Bioactive Glycosylated Flavonoids Exhibiting LXR Agonist Activity from a Lauraceae Colombian Species
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification of the Metabolites
2.2. Evaluation of Hydrolysis Conditions
2.3. Molecular Docking into the Agonist Binding Sites of LXRα and LXRβ Receptors
2.4. In Vitro Upregulation of LXR Target Genes by N. reticulata Extracted Compounds
3. Material and Methods
3.1. Chemicals and Standards
3.2. Plant Material and Extraction
3.3. Acid Hydrolysis of the Plant Extract
3.4. Identification of Metabolites
3.5. Molecular Docking
3.6. In Vitro Upregulation of LXR Target Genes by N. reticulata Extracted Compounds
3.7. Cell Culture and Viability
3.8. Real-Time Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LXRs | Liver X Receptors |
| ApoE | Apolipoprotein E |
| ABCA1 | ABC Transporter Protein Member 1 |
| AD | Alzheimer Diseases |
| RP | Reversed Phase |
| UHPLC | Ultra High Performance Liquid Chromatography |
| DAD | Diode Array Detector |
| ESI-HR-MS | High Resolution Mass Spectrometry with Electrospray ionization |
| qRT-PCR | Real Time Reverse Transcription Polymerase Chain Reaction |
| RNA | Ribonucleic Acid |
| mRNA | Messenger Ribonucleic Acid |
| LXRα | Liver X Receptors Alpha |
| LXRβ | Liver X Receptors Beta |
| a.m.u. | Atomic Mass Unit |
| HPLC | High Performance Liquid Chromatography |
| HCl | Hydrochloric Acid |
| Q-TOF | Quadrupole Time of Flight |
References
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 6 October 2025).
- Calabro, M.; Rinaldi, C.; Santoro, G.; Crisafulli, C. The Biological Pathways of Alzheimer Disease: A Review. AIMS Neurosci. 2021, 8, 86–132. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, E.; Rajmohan, V.; Raghunath, B. Neurobiology of Alzheimer’s Disease. Indian J. Psychiatry 2009, 51, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Hernández, A.G.; Buitrago, L.; Moreno, H.; Cardona-Gómez, G.P.; Arboleda, G. Role of Liver X Receptor in AD Pathophysiology. PLoS ONE 2015, 10, e0145467. [Google Scholar] [CrossRef]
- Riddell, D.R.; Zhou, H.; Comery, T.A.; Kouranova, E.; Lo, C.F.; Warwick, H.K.; Ring, R.H.; Kirksey, Y.; Aschmies, S.; Xu, J.; et al. The LXR Agonist TO901317 Selectively Lowers Hippocampal Abeta42 and Improves Memory in the Tg2576 Mouse Model of Alzheimer’s Disease. Mol. Cell Neurosci. 2007, 34, 621–628. [Google Scholar] [CrossRef]
- Sodhi, R.K.; Singh, N. Liver X Receptors: Emerging Therapeutic Targets for Alzheimer’s Disease. Pharmacol. Res. 2013, 72, 45–51. [Google Scholar] [CrossRef]
- Koldamova, R.; Lefterov, I. Role of LXR and ABCA1 in the Pathogenesis of Alzheimer’s Disease-Implications for a New Therapeutic Approach. Curr. Alzheimer Res. 2007, 4, 171–178. [Google Scholar] [CrossRef]
- Bustos-Rangel, A.; Muñoz-Cabrera, J.; Cuca, L.; Arboleda, G.; Ávila Murillo, M.; Sandoval-Hernández, A.G. Neuroprotective and Antioxidant Activities of Colombian Plants against Paraquat and C2-Ceramide Exposure in SH-SY5Y Cells. Front. Nat. Prod. 2023, 2, 1–16. [Google Scholar] [CrossRef]
- Teuta, J.P.; Narváez-Cuenca, C.-E.; Avila-Murillo, M. A High-Performance Liquid Chromatography Method Validation and a Box–Behnken Experimental Design for the Extraction Optimization of Quercitrin from Nectandra reticulata. RSC Adv. 2024, 14, 21874–21886. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Lorenzi, H.; Tempone, A.G.; Lago, J.H.G. Update: Biological and Chemical Aspects of Nectandra Genus (Lauraceae). Tetrahedron Asymmetry 2016, 27, 793–810. [Google Scholar] [CrossRef]
- Ferrini, L.; Rodríguez, J.P.; Melana-Colavita, J.P.; Olea, G.; Ojeda, G.A.; Ricciardi, G.; Torres, A.M.; Aguirre, M.V. Anti-inflammatory activity of Nectandra angustifolia (Laurel Amarillo) ethanolic extract. J. Ethnopharmacol. 2021, 272, 113937. [Google Scholar] [CrossRef]
- Rattanajarasroj, S.; Unchern, S. Comparable Attenuation of Abeta (25–35)-Induced Neurotoxicity by Quercitrin and 17-beta-Estradiol in Cultured Rat Hippocampal Neurons. Neurochem. Res. 2010, 35, 1196–1205. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Miao, Z.; Jiang, X.; Zheng, Y.; Yang, G. Quercitrin Improved Cognitive Impairment through Inhibiting Inflammation Induced by Microglia in Alzheimer’s Disease Mice. Neuroreport 2022, 33, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, T.C.; Rogez, H.; Silva, E.M.; Souza, J.N.S. Optimization of Acid Hydrolysis of Myricetin-3-O-Rhamnoside Using Response Surface Methodology. J. Braz. Chem. Soc. 2018, 29, 2475–2481. [Google Scholar] [CrossRef]
- Taniguchi, M.; LaRocca, C.A.; Bernat, J.D.; Lindsey, J.S. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J. Nat. Prod. 2023, 86, 1087–1119. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. (Eds.) The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; pp. 41–164. [Google Scholar]
- Greenham, J.; Harborne, J.B.; Williams, C.A. Identification of Lipophilic Flavones and Flavonols by Comparative HPLC, TLC and UV Spectral Analysis. Phytochem. Anal. 2003, 14, 100–118. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of Flavone, Flavonol, and Flavanone Aglycones by Negative Ion Liquid Chromatography Electrospray Ion Trap Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Osztie, R.; Czeglédi, T.; Ross, S.; Stipsicz, B.; Kalydi, E.; Béni, S.; Boldizsár, I.; Riethmüller, E.; Bősze, S.E.; Alberti, Á. Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols. Int. J. Mol. Sci. 2024, 25, 6930. [Google Scholar] [CrossRef] [PubMed]
- Kazuno, S.; Yanagida, M.; Shindo, N.; Murayama, K. Mass Spectrometric Identification and Quantification of Glycosyl Flavonoids, Including Dihydrochalcones with Neutral Loss Scan Mode. Anal. Biochem. 2005, 347, 182–192. [Google Scholar] [CrossRef]
- Szymborska, K.; Frański, R.; Gierczyk, B.; Beszterda-Buszczak, M. Extremely Rare Flavonoid Glycosides Identified in the Stems of Ephedra Gerardiana by HPLC-MS and Their Antioxidant Activity. Int. J. Mol. Sci. 2025, 26, 3097. [Google Scholar] [CrossRef]
- Bárbosa-Filho, J.M.; Silva, M.S.D.; Yoshida, M.; Gottlieb, O.R. Neolignans from Licaria aurea. Phytochemistry 1989, 28, 2209–2211. [Google Scholar] [CrossRef]
- Garcez, F.R.; Garcez, W.S.; Martins, M.; Cruz, A.C. A Bioactive Lactone from Nectandra gardneri. Planta Med. 1999, 65, 775. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Bolzani, V.d.S.; Yoshida, M.; Santos, L.S.; Eberlin, M.N.; Silva, D.H.S. A New Neolignan and Antioxidant Phenols from Nectandra grandiflora. J. Braz. Chem. Soc. 2005, 16, 526–530. [Google Scholar] [CrossRef]
- Felipe, D.F.; Brambilla, L.Z.S.; Porto, C.; Pilau, E.J.; Cortez, D.A.G. Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules 2014, 19, 15720–15734. [Google Scholar] [CrossRef] [PubMed]
- Conserva, G.A.; Costa-Silva, T.A.; Quirós-Guerrero, L.M.; Marcourt, L.; Wolfender, J.-L.; Queiroz, E.F.; Tempone, A.G.; Lago, J.H.G. Kaempferol-3-O-α-(3,4-Di-E-p-Coumaroyl)-Rhamnopyranoside from Nectandra oppositifolia Releases Ca2+ from Intracellular Pools of Trypanosoma Cruzi Affecting the Bioenergetics System. Chem. Biol. Interact. 2021, 349, 109661. [Google Scholar] [CrossRef]
- Macías-Villamizar, V.E.; Cuca-Suárez, L.E.; Coy-Barrera, E.D. Genus Nectandra: “Phytochemistry and Biological Activity”. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 27, 317–342. [Google Scholar]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the Biotechnological Glycosylation of Valuable Flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef]
- Yin, R.; Messner, B.; Faus-Kessler, T.; Hoffmann, T.; Schwab, W.; Hajirezaei, M.-R.; von Saint Paul, V.; Heller, W.; Schäffner, A.R. Feedback Inhibition of the General Phenylpropanoid and Flavonol Biosynthetic Pathways upon a Compromised Flavonol-3-O-Glycosylation. J. Exp. Bot. 2012, 63, 2465–2478. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y.; Yu, Y.; Wen, G.; Shang, N.; Zhuang, W.; Lu, D.; Zhou, B.; Liang, B.; Yue, X.; et al. Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. J. Med. Chem. 2013, 56, 6033–6053. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.A.; Hassan, A.R.; Abu Bakr, M.S.; Mohammed, A.E.-S.I. UPLC-qTOF-MS/MS Profiling of Phenolic Compounds in Fagonia arabica L. and Evaluation of Their Cholinesterase Inhibition Potential through in-Vitro and in-Silico Approaches. Sci. Rep. 2025, 15, 5244. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X.; et al. Chemistry, Pharmacokinetics, Pharmacological Activities, and Toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Kciuk, M.; Garg, N.; Dhankhar, S.; Saini, M.; Mujwar, S.; Devi, S.; Chauhan, S.; Singh, T.G.; Singh, R.; Marciniak, B.; et al. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals 2024, 17, 701. [Google Scholar] [CrossRef]
- Ikechukwu, O.J.; Ifeanyi, O.S. The Antidiabetic Effects of The Bioactive Flavonoid (Kaempferol-3-O-β-D-6{P- Coumaroyl} Glucopyranoside) Isolated From Allium cepa. Recent. Pat. Antiinfect. Drug Discov. 2016, 11, 44–52. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Khan, R.A.; Abdel-Hafez, A.A.; Abdel-Aziz, M.; Ahmed, E.; Enany, S.; Mahgoub, S.; Al-Rugaie, O.; Alsharidah, M.; Aly, M.S.A.; et al. Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous-Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge. Molecules 2021, 26, 577. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Kammiovirta, K.; Oksman-Caldentey, K.-M. Comparison of Methods for the Hydrolysis of Flavonoids and Phenolic Acids from Onion and Spinach for HPLC Analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Wang, X.; Lu, K.; Luo, H.; Liang, D.; Long, X.; Yuan, Y.; Wu, C.; Bao, J. In Silico Identification of Small Molecules as Novel LXR Agonists for the Treatment of Cardiovascular Disease and Cancer. J. Mol. Model. 2018, 24, 57. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Hoang, M.H.; Jun, H.-J.; Lee, J.H.; Lee, S.-J. Cyanidin, a Natural Flavonoid, Is an Agonistic Ligand for Liver X Receptor Alpha and Beta and Reduces Cellular Lipid Accumulation in Macrophages and Hepatocytes. Bioorg. Med. Chem. Lett. 2013, 23, 4185–4190. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.K.; Mildvan, A.S. High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins 1999, 35, 275–282. [Google Scholar] [CrossRef]
- Kchouk, S.; Hegazy, L. Pharmacophore Modeling for Biological Targets with High Flexibility: LXRβ Case Study. Med. Drug Discov. 2022, 15, 100135. [Google Scholar] [CrossRef]
- She, J.; Gu, T.; Pang, X.; Liu, Y.; Tang, L.; Zhou, X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front. Pharmacol. 2021, 12, 772435. [Google Scholar] [CrossRef]
- Fouache, A.; Zabaiou, N.; De Joussineau, C.; Morel, L.; Silvente-Poirot, S.; Namsi, A.; Lizard, G.; Poirot, M.; Makishima, M.; Baron, S.; et al. Flavonoids Differentially Modulate Liver X Receptors Activity-Structure-Function Relationship Analysis. J. Steroid Biochem. Mol. Biol. 2019, 190, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hackney, J.F.; Broatch, J.E.; Dallal, R.A.; Brotherson, C.; Livingston, S.; Sabir, Z.; Reshi, S.M.; Faltermeier Petras, S.R.; Mallick, S.; Applegate, M.T.; et al. Rexinoids Induce Differential Gene Expression in Human Glioblastoma Cells and Protein-Protein Interactions in a Yeast Two-Hybrid System. ACS Chem. Neurosci. 2024, 15, 2897–2915. [Google Scholar] [CrossRef]
- Komai, M.; Noda, Y.; Ikeda, A.; Kaneshiro, N.; Kamikubo, Y.; Sakurai, T.; Uehara, T.; Takasugi, N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J. Lipid Res. 2024, 65, 100510. [Google Scholar] [CrossRef]
- Guo, D.; Reinitz, F.; Youssef, M.; Hong, C.; Nathanson, D.; Akhavan, D.; Kuga, D.; Amzajerdi, A.N.; Soto, H.; Zhu, S.; et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011, 1, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Hiebl, V.; Ladurner, A.; Latkolik, S.; Dirsch, V. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol. Adv. 2018, 36, 1657–1698. [Google Scholar] [CrossRef] [PubMed]






| Peak No. | Retention Time (min) | UVmax λ (nm) | MS | MS2 | Molecular Formula | AME * (ppm) | Tentative Annotation | |
|---|---|---|---|---|---|---|---|---|
| 1 | 7.80 | 260; 349 | 447.0936 | 300.0273 | C21H20O11 | 1.8 | Quercitrin | |
| [M−H]− | [M-rhamnoseH]−● | |||||||
| 303.0509 | ||||||||
| [M-rhamnose+H]+ | ||||||||
| 2 | 9.44 | 266; 341 | 431.0980 | 284.0323 | C21H20O10 | −0.5 | Afzelin | |
| [M−H]− | [M-rhamnose-H]−● | |||||||
| 287.0561 | ||||||||
| [M-rhamnose+H]+ | ||||||||
| 3 | 14.26 | 229; 268; 314 | 593.1296 | 285.0396 | C30H26O13 | −0.2 | Kaempferol 3-(6″-p- coumaroylglucoside) or Kaempferol 7-(6″-p-coumaroylglucoside) | |
| [M−H]− | [M-coumaroylglucoside-H]− | |||||||
| 595.1464 | 309.0981 | |||||||
| [M+H]+ | [M-kaempferol+H]+ | |||||||
| 287.0559 | ||||||||
| [M-coumaroylglucoside+H]+ | ||||||||
| Compound | Standard Retention Time (min) | Standard UV λ (nm) | Hydrolyzed Extract Retention Time (min) | UV λ (nm) |
|---|---|---|---|---|
| Quercetin | 12.30 | 202; 257; 368 | 12.29 | 203; 257; 368 |
| Kaempferol | 16.59 | 197; 267; 367 | 16.57 | 197; 267; 366 |
| Luteolin | 12.63 | 208; 256; 348 | 12.54 * | 230; 310 * |
| p-Coumaric acid | 6.15 | 227; 310 | 6.16 | 229; 311 |
| Compound | LXRα Binding Energy (ΔG, kcal/mol) | LXRβ Binding Energy (ΔG, kcal/mol) |
|---|---|---|
| Quercitrin (1) | −7.5 | −7.5 |
| Afzelin (2) | −7.5 | −7.9 |
| Kaempferol 7-O-(6″-p-coumaroylglucoside) (3) | −9.9 | −9.7 |
| Kaempferol 3-O-(6″-p-coumaroylglucoside) (3) | −10.3 | −10.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulido-Teuta, J.; López-Vallejo, F.; Sandoval-Hernández, A.G.; Narváez-Cuenca, C.-E.; Avila-Murillo, M. Bioactive Glycosylated Flavonoids Exhibiting LXR Agonist Activity from a Lauraceae Colombian Species. Plants 2025, 14, 3240. https://doi.org/10.3390/plants14213240
Pulido-Teuta J, López-Vallejo F, Sandoval-Hernández AG, Narváez-Cuenca C-E, Avila-Murillo M. Bioactive Glycosylated Flavonoids Exhibiting LXR Agonist Activity from a Lauraceae Colombian Species. Plants. 2025; 14(21):3240. https://doi.org/10.3390/plants14213240
Chicago/Turabian StylePulido-Teuta, Juanita, Fabian López-Vallejo, Adrián G. Sandoval-Hernández, Carlos-Eduardo Narváez-Cuenca, and Mónica Avila-Murillo. 2025. "Bioactive Glycosylated Flavonoids Exhibiting LXR Agonist Activity from a Lauraceae Colombian Species" Plants 14, no. 21: 3240. https://doi.org/10.3390/plants14213240
APA StylePulido-Teuta, J., López-Vallejo, F., Sandoval-Hernández, A. G., Narváez-Cuenca, C.-E., & Avila-Murillo, M. (2025). Bioactive Glycosylated Flavonoids Exhibiting LXR Agonist Activity from a Lauraceae Colombian Species. Plants, 14(21), 3240. https://doi.org/10.3390/plants14213240

