In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts
Abstract
1. Introduction
2. Results
2.1. Induction of Embryogenic Calluses
2.2. Plant Regeneration from Embryogenic Calluses
2.3. Protoplasts Isolation, Cultivation, and Regeneration
3. Discussion
4. Materials and Methods
4.1. Plant Material and Sterilization
4.2. Cultivation of Stames and Pistils
4.3. Callus Propagation and Regeneration
4.4. Protoplasts Isolation
4.5. Protoplasts Cultivation for Somatic Embryogenesis
5. Conclusions
- -
- ‘Nero d’Avola’, ‘Carricante’, ‘Catarratto’, and ‘Frappato’ embryogenic calluses were obtained from pistils and stamens cultured in MSII induction medium, with callus induction efficiency reaching up to 7.95% in ‘Nero d’Avola’;
- -
- ‘Nero d’Avola’, ‘Frappato’, and ‘Carricante’ plants were successfully regenerated from embryogenic calluses, with plant regeneration efficiency reaching up to 52.2% in ‘Carricante’;
- -
- ‘Nero d’Avola’ and ‘Frappato’ protoplasts were successfully isolated with yields reaching up to 5.9 × 106 in ‘Nero d’Avola’.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT: Food and Agriculture Data. In Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/faostat/en/#home (accessed on 10 January 2025).
- OIV. International Organization of Vine and Wine. Available online: https://www.oiv.int/ (accessed on 10 January 2025).
- Butiuc-Keul, A.; Coste, A. Biotechnologies and Strategies for Grapevine Improvement. Horticulturae 2023, 9, 62. [Google Scholar] [CrossRef]
- Bigard, A.; Berhe, D.T.; Maoddi, E.; Sire, Y.; Boursiquot, J.-M.; Ojeda, H.; Péros, J.-P.; Doligez, A.; Romieu, C.; Torregrosa, L. Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes. Front. Plant Sci. 2018, 9, 455. [Google Scholar] [CrossRef]
- MASAF—Ministry of Agriculture, Food Sovereignty and Forests. Available online: https://en.wikipedia.org/wiki/Ministry_of_Agriculture,_Food_Sovereignty_and_Forests (accessed on 10 January 2025).
- Armijo, G.; Schlechter, R.; Agurto, M.; Muñoz, D.; Nuñez, C.; Arce-Johnson, P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef] [PubMed]
- Romadanova, N.V.; Aralbayeva, M.M.; Zemtsova, A.S.; Alexandrova, A.M.; Kazybayeva, S.Z.; Mikhailenko, N.V.; Kushnarenko, S.V.; Bettoni, J.C. In Vitro Collection for the Safe Storage of Grapevine Hybrids and Identification of the Presence of Plasmopara Viticola Resistance Genes. Plants 2024, 13, 1089. [Google Scholar] [CrossRef]
- Liviz, C.D.A.M.; Maciel, G.M.; Pinheiro, D.F.; Lima, N.F.; Ribeiro, I.S.; Haminiuk, C.W.I. Pesticide Residues in Grapes and Wine: An Overview on Detection, Health Risks, and Regulatory Challenges. Food Res. Int. 2025, 203, 115771. [Google Scholar] [CrossRef]
- Pirrello, C.; Magon, G.; Palumbo, F.; Farinati, S.; Lucchin, M.; Barcaccia, G.; Vannozzi, A. Past, Present, and Future of Genetic Strategies to Control Tolerance to the Main Fungal and Oomycete Pathogens of Grapevine. J. Exp. Bot. 2023, 74, 1309–1330. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Marković, Z.; Bi, W.; Volk, G.M.; Matsumoto, T.; Wang, Q.-C. Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. Plants 2021, 10, 2190. [Google Scholar] [CrossRef]
- Limera, C.; Sabbadini, S.; Sweet, J.B.; Mezzetti, B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. Front. Plant Sci. 2017, 8, 1418. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Malnoy, M.; Gribaudo, I. Breeding next Generation Tree Fruits: Technical and Legal Challenges. Hortic. Res. 2017, 4, 17067. [Google Scholar] [CrossRef]
- Olivares, F.; Loyola, R.; Olmedo, B.; Miccono, M.D.L.Á.; Aguirre, C.; Vergara, R.; Riquelme, D.; Madrid, G.; Plantat, P.; Mora, R.; et al. CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. Cv. Thompson Seedless Using Geminivirus-Derived Replicons. Front. Plant Sci. 2021, 12, 791030. [Google Scholar] [CrossRef]
- Scintilla, S.; Salvagnin, U.; Giacomelli, L.; Zeilmaker, T.; Malnoy, M.A.; Rouppe van der Voort, J.; Moser, C. Regeneration of Non-Chimeric Plants from DNA-Free Edited Grapevine Protoplasts. Front. Plant Sci. 2022, 13, 1078931. [Google Scholar] [CrossRef]
- Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Kanchiswamy, C.N. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Osakabe, Y.; Liang, Z.; Ren, C.; Nishitani, C.; Osakabe, K.; Wada, M.; Komori, S.; Malnoy, M.; Velasco, R.; Poli, M.; et al. CRISPR–Cas9-Mediated Genome Editing in Apple and Grapevine. Nat. Protoc. 2018, 13, 2844–2863. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.; Bertini, E.; D’Incà, E.; Fasoli, M.; Zenoni, S. DNA-Free Genome Editing in Grapevine Using CRISPR/Cas9 Ribonucleoprotein Complexes Followed by Protoplast Regeneration. Hortic. Res. 2023, 10, uhac240. [Google Scholar] [CrossRef]
- Tricoli, D.M.; Debernardi, J.M. An Efficient Protoplast-Based Genome Editing Protocol for Vitis Species. Hortic. Res. 2024, 11, uhad266. [Google Scholar] [CrossRef]
- Bertini, E.; D’Incà, E.; Zattoni, S.; Lissandrini, S.; Cattaneo, L.; Ciffolillo, C.; Amato, A.; Fasoli, M.; Zenoni, S. Transgene-Free Genome Editing in Grapevine. Bio. Protoc. 2025, 15, e5190. [Google Scholar] [CrossRef]
- Gambino, G.; Nuzzo, F.; Moine, A.; Chitarra, W.; Pagliarani, C.; Petrelli, A.; Boccacci, P.; Delliri, A.; Velasco, R.; Nerva, L.; et al. Genome Editing of a Recalcitrant Wine Grape Genotype by Lipofectamine-Mediated Delivery of CRISPR/Cas9 Ribonucleoproteins to Protoplasts. Plant J. 2024, 119, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Maldolesi, A. Italy Tests First Gene-Edited Vines for Winemaking. Nat. Biotechnol. 2024, 42, 1625–1632. [Google Scholar] [CrossRef]
- Moffa, L.; Mannino, G.; Bevilacqua, I.; Gambino, G.; Perrone, I.; Pagliarani, C.; Bertea, C.M.; Spada, A.; Narduzzo, A.; Zizzamia, E.; et al. CRISPR/Cas9-Driven Double Modification of Grapevine MLO6-7 Imparts Powdery Mildew Resistance, While Editing of NPR3 Augments Powdery and Downy Mildew Tolerance. Plant J. 2025, 122, e17204. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Lin, Y.; Liang, Z. CRISPR/Cas Genome Editing in Grapevine: Recent Advances, Challenges and Future Prospects. Fruit Res. 2022, 2, 7. [Google Scholar] [CrossRef]
- Carra, A.; Carimi, F.; Bettoni, J.C.; Pathirana, R. Progress and Challenges in the Application of Synthetic Seed Technology for Ex Situ Germplasm Conservation in Grapevine (Vitis spp.). In Synthetic Seeds; Springer International Publishing: Cham, Switzerland, 2019; pp. 439–467. [Google Scholar]
- Capriotti, L.; Limera, C.; Mezzetti, B.; Ricci, A.; Sabbadini, S. From Induction to Embryo Proliferation: Improved Somatic Embryogenesis Protocol in Grapevine for Italian Cultivars and Hybrid Vitis Rootstocks. Plant Cell Tissue Organ Cult. 2022, 151, 221–233. [Google Scholar] [CrossRef]
- Capriotti, L.; Ricci, A.; Molesini, B.; Mezzetti, B.; Pandolfini, T.; Piunti, I.; Sabbadini, S. Efficient Protocol of de Novo Shoot Organogenesis from Somatic Embryos for Grapevine Genetic Transformation. Front. Plant Sci. 2023, 14, 1172758. [Google Scholar] [CrossRef]
- Forleo, L.R.; D’amico, M.; Basile, T.; Marsico, A.D.; Cardone, M.F.; Maggiolini, F.A.M.; Velasco, R.; Bergamini, C. Somatic Embryogenesis in Vitis for Genome Editing: Optimization of Protocols for Recalcitrant Genotypes. Horticulturae 2021, 7, 511. [Google Scholar] [CrossRef]
- Stamp, J.A.; Meredith, C.P. Somatic Embryogenesis from Leaves and Anthers of Grapevine. Sci. Hortic. 1988, 35, 235–250. [Google Scholar] [CrossRef]
- Franks, T.; Gang He, D.; Thomas, M. Regeneration of Transgenic Vitis vinifera L. Sultana Plants: Genotypic and Phenotypic Analysis. Mol. Breed. 1998, 4, 321–333. [Google Scholar] [CrossRef]
- Nakajima, I.; Ban, Y.; Azuma, A.; Onoue, N.; Moriguchi, T.; Yamamoto, T.; Toki, S.; Endo, M. CRISPR/Cas9-Mediated Targeted Mutagenesis in Grape. PLoS ONE 2017, 12, e0177966. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Ruffa, P.; Vallania, R.; Gribaudo, I. Somatic Embryogenesis from Whole Flowers, Anthers and Ovaries of Grapevine (Vitis spp.). Plant Cell Tissue Organ Cult. 2007, 90, 79–83. [Google Scholar] [CrossRef]
- Maillot, P.; Kieffer, F.; Walter, B. Somatic Embryogenesis from Stem Nodal Sections of Grapevine. Vitis 2006, 45, 185. [Google Scholar]
- Dhekney, S.A.; Li, Z.T.; Dutt, M.; Gray, D.J. Agrobacterium-Mediated Transformation of Embryogenic Cultures and Plant Regeneration in Vitis rotundifolia Michx. (Muscadine Grape). Plant Cell Rep. 2008, 27, 865–872. [Google Scholar] [CrossRef]
- Li, Z.; Jayasankar, S.; Gray, D.J. Expression of a Bifunctional Green Fluorescent Protein (GFP) Fusion Marker under the Control of Three Constitutive Promoters and Enhanced Derivatives in Transgenic Grape (Vitis vinifera). Plant Sci. 2001, 160, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, L.; Zeilmaker, T.; Giovannini, O.; Salvagnin, U.; Masuero, D.; Franceschi, P.; Vrhovsek, U.; Scintilla, S.; Rouppe van der Voort, J.; Moser, C. Simultaneous Editing of Two DMR6 Genes in Grapevine Results in Reduced Susceptibility to Downy Mildew. Front. Plant Sci. 2023, 14, 1242240. [Google Scholar] [CrossRef]
- Li, M.Y.; Jiao, Y.T.; Wang, Y.T.; Zhang, N.; Wang, B.B.; Liu, R.Q.; Yin, X.; Xu, Y.; Liu, G.T. CRISPR/Cas9-Mediated VvPR4b Editing Decreases Downy Mildew Resistance in Grapevine (Vitis vinifera L.). Hortic. Res. 2020, 7, 149. [Google Scholar] [CrossRef]
- Nakajima, I.; Endo, M.; Haji, T.; Moriguchi, T.; Yamamoto, T. Embryogenic Callus Induction and Agrobacterium-Mediated Genetic Transformation of ‘Shine Muscat’ Grape. Plant Biotechnol. 2020, 37, 185–194. [Google Scholar] [CrossRef]
- Wan, D.Y.; Guo, Y.; Cheng, Y.; Hu, Y.; Xiao, S.; Wang, Y.; Wen, Y.Q. CRISPR/Cas9-Mediated Mutagenesis of VvMLO3 Results in Enhanced Resistance to Powdery Mildew in Grapevine (Vitis vinifera). Hortic. Res. 2020, 7, 116. [Google Scholar] [CrossRef]
- Wang, X.; Tu, M.; Wang, Y.; Yin, W.; Zhang, Y.; Wu, H.; Gu, Y.; Li, Z.; Xi, Z.; Wang, X. Whole-Genome Sequencing Reveals Rare off-Target Mutations in CRISPR/Cas9-Edited Grapevine. Hortic. Res. 2021, 8, 114. [Google Scholar] [CrossRef]
- Bertini, E.; Tornielli, G.B.; Pezzotti, M.; Zenoni, S. Regeneration of Plants from Embryogenic Callus-Derived Protoplasts of Garganega and Sangiovese Grapevine (Vitis vinifera L.) Cultivars. Plant Cell Tissue Organ Cult. 2019, 138, 239–246. [Google Scholar] [CrossRef]
- Böttcher, C.; McDavid, D.; Jermakow, A.M.; Iocco-Corena, P.; Arunasiri, N.; Maffei, S.M.; Boss, P.K. Efficient DNA-Free Protoplast Gene Editing of Elite Winegrape Cultivars for the Generation of Clones with Reduced Downy Mildew Susceptibility. Aust. J. Grape Wine Res. 2025, 2025, 8867814. [Google Scholar] [CrossRef]
- Catalano, C.; Abbate, L.; Motisi, A.; Crucitti, D.; Cangelosi, V.; Pisciotta, A.; Di Lorenzo, R.; Carimi, F.; Carra, A. Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata. Cells 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Barrera, M.; Olmedo, B.; Narváez, M.; Moenne-Locoz, F.; Rubio, A.; Pérez, C.; Cordero-Lara, K.; Prieto, H. Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars. Plants 2025, 14, 2059. [Google Scholar] [CrossRef] [PubMed]
- Dhekney, S.A.; Li, Z.T.; Compton, M.E.; Gray, D.J. Optimizing Initiation and Maintenance of Vitis Embryogenic Cultures. HortScience 2009, 44, 1400–1406. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Nie, Y.; Jin, S.; Liang, S. Factors Affecting Somatic Embryogenesis and Plant Regeneration from a Range of Recalcitrant Genotypes of Chinese Cottons (Gossypium hirsutum L.). Vitr. Cell. Dev. Biol.-Plant 2004, 40, 371–375. [Google Scholar] [CrossRef]
- Skoog, F. Chemical Regulation of Growth and Organ Formation in Plant Tissue Cultured in Vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–131. [Google Scholar]
- Martínez, Ó.; Arjones, V.; González, M.V.; Rey, M. Histone Deacetylase Inhibitors Increase the Embryogenic Potential and Alter the Expression of Embryogenesis-Related and Hdac-Encoding Genes in Grapevine (Vitis vinifera L., Cv. Mencía). Plants 2021, 10, 1164. [Google Scholar] [CrossRef]
- Permadi, N.; Akbari, S.I.; Prismantoro, D.; Indriyani, N.N.; Nurzaman, M.; Alhasnawi, A.N.; Doni, F.; Julaeha, E. Traditional and Next-Generation Methods for Browning Control in Plant Tissue Culture: Current Insights and Future Directions. Curr. Plant Biol. 2024, 38, 100339. [Google Scholar] [CrossRef]
- Zhou, Q.; Dai, L.; Cheng, S.; He, J.; Wang, D.; Zhang, J.; Wang, Y. A Circulatory System Useful Both for Long-Term Somatic Embryogenesis and Genetic Transformation in Vitis vinifera L. Cv. Thompson Seedless. Plant Cell Tissue Organ Cult. 2014, 118, 157–168. [Google Scholar] [CrossRef]
- Nuzzo, F.; Gambino, G.; Perrone, I. Unlocking Grapevine in Vitro Regeneration: Issues and Perspectives for Genetic Improvement and Functional Genomic Studies. Plant Physiol. Biochem. 2022, 193, 99–109. [Google Scholar] [CrossRef]
- Mullins, M.G.; Rajasekaran, K. Fruiting Cuttings: Revised Method for Producing Test Plants of Grapevine Cultivars. Am. J. Enol. Vitic. 1981, 32, 35–40. [Google Scholar] [CrossRef]
- Baby, T.; Hocking, B.; Tyerman, S.D.; Gilliham, M.; Collins, C. Modified Method for Producing Grapevine Plants in Controlled Environments. Am. J. Enol. Vitic. 2014, 65, 261–267. [Google Scholar] [CrossRef]
- Gribaudo, I.; Gambino, G.; Vallania, R. Somatic Embryogenesis from Grapevine Anthers: The Optimal Developmental Stage for Collecting Explants. Am. J. Enol. Vitic. 2004, 55, 427–430. [Google Scholar] [CrossRef]
- Gambino, G.; Gribaudo, I.; Leopold, S.; Schartl, A.; Laimer, M. Molecular Characterization of Grapevine Plants Transformed with GFLV Resistance Genes: I. Plant Cell Rep. 2005, 24, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sintra, A.L. Establishment of Embryogenic Cultures and Plant Regeneration in the Portuguese Cultivar “Touriga Nacional” of Vitis vinifera L. Plant Cell Tissue Organ Cult. 2007, 88, 253–265. [Google Scholar] [CrossRef]
- Nitsch, J.P.; Nitsch, C. Haploid Plants from Pollen Grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Iocco, P.; Franks, T.; Thomas, M.R. Genetic Transformation of Major Wine Grape Cultivars of Vitis vinifera L. Transgenic Res. 2001, 10, 105–112. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Zhu, Y.-M.; Hoshino, Y.; Nakanob, M.; Takahashi’, E.; Mii, M. Highly Efficient System of Plant Regeneration from Protoplasts of Grapevine (Vitis vinifera L.) through Somatic Embryogenesis by Using Embryogenic Callus Culture and Activated Charcoal. Plant Sci. 1997, 123, 151–157. [Google Scholar] [CrossRef]




| Cultivar | Pollen Stage | Percentage of Callus Induction (%) | |||
|---|---|---|---|---|---|
| MSII | PIV | ||||
| Stamens | Pistils | Stamens | Pistils | ||
| ‘Carricante’ | mother cells | 3.03 | 7.29 | - * | - |
| tetrads | 0.64 | 1.00 | - | 0.96 | |
| pollen | 1.92 | 1.92 | 0.57 | - | |
| ‘Catarratto’ | mother cells | 1.40 | 2.88 | - | - |
| tetrads | 0.20 | - | - | - | |
| pollen | 0.17 | 0.96 | - | - | |
| ‘Frappato’ | mother cells | 0.20 | - | - | - |
| tetrads | 1.50 | - | - | - | |
| pollen | - | - | - | - | |
| ‘Grillo’ | mother cells | 0.65 | - | 0.16 | - |
| tetrads | 0.60 | - | 0.12 | - | |
| pollen | - | - | 0.17 | - | |
| ‘Nerello mascalese’ | mother cells | - | - | 0.32 | - |
| tetrads | - | - | - | - | |
| pollen | - | - | - | - | |
| ’Nero d’Avola’ | mother cells | 1.03 | 7.95 | - | - |
| tetrads | 1.54 | 2.23 | 0.17 | - | |
| pollen | 1.36 | 1.25 | - | - | |
| Cultivar | Total Amount of Starting Embryogenic Calluses (g) | No. Embryos Obtained | No. Embryos per Gram of Starting Embryogenic Calluses | No. Plants Obtained | No. Plants per Gram of Starting Embryogenic Calluses |
|---|---|---|---|---|---|
| ‘Carricante’ | 0.516 | 93 | 180.2 | 12 | 23.3 |
| ‘Frappato’ | 0.301 | 25 | 83.1 | 3 | 10.0 |
| ‘Nero d’Avola’ | 0.430 | 5 | 11.6 | 4 | 9.3 |
| PIV | MSII | |
|---|---|---|
| MACROELEMENTS | NN [56] * | MS [57] * |
| MICROELEMENTS | MS * | MS * |
| VITAMINS | MS * | MS * |
| SUCROSE ** | 60 g/L | 20 g/L |
| 2,4-DICHLOROPHENOXYACETIC ACID ** | 4.5 µM | 2.5 µM |
| 6-BENZYLAMINOPURINE ** | 8.9 µM | 5 µM |
| 2-NAPHTHOXYACETIC ACID ** | none | 2.5 µM |
| pH | 5.8 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ereddia, V.; Catalano, C.; Salonia, F.; Poles, L.; Bertini, E.; Zenoni, S.; Sparacio, A.; Oliva, D.; Nicolosi, E.; Gentile, A. In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts. Plants 2025, 14, 3262. https://doi.org/10.3390/plants14213262
Ereddia V, Catalano C, Salonia F, Poles L, Bertini E, Zenoni S, Sparacio A, Oliva D, Nicolosi E, Gentile A. In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts. Plants. 2025; 14(21):3262. https://doi.org/10.3390/plants14213262
Chicago/Turabian StyleEreddia, Valeria, Chiara Catalano, Fabrizio Salonia, Lara Poles, Edoardo Bertini, Sara Zenoni, Antonio Sparacio, Daniele Oliva, Elisabetta Nicolosi, and Alessandra Gentile. 2025. "In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts" Plants 14, no. 21: 3262. https://doi.org/10.3390/plants14213262
APA StyleEreddia, V., Catalano, C., Salonia, F., Poles, L., Bertini, E., Zenoni, S., Sparacio, A., Oliva, D., Nicolosi, E., & Gentile, A. (2025). In Vitro Regeneration of Southern Italian Grapevine Cultivars from Embryogenic Calluses and Protoplasts. Plants, 14(21), 3262. https://doi.org/10.3390/plants14213262

