput analysis of phytic acid in groundnut kernels. J. Food Sci. Technol. 2022, 59, 4479–4486. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, A.L.; Gangadhara, K.; Chaudhari, V.; Patel, C.B.; Mahatma, M.K.; Verma, A.; Kumar, L. High Zn bioavailability in peanut (Arachis hypogaea L.) cultivars: An implication of phytic acid and mineral interactions in seeds. J. Plant Nutr. 2022, 45, 2422–2431. [Google Scholar] [CrossRef]
- Raboy, V. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochem 2003, 64, 1033–1043. [Google Scholar] [CrossRef]
- Song, J.H.; Shin, G.; Kim, H.J.; Lee, S.B.; Moon, J.Y.; Jeong, J.C.; Choi, H.K.; Kim, I.A.; Song, H.J.; Kim, C.Y.; et al. Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int. J. Mol. Sci. 2022, 23, 10583. [Google Scholar] [CrossRef]
- Sparvoli, F.; Cominelli, E. Seed biofortification and phytic acid reduction: A conflict of interest for the plant? Plants 2015, 4, 728–755. [Google Scholar] [CrossRef]
- Sashidhar, N.; Harloff, H.J.; Potgieter, L.; Jung, C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 2020, 18, 2241–2250. [Google Scholar] [CrossRef]
- Schwartzbeck, J.L.; Jung, S.; Abbott, A.G.; Mosley, E.; Lewis, S.; Pries, G.L.; Powell, G.L. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry 2001, 57, 643–652. [Google Scholar] [CrossRef]
- Jung, S.; Swift, D.; Sengoku, E.; Patel, M.; Teule, F.; Powell, G.; Moore, K.; Abbott, A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol. Gen. Genet. 2000, 263, 796–805. [Google Scholar] [CrossRef]
- King, R.W.; Zeevaart, J.A.D. Floral Stimulus Movement in Perilla and Flower Inhibition Caused by Non induced Leaves. Plant Physiol. 1973, 51, 727–738. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.R.; Chen, C.; Kim, J.H.; Kim, H.E.; Karthik, S.; Kim, H.J.; Chung, Y.S.; Baek, H.S.; Sung, S.; Kim, H.U.; et al. Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens. Front. Plant Sci. 2023, 14, 1133518. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Lee, B.M.; Nam, M.; Oh, K.W.; Lee, M.H.; Kim, T.H.; Jo, S.H.; Lee, J.H. Identification of quantitative trait loci associated with flowering time in perilla using genotyping-by-sequencing. Mol. Biol. Rep. 2019, 46, 4397–43407. [Google Scholar] [CrossRef]
- Yang, H.; Singsit, C.; Wang, A.; Gonsalves, D.; Ozias-Akins, P. Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep. 1988, 17, 693–699. [Google Scholar] [CrossRef]
- Tiwari, S.; Mishra, D.K.; Singh, A.; Singh, P.K.; Tuli, R. Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep. 2008, 27, 1017–1025. [Google Scholar] [CrossRef]
- Tiwari, S.; Mishra, D.K.; Chandrasekhar, K.; Singh, P.K.; Tuli, R. Expression of δ-endotoxin Cry1EC from an inducible promoter confers insect protection in peanut (Arachis hypogaea L.) plants. Pest. Manag. Sci. 2011, 67, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Entoori, K.; Sreevathsa, R.; Arthikala, M.K.; Kumar, P.A.; Kumar, A.R.; Madhusudhan, B.; Makarla, U. A chimeric cry1X gene imparts resistance to Spodoptera litura and Helicoverpa armigera in the transgenic groundnut. Eur. Asia J. Bio Sci. 2008, 2, 53–65. [Google Scholar]
- Keshavareddy, G.; Rohini, S.; Ramu, S.V.; Sundaresha, S.; Kumar, A.R.; Kumar, P.A.; Udayakumar, M. Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.). Physiol. Mol. Biol. Plants 2013, 19, 343–352. [Google Scholar] [CrossRef]
- Beena, M.R.; Tuli, R.; Gupta, A.D.; Kirti, P.B. Transgenic peanut (Arachis hypogaea L.) plants expressing cry1EC and rice chitinase cDNA (Chi11) exhibit resistance against insect pest Spodoptera litura and fungal pathogen Phaeoisariopsis personata. Trans. Plant J. 2008, 2, 157–164. [Google Scholar]
- Geng, L.; Niu, L.; Gresshoff, P.M.; Shu, C.; Song, F.; Huang, D.; Zhang, J. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell, Tissue Organ. Cult. 2012, 109, 491–500. [Google Scholar] [CrossRef]
- Geng, L.; Chi, J.; Shu, C.; Gresshoff, P.M.; Song, F.; Huang, D.; Zhang, J. A chimeric cry8Ea1 gene flanked by MARs efficiently controls Holotrichia parallela. Plant Cell Rep. 2013, 32, 1211–1218. [Google Scholar] [CrossRef]
- Vasavirama, K.; Kirti, P.B. Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Funct. Integr. Genomics 2012, 12, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.X.; Ding, X.; Wang, H.C.; Sui, J.M.; Wang, J.S. Characterization of the β-1, 3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation. Genet. Mol. Res. 2014, 13, 1893–1904. [Google Scholar] [CrossRef]
- Chenault, K.D.; Burns, J.A.; Melouk, H.A.; Payton, M.E. Hydrolase activity in transgenic peanut. Peanut Sci. 2002, 29, 89–95. [Google Scholar] [CrossRef]
- Sundaresha, S.; Manoj Kumar, A.; Rohini, S.; Math, S.A.; Keshamma, E.; Chandrashekar, S.C.; Udayakumar, M. Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur. J. Plant Pathol. 2010, 126, 497–508. [Google Scholar] [CrossRef]
- Kumar, D.; Kirti, P.B. Pathogen-induced SGT 1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut. Plant Biotechnol. J. 2015, 13, 73–84. [Google Scholar] [CrossRef]
- Magbanua, Z.V.; Wilde, H.D.; Roberts, J.K.; Chowdhury, K.; Abad, J.; Moyer, J.W.; Wetzstein, H.Y.; Parrott, W.A. Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol. Breed. 2000, 6, 227–236. [Google Scholar] [CrossRef]
- Rao, S.C.; Bhatnagar-Mathur, P.; Kumar, P.L.; Reddy, A.S.; Sharma, K.K. Pathogen-derived resistance using a viral nucleocapsid gene confers only partial non-durable protection in peanut against peanut bud necrosis virus. Arch. Virol. 2013, 158, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sheng, L.; Wu, L.; Yin, L.; Li, S.; Wang, H.; Jiang, X.; Wang, H.; Shi, Y.; Zhan, F.; et al. Identification of novel QTLs for resistance to late leaf spot in peanut by SNP array and QTL-seq. J. Integr. Agric. 2024, 10, 3772–3788. [Google Scholar] [CrossRef]
- Chu, Y.; Chee, P.; Culbreath, A.; Isleib, T.G.; Holbrook, C.C.; Ozias-Akins, P. Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in peanut (Arachis hypogaea L.). Front. Plant Sci. 2019, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, Z.; Zhang, X.; Qin, L.; Qi, F.; Wang, Z.; Du, P.; Xu, J.; Zhang, Z.; Han, S.; et al. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol. 2020, 20, 249. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, C.; Korani, W.; Thompson, E.A.; Wang, H.; Agarwal, G.; Fountain, J.C.; Culbreath, A.; Holbrook, C.C.; Wang, X.; et al. High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. BMC Genom. 2025, 26, 224. [Google Scholar] [CrossRef]
- Meena, H.N.; Bhaduri, D.; Yadav, R.S.; Jain, N.K.; Meena, M.D. Agronomic performance and nutrient accumulation behaviour in groundnut-cluster bean cropping system as influenced by irrigation water salinity. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 2017, 87, 31–37. [Google Scholar] [CrossRef]
- Derbyshire, E.J. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. Int. J. Food Sci. Nutr. 2014, 65, 781–790. [Google Scholar] [CrossRef]
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]

| Target Gene | Gene Editing Tools/Genetic Transformation Method | Types of Mutation | Transformation Method | Uses | Reference |
|---|---|---|---|---|---|
| ahFAD2A/B | CRISPR/Cas9 | Site-specific In Dels and substitutions disrupting oleate desaturase activity | Agrobacterium transformation | Elevated oleic-acid content (≈ 85–90%), reduced linoleic acid, improved oil oxidative stability and nutritional quality | [26] |
| Arahy.4E7QKU | CRISPR/Cas9 | Indels | Agrobacterium transformation | Improvement of oil quality | [27] |
| gfp | Prime-editing | Site-specific Restoration of mutation | PEG mediated Protoplast | Validation of prime editing | [28] |
| AhALS2-A and AhALS2-B | CBE (CRISPR/nCas9) | Base editing | Microprojectile bombardment | Generate herbicide-resistant peanut | [29] |
| AhFADH2B | CRISPR/Cas9 | Insertion | Agrobacterium and node injection transformation | An increase of more than 80% in oleic acid | [30] |
| AhAftr1 | Genetic transformation | - | Agrobacterium transformation | Provides resistance to aflatoxin production | [31] |
| Ara h 2, Ara h 6, and Ara h 7 | CRISPR/Cas9 | Deletion | Agrobacterium transformation | Reducing allergens | [32] |
| ahFAD2A/ahFAD2B | CRISPR/Cas9 | Transition, Insertion, Transversion | Hairy root Transformation | Functional validation of the FAD2 gene | [33] |
| AhMULE9A | CRISPR/Cas9 | Indels | Agrobacterium-mediated pollen tube transformation | Functional validation of AhMULE9A | [34] |
| AtDREB1A | Genetic transformation | - | Agrobacterium transformation | Functional validation of AtDREB1A | [35] |
| AhFAD2 | TALENs | Deletion | Hairy root Transformation | increase in the oleic acid con tent (42.5%–92.5%) | [36] |
| AhNFR1 and AhNFR5 | CRISPR/Cas9 | In-Dels | Hairy root Transformation | Functional Validation of nodulation genes | [37] |
| RY and 2S motif in AhFAD | CBE (CRISPR/nCas9) | C to T (47 and 59%), C to G (40 and 26%), and C to A (13 and 15%), G to A | Hairy root Transformation | Demonstration of base editing | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.J.; Chae, J.; Kim, H.J.; Kim, J.H.; Chung, Y.-S.; Karthik, S.; Heo, J.B. CRISPR-Mediated Genome Editing in Peanuts: Unlocking Trait Improvement for a Sustainable Future. Plants 2025, 14, 3302. https://doi.org/10.3390/plants14213302
Han SJ, Chae J, Kim HJ, Kim JH, Chung Y-S, Karthik S, Heo JB. CRISPR-Mediated Genome Editing in Peanuts: Unlocking Trait Improvement for a Sustainable Future. Plants. 2025; 14(21):3302. https://doi.org/10.3390/plants14213302
Chicago/Turabian StyleHan, Seong Ju, Jia Chae, Hye Jeong Kim, Jee Hye Kim, Young-Soo Chung, Sivabalan Karthik, and Jae Bok Heo. 2025. "CRISPR-Mediated Genome Editing in Peanuts: Unlocking Trait Improvement for a Sustainable Future" Plants 14, no. 21: 3302. https://doi.org/10.3390/plants14213302
APA StyleHan, S. J., Chae, J., Kim, H. J., Kim, J. H., Chung, Y.-S., Karthik, S., & Heo, J. B. (2025). CRISPR-Mediated Genome Editing in Peanuts: Unlocking Trait Improvement for a Sustainable Future. Plants, 14(21), 3302. https://doi.org/10.3390/plants14213302

