Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants
Abstract
1. Introduction
2. Biochar for Plant Production: Multifaceted Functionality
2.1. Soil Fertility Improvement
2.2. Plant Rooting Promotion
2.3. Plant Productivity Boost
2.4. Plant Biodefense Manipulation
- (1)
- The liming effect: Biochar is typically alkaline and has been widely reported to elevate soil pH. As pH plays a critical role in shaping microbial community development, diversity, structure, and pathogen virulence, such alterations can have profound ecological implications. Given that many soil pathogens are adapted to narrow pH ranges [53], biochar-mediated shifts in rhizosphere pH may significantly influence pathogen survival and activity.
- (2)
- The supply of organic compounds varies with the type of biochar feedstock, as different raw materials lead to differences in elemental composition and ash content [54]. These variations affect the concentrations of active components—such as soluble organic compounds—in the resulting biochars, which likely explains their divergent effectiveness in suppressing plant diseases [55]. Integrated global database analysis has also confirmed that biochar can suppress the occurrence of soil-borne diseases and plant diseases [12].
- (3)
- Biochar can deactivate toxic compounds released by roots through its strong adsorption capacity, attributed to its high surface area and porous structure [52]. For example, Jaiswa et al. [55] demonstrated that wood chip and greenhouse pepper waste biochar (350 °C and 600 °C) can adsorb and deactivate cell wall-degrading enzymes and toxic metabolites produced by the pathogen F. oxysporum f. sp. radicis-lycopersici, thereby protecting tomatoes from soil-borne pathogens. Gu et al. [52] found that the application of pine biochar can directly or indirectly adsorb root exudates (thereby reducing the chemotactic ability of pathogens) to attract pathogens, while significantly impairing their motility and colonization, ultimately reducing the pathogenicity of pathogens toward tomatoes. Growing evidence supports biochar’s role in immobilizing allelochemicals derived from root exudates [52] and suppressing soil-borne pathogens [51]. In our study on biochar amendment in replanted ginseng (Panax ginseng), biochar markedly reduced the accumulation of root-derived phenolic allelochemicals, thereby inhibiting soil-borne pathogenic fungi, while simultaneously enhancing microbial diversity and network complexity [13].
- (4)
- Soil microbial manipulation is a critical approach to addressing the challenges posed by continuous cropping, which adversely affects soil health and promotes soil-borne diseases. These conditions further disrupt soil properties, alter microbial community structure, and lead to pathogen accumulation in the rhizosphere [56,57]. Biochar amendment has been shown to promote beneficial microorganisms while reducing the abundance and pathogenicity of pathotrophic fungi. Notably, maize biochar outperforms wood biochar in enhancing the abundance of arbuscular mycorrhizal fungi (AMF) and beneficial bacteria [13]. Additionally, biochar application increases the complexity of microbial co-occurrence networks, particularly within fungal communities [13,57]. Consequently, the core microbial networks exhibit enhanced resistance even as pathogenic fungi proliferate in biochar-amended soils. Biochar also promotes the enrichment of plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere via host-mediated recruitment. For instance, Jin et al. [58] demonstrated that biochar stimulates tomato roots to assemble a protective bacterial community that confers resistance to Fusarium wilt.
- (5)
- Biochar-induced plant resistance: Biochar soil amendment can directly influence the physiological status of plants, particularly by modifying root exudation, which facilitates the recruitment of plant-growth-promoting rhizobacteria. Previous studies have indicated that biochar exerts direct effects on plant growth and physiological processes [59,60]. Moreover, biochar shows considerable potential in activating immunity-related gene expression. Transcriptomic analyses in tomato have revealed that biochar primes defense-related pathways, upregulating genes and hormones associated with plant immunity and development, including jasmonic acid, brassinosteroids, cytokinins, and auxin, and the synthesis of flavonoids, phenylpropanoids, and cell wall components [61]. In Kong et al.’s study [62], exogenous application of nanoscale biochar was shown to enhance plant defense responses and confer resistance against the pathogen Phytophthora nicotianae. These findings suggest that biochar, when applied at levels that optimally stimulate plant immunity, could serve as an effective plant protection agent in future agricultural practices.
2.5. Food Quality Enhancement
3. Potential Toxicity When Applied in Soil
4. Challenges and Prospects
- (1)
- To what extent are plant processes affected by soil changes (abiotic versus biotic)?
- (2)
- How do plant roots respond to biochar material input versus biochar (habituating versus signaling)?
- (3)
- What mediates the interplay between plant growth, resistance, and biosynthesis following biochar soil application?
- (4)
- What will the legacy of the soil–plant system be following biochar application?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Bossio, D.A.; Kögel- Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, C.; Yan, M.; Pan, G. Understanding and enhancing soil conservation of water and life. Soil Sci. Environ. 2023, 2, 9. [Google Scholar] [CrossRef]
- IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; 56p.
- United Nations Environment Programme. Nature-based Solutions: Opportunities and Challenges for Scaling Up; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: Some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive metadata analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Lu, H.; Bian, R.; Xia, X.; Cheng, K.; Liu, X.; Liu, Y.; Wang, P.; Li, Z.; Zheng, J.; Zhang, X.; et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil—a rice farm trial. Geoderma 2020, 376, 114567. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, T.T.; Xiao, R.; Chen, X.P.; Zhang, T. A quantitative evaluation of the biochar’s influence on plant disease suppress: A global meta-analysis. Biochar 2022, 4, 43. [Google Scholar] [CrossRef]
- Liu, C.; Xia, R.; Tang, M.; Chen, X.; Zhong, B.; Liu, X.Y.; Bian, R.J.; Yang, L.; Zheng, J.F.; Cheng, K.; et al. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: A field study of Panax ginseng from Northeast China. Hortic. Res. 2022, 9, uhac108. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tian, J.; Chen, L.; He, Q.; Liu, X.; Bian, R.; Zheng, J.; Zhang, X.; Wu, J.; Cheng, K.; et al. Biochar boosted high oleic peanut production with enhanced root development and biological N fixation by diazotrophs in an alluvic Primisol. Sci. Total Environ. 2024, 932, 173061. [Google Scholar] [CrossRef]
- Liu, C.; Shang, S.; Wang, C.; Tian, J.; Zhang, L.; Liu, X.; Bian, R.; He, Q.; Zhang, F.; Chen, L.; et al. Biochar amendment increases peanut production through improvement of the extracellular enzyme activities and microbial community composition in replanted field. Plants 2025, 14, 922. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.Y.; Korai, P.K.; Pan, G.X. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Wu, W.A.; Han, J.Y.; Gu, Y.N.; Li, T.; Xu, X.R.; Jiang, Y.H.; Li, Y.P.; Sun, J.F.; Pan, G.X.; Cheng, K. Impact of biochar amendment on soil hydrological properties and crop water use efficiency: A global meta-analysis and structural equation model. Glob. Change Biol. Bioenergy 2022, 14, 657–668. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Insights into soil and biochar variations and their contribution to soil aggregate status—A meta-analysis. Soil Tillage Res. 2024, 244, 106282. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon fixation and soil aggregation affected by biochar oxidized with hydrogen peroxide: Considering the efficiency of pyrolysis temperature. Sustainability 2023, 15, 7158. [Google Scholar] [CrossRef]
- Ma, S.; Cao, Y.; Lu, J.; Ren, T.; Cong, R.; Lu, Z.; Zhu, J.; Li, X. Response of soil aggregation and associated organic carbon to organic amendment and its controls: A global meta-analysis. Catena 2024, 237, 107774. [Google Scholar] [CrossRef]
- Edeh, I.G.; Masek, O.; Buss, W. A meta-analysis on biochar’s effects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef]
- Sun, Z.H.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.Q.; Chen, Y.M.; Jia, B.B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, F.; Liu, X.Y.; Zheng, J.F.; Cheng, K.; Bian, R.J.; Zhang, X.H.; Li, L.Q.; Drosos, M.; Joseph, S.; Pan, G. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environ. Sci. Pollut. Res. 2021, 28, 34108–34120. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.Y.; Tahmasbian, I.; Che, R.X.; Xu, Z.H.; Zhou, X.H.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.H.; Liu, B.J.; Amonette, J.E.; Lin, Z.B.; Liu, G.; Ambus, P.; Xie, Z.B. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Monnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Sha, Z.P.; Li, Q.Q.; Lv, T.T.; Misselbrook, T.; Liu, X.J. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.Q.; Bian, R.J.; Chen, D.; Qu, J.J.; Kibue, G.W.; Pan, G.X.; Zhang, X.H.; Zheng, J.W.; Zheng, J.F. Effect of biochar amendment on soil- silicon availability and rice uptake. J. Plant Nutr. Soil Sci. 2014, 177, 91–96. [Google Scholar] [CrossRef]
- Liu, C.; Sun, B.; Zhang, X.; Liu, X.; Drosos, M.; Li, L.; Pan, G. The Water-soluble pool in biochar dominates maize plant growth promotion under biochar amendment. J. Plant Growth Regul. 2021, 40, 1466–1476. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.D.; Liu, C.; Sun, B.B.; Zheng, J.F.; Bian, R.J.; Drosos, M.; Zhang, X.H.; Li, L.Q.; Pan, G. Biochar increases maize yield by promoting root growth in the rainfed region. Arch. Agron. Soil Sci. 2021, 67, 1411–1424. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Gao, W.; Xue, C.; Guo, Z.; Jiang, L.; Li, F.; Liu, Y. Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil. Sci. Total Environ. 2019, 688, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, E.; Ghorbani, M.; Adani, F. Biochar contribution in greenhouse gas mitigation and crop yield considering pyrolysis conditions, utilization strategies and plant type-A meta-analysis. Field Crops Res. 2025, 333, 110040. [Google Scholar]
- Zhang, L.; Wu, Z.; Zhou, J.; Zhou, L.; Lu, Y.; Xiang, Y.; Zhang, R.; Deng, Q.; Wu, W. Meta-analysis of the response of the productivity of different crops to parameters and processes in soil nitrogen cycle under biochar addition. Agronomy 2022, 12, 1857. [Google Scholar]
- Liu, Y.; Li, H.; Hu, T.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.; Jing, P. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Sci. Total Environ. 2022, 830, 154792. [Google Scholar]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar]
- Liu, C.; Liu, X.; Zhang, X.; Li, L.; Pan, G. Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis. J. Agro-Environ. Sci. 2019, 38, 696–706, (In Chinese with English abstract). [Google Scholar]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2019, 36, 2–18. [Google Scholar]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kamper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef]
- Zhu, X.M.; Chen, B.L.; Zhu, L.Z.; Xing, B.S. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Paudel, I.; Graber, E.R.; Cytryn, E.; Frenkel, O. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Sci. Rep. 2017, 7, 44382. [Google Scholar] [CrossRef]
- Gu, Y.; Hou, Y.G.; Huang, D.P.; Hao, Z.X.; Wang, X.F.; Wei, Z.; Jousset, A.; Tan, S.Y.; Xu, D.B.; Shen, Q.R.; et al. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant Soil 2017, 415, 269–281. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Qin, S.Y.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Frenkel, O.; Tsechansky, L.; Elad, Y.; Graber, E.R. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar:a possible mechanism involved in soilborne disease suppression. Soil Biol. Biochem. 2018, 121, 59–66. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.L.; Gao, J.; Guo, J.X.; Zhao, X.S.; Zhou, Y.F. Ginsenosides and ginsenosidases in the pathobiology of ginseng-Cylindrocarpon destructans (Zinss) Scholten. Plant Physiol. Biochem. 2018, 123, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.M.; Qin, X.J.; Wu, H.M.; Li, F.; Wu, J.C.; Zheng, L.; Wang, J.Y.; Chen, J.; Zhao, Y.L.; Lin, S.; et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture. Chemosphere 2020, 246, 125835. [Google Scholar] [CrossRef]
- Jin, X.; Bai, Y.; Rahman, M.K.; Kang, X.; Pan, K.; Wu, F.; Pommier, T.; Zhou, X.; Wei, Z. Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against Fusarium wilt. iMeta 2022, 1, e37. [Google Scholar] [CrossRef] [PubMed]
- Graber, E.R.; Tsechansky, L.; Mayzlish-Gati, E.; Shema, R.; Koltai, H. A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions. Plant Soil 2015, 395, 21–30. [Google Scholar] [CrossRef]
- Sun, J.L.; Drosos, M.; Mazzei, P.; Savy, D.; Todisco, D.; Vinci, G.; Pan, G.X.; Piccolo, A. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Sci. Total Environ. 2017, 576, 858–867. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Alkan, N.; Elad, Y.; Sela, N.; Philosoph, A.M.; Graber, E.R.; Frenkel, O. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci. Rep. 2020, 10, 13934. [Google Scholar] [CrossRef]
- Kong, M.M.; Liang, J.; White, J.C.; Elmer, W.H.; Wang, Y.; Xu, H.L.; He, W.X.; Shen, Y.; Gao, X.W. Biochar nanoparticle-induced plant immunity and its application with the elicitor methoxyindole in Nicotiana benthamiana. Environ. Sci. -Nano 2022, 9, 3514–3524. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, L.; Wang, M.; Sun, S.; Yang, Y.; Xu, C. Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability 2024, 16, 6397. [Google Scholar] [CrossRef]
- Burkey, K.O.; Booker, F.L.; Pursley, W.A.; Heagle, A.S. Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci. 2007, 47, 1488–1497. [Google Scholar] [CrossRef]
- Ghannadzadeh, A.M. The Effect of Irrigation Regime and Nitrogen Fertilizer on Seed Yield and Qualitative Characteristics of Peanut (Arachis hypogaea L.) (Case Study of Gilan Province, Iran). Ph.D. Thesis, Ferdowsi University Of Mashhad, Mashhad, Iran, 2015. [Google Scholar]
- Ibrahim, M.M.; Hu, K.; Tong, C.; Xing, S.; Zou, S.; Mao, Y. De-ashed biochar enhances nitrogen retention in manured soil and changes soil microbial dynamics. Geoderma 2020, 378, 114589. [Google Scholar] [CrossRef]
- Barbour, J.A.; Howe, P.R.C.; Buckley, J.D.; Bryan, J.; Coates, A.M. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr. Neurosci. 2017, 20, 555–562. [Google Scholar] [PubMed]
- Teng, W.; Li, Q.; Wan, S.; Zhang, S.; Liu, Q.; Liu, J.; Zhen, A.; Sun, D.; Gong, X.; Lv, C.; et al. Industry Standard of High Oleic Acid Peanut. 2018. Available online: https://std.samr.gov.cn (accessed on 27 July 2018).
- Seleiman, M.F.; Refay, Y.; Al-Suhaibani, N.; AI-Ashkar, I.; EI-Hendawy, S.; Hafez, E.M. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy 2019, 2019, 637. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, M.N.; Zhang, K.; Luo, T.; Zhu, K.; Hu, L. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Ind. Crop. Prod. 2021, 171, 113878. [Google Scholar] [CrossRef]
- Vigar, M.; Hancock, R.D.; Miglietta, F.; Taylor, G. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Glob. Chang. Biol. Bioenergy 2015, 7, 658–672. [Google Scholar] [CrossRef]
- Gómez, P.G.; Moreno, D.A.; Conesa, E.; Ballesta, M.E.C.M. Effect of Biochar Amendment and Organic Fertilization on the Yield and Nutritional Quality of Artichoke (Cynara cardunculus L.). Horticulturae 2024, 10, 910. [Google Scholar] [CrossRef]
- Buss, W.; Grahamb, M.C.; MacKinnonc, G.; Masek, O. Strategies for producing biochars with minimum PAH contamination. J. Anal. Appl. Pyrolysis 2016, 119, 24–30. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Shackley, S.J.; Sohi, S.P. (Eds.) An Assessment of the Benefits and Issues Associated with the Application of Biochar to Soil; Department for Environment, Food and Rural Affairs: London, UK, 2010. [Google Scholar]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 112, pp. 103–143. [Google Scholar]
- Wang, J.; Xia, K.; Waigi, M.G.; Gao, Y.; Odinga, E.S.; Ling, W.; Liu, J. Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. Environ. Int. 2018, 121, 169–177. [Google Scholar] [CrossRef]
- IBI, Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Norfolk, VA, USA, 2015.
- Schmidt, H.P.; Bucheli, T.; Kammann, C.; Glaser, B.; Abiven, S.; Leifeld, J. European Biochar Certificate-Guidelines for a Sustainable Production of Biochar; Carbon Standards International (CSI): Frick, Switzerland, 2016. [Google Scholar]
- Yao, C.; Wang, B.; Zhang, J.; Faheem, M.; Feng, Q.; Hassan, M.; Zhang, X.; Lee, X.; Wang, S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. J. Environ. Manag. 2024, 357, 14. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczak, A.; Dybowski, M.P.; Konczak, M.; Czech, B. Low bioavailability of derivatives of polycyclic aromatic hydrocarbons in biochar obtained from different feedstock. Environ. Res. 2022, 214, 113787. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczak, A.; Dybowski, M.P.; Zarzycki, R.; Kobyłecki, R.; Oleszczuk, P.; Czech, B. Long-term physical and chemical aging of biochar affected the amount and bioavailability of PAHs and their derivatives. J. Hazard Mater. 2022, 440, 129795. [Google Scholar] [CrossRef]
- Lyu, H.; He, Y.; Tang, J.; Hecker, M.; Liu, Q.; Jones, P.D.; Codling, G.; Giesy, J.P. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environ. Pollut. 2016, 218, 1–7. [Google Scholar] [CrossRef]
- Asad, A.; Manish, K.; Mohapatra, S.; Kumar, S.; Chitta, S.; Panda, R. Co-plasma processing of banana peduncle with phosphogypsum waste for production of lesser toxic potassium—Sulfur rich biochar. J. Mater. Cycles Waste Manag. 2019, 21, 107–115. [Google Scholar]
- Digman, B.; Joo, H.S.; Kim, D.S. Recent progress in gasification/pyrolysis technologies for biomass conversion to energy, Environ. Prog. Sustain. Energy 2009, 28, 47–51. [Google Scholar] [CrossRef]



| Authors and Year | Change in Crop Productivity | Observation | Experiment |
|---|---|---|---|
| Amirahmadi et al. (2025) [38] | Yield: 16.2% | 1166 | Field |
| Singh et al. (2022) [18] | Crop yield: 32% | 110 | Pot and field |
| Zhang et al. (2022 ) [39] | Crop productivity: 13% | 691 | Field |
| Liu et al. (2022) [40] | Yield: 10.7% | 378 | Pot and field |
| Farhangi-Abriz et al. (2021) [41] | Grain yield: maize—28%; wheat—13% | 296 | Field |
| Dai et al. (2020) [42] | Plant productivity: 16% | 1254 | Pot and field |
| Liu et al. (2019) [43] | Yield: 15.4% | 605 | Field |
| Ye et al. (2019) [44] | Yield: 9.9% | 232 | Field |
| Jeffery et al. (2017) [45] | Yield: 13% | 1125 | Pot and field |
| Biederman and Harpole (2013) [25] | Biomassag: 29.7%; biomassbg: 39.9%; yield: 18.7% | 317 | Pot and field |
| Liu et al. (2013) [46] | Biomass: 12.5%; yield: 8.4% | 880 | Pot and field |
| Jeffery et al. (2011) [47] | Biomassag and grain yield: 10% | 177 | Pot and field |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, C.; Shang, S.; Ma, J.; Shan, S.; Yue, Q.; Li, L.; Pan, G. Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants. Plants 2025, 14, 3273. https://doi.org/10.3390/plants14213273
Liu C, Wang C, Shang S, Ma J, Shan S, Yue Q, Li L, Pan G. Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants. Plants. 2025; 14(21):3273. https://doi.org/10.3390/plants14213273
Chicago/Turabian StyleLiu, Cheng, Chao Wang, Shijie Shang, Jingyu Ma, Shengdao Shan, Qian Yue, Lianqing Li, and Genxing Pan. 2025. "Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants" Plants 14, no. 21: 3273. https://doi.org/10.3390/plants14213273
APA StyleLiu, C., Wang, C., Shang, S., Ma, J., Shan, S., Yue, Q., Li, L., & Pan, G. (2025). Biochar-Assisted Agriculture: From Healthy Soil to Healthy Plants. Plants, 14(21), 3273. https://doi.org/10.3390/plants14213273
