The Current State of Knowledge on Ribes spp. (Currant) Plants
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Molecular Phylogeny of the Genus Ribes
3.2. Phytochemical Study of the Genus Ribes L.
3.2.1. Organic Acids
3.2.2. Volatile Compounds
3.3. Biological Activity
3.3.1. Antimicrobial Activity
3.3.2. Antiviral Activity
3.3.3. Regenerative Activity
3.3.4. Antioxidant Activity
3.3.5. Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WHO | Worls Health Organizaton |
| HMPC | Committee on Herbal Medicinal Products |
| DNA | Deoxyribonucleic Acid |
| RAD-seq | Restriction Site-Associated DNA Sequencing |
| ITS | Internal Transcribed Spacer |
| MAFFT | Multiple Alignment using Fast Fourier Transform |
| BI | Bayesian Inference |
| ML | Maximum Likelihood |
| GC-MS | Gas Chromatography-Mass Spectrometry |
| GC-FID | GC-flame ionization detection |
| GC-O | GC-olfactometry |
| AE | Acetone |
| SDWF | Spray-Dried Water Fraction |
| FDWF | Freeze-Dried Water Fraction |
| ME | Methanol |
| RAC | Radical Absorption Capacity |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| ABTS | 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
| PRNPs | Plant Related Natural Products |
| XOD | Xanthine Oxidase |
| MAO | Monoamine Oxidase |
| IC50 | Half Maximal Inhibitory Concentration |
| MIC | Minimum Inhibitory Concentration |
| HPLC | High-Performance Liquid Chromatography |
| AgNPs | Silver Nanoparticles |
| FHL | Formate Hydrogenlyase |
| HPLC-DAD | High-Performance Liquid Chromatograph with a Diode Array Detector |
| HPLC-QTOF-MS/MS | High-Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry |
| UHPLC-MS/MS | Ultra-High-Performance Liquid Chromatography coupled with Tandem Mass Spectrometry |
| AChE | Acetylcholinesterase |
| ABG | Altai Botanical Garden |
| MBG | Main Botanical Garden |
References
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Black (Ribes nigrum L.) and Red Currant (Ribes rubrum L.) Cultivars. In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 101–126. [Google Scholar] [CrossRef]
- Cortez, R.E.; Gonzalez De Mejia, E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Academy of Sciences of the Kazakh SSR. Flora of Kazakhstan; Publishing House of the Academy of Sciences of the Kazakh SSR: Almaty, Kazakhstan, 1961; Volume 4. [Google Scholar]
- Grudzinskaya, L.M.; Gemedzhieva, N.G.; Nelina, N.V.; Karzhaubekova, Z.Z. Annotated List of Medicinal Plants of Kazakhstan: Reference Publication; Institute of Botany and Phytointroduction, Ministry of Education and Science of the Republic of Kazakhstan: Almaty, Kazakhstan, 2014; pp. 84–85.
- Sun, Q.; Wang, N.; Xu, W.; Zhou, H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. J. Ethnopharmacol. 2021, 276, 114166. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795. [Google Scholar] [CrossRef] [PubMed]
- Kendir, G.; Süntar, I.; Çeribaşı, A.O.; Köroğlu, A. Activity evaluation on Ribes species, traditionally used to speed up healing of wounds: With special focus on Ribes nigrum. J. Ethnopharmacol. 2019, 237, 141–148. [Google Scholar] [CrossRef]
- Shaw, O.M.; Nyanhanda, T.; McGhie, T.K.; Harper, J.L.; Hurst, R.D. Blackcurrant anthocyanins modulate CCL11 secretion and suppress allergic airway inflammation. Mol. Nutr. Food Res. 2017, 61, 1600868. [Google Scholar] [CrossRef] [PubMed]
- Cyboran, S.; Bonarska-Kujawa, D.; Pruchnik, H.; Żyłka, R.; Oszmiański, J.; Kleszczyńska, H. Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Res. Int. 2014, 65, 47–58. [Google Scholar] [CrossRef]
- Delazar, A.; Khodaie, L.; Afshar, J.; Nahar, L.; Sarker, S. Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl. Acta Pharm. 2010, 60, 1–11. [Google Scholar] [CrossRef]
- Dobson, G. Leaf lipids of Ribes nigrum: A plant containing 16:3, α-18:3, γ-18:3 and 18:4 fatty acids. Biochem. Soc. Trans. 2000, 28, 583–586. [Google Scholar] [CrossRef]
- Kendir, G.; Köroğlu, A. In vitro Antioxidant Effect of the Leaf and Branch Extracts of Ribes L. Species in Turkey. Int. J. Pharm. Sci. 2015, 2, 1–6. [Google Scholar] [CrossRef]
- Kiliç, C.S.; Koyuncu, M.; Özek, T.; Başer, K.H.C. Essential Oil of the Leaves of Ribes nigrum L. from Turkey. J. Essent. Oil Res. 2008, 20, 512–514. [Google Scholar] [CrossRef]
- Paunović, S.M.; Mašković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 2017, 222, 69–75. [Google Scholar] [CrossRef]
- Sasaki, T.; Li, W.; Zaike, S.; Asada, Y.; Li, Q.; Ma, F.; Zhang, Q.; Koike, K. Antioxidant lignoids from leaves of Ribes nigrum. Phytochemistry 2013, 95, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Kevers, C.; Evers, D.; Dommes, J. Ascorbic Acid, Phenolic Acid, Flavonoid, and Carotenoid Profiles of Selected Extracts from Ribes nigrum. J. Agric. Food Chem. 2011, 59, 4763–4770. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Banados, M.P.; Hojas, C.; Patillo, C.; Gonzales, J. Geographical distribution of native ribes species present in the herbarium of Chile. Acta Hortic. 2002, 585, 103–106. [Google Scholar] [CrossRef]
- Hoffmann, J.A.; Jullián, A. Flora Silvestre de Chile: Zona Araucana; Una Guía Ilustrada para la Identificación de las Especies de Plantas le~Nosas del sur de Chile (entre el río Maule y el seno de Reloncaví); [Arboles, Arbustos y Enredaderas le~Nosas], 5th ed.; Fundación Claudio Gay: Santiago, Chile, 2005. [Google Scholar]
- Wilson, A.W.; Beckerman, J.L.; Aime, M.C. First Report of the White Pine Blister Rust Fungus, Cronartium ribicola, on Ribes odoratum in Indiana. Plant Dis. 2014, 98, 277. [Google Scholar] [CrossRef]
- Miladinović, B.; Kostić, M.; Šavikin, K.; Đorđević, B.; Mihajilov-Krstev, T.; Živanović, S.; Kitić, D. Chemical Profile and Antioxidative and Antimicrobial Activity of Juices and Extracts of 4 Black Currants Varieties (Ribes nigrum L.). J. Food Sci. 2014, 79, C301–C309. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants: Volume 9, Modified Stems, Roots, Bulbs; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Damascos, M.A.; Arribere, M.; Svriz, M.; Bran, D. Fruit Mineral Contents of Six Wild Species of the North Andean Patagonia, Argentina. Biol. Trace Elem. Res. 2008, 125, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Orsavová, J.; Hlaváčová, I.; Mlček, J.; Snopek, L.; Mišurcová, L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chem. 2019, 284, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.-M.; Zhong, G.-Y.; Jiang, W.; Ren, G. Analysis of varieties and standards of Saxifragaceae medicinal plants used in Tibetan medicine. Zhongguo Zhong Yao Za Zhi 2021, 46, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Wang, M.; Liu, Y.; Liu, H.; Chen, L.; Zhang, X.; Huang, C.; Liu, B.Y.; Gu, Z.; Du, J. A novel botanical formula improves eye fatigue and dry eye: A randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 2020, 112, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Uttra, A.M.; Alamgeer; Shahzad, M.; Shabbir, A.; Jahan, S.; Bukhari, I.A.; Assiri, A.M. Ribes orientale: A novel therapeutic approach targeting rheumatoid arthritis with reference to pro-inflammatory cytokines, inflammatory enzymes and anti-inflammatory cytokines. J. Ethnopharmacol. 2019, 237, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Ferlemi, A.-V.; Lamari, F. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Birasuren, B.; Oh, H.L.; Kim, C.R.; Kim, N.Y.; Jeon, H.L.; Kim, M.R. Antioxidant Activities of Ribes diacanthum Pall Extracts in the Northern Region of Mongolia. JFN 2012, 17, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Baek, S.Y.; Sok, D.-E.; Lee, K.J.; Kim, Y.-J.; Kim, M.R. Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall Against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model. Antioxidants 2020, 9, 895. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.W.; Khatoon, S. Ethnobotanical studies on useful trees and shrubs of haramosh and bugrote valleys, in Gilgit northern areas of Pakistan. Pak. J. Bot. 2007, 39, 699–710. [Google Scholar]
- Sadia, H.; Zafar, M.; Ahmad, M.; Lubna; Khan, M.P.Z.; Yaseen, G.; Ali, M.I.; Sultana, S.; Kilic, O.; Şahan, Z.; et al. Foliar epidermal anatomy of some selected wild edible fruits of Pakistan using light microscopy and scanning electron microscopy. Microsc. Res Tech. 2020, 83, 259–267. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants: Volume 4, Fruits, 1st ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Hassan, U.H.; Alamgeer; Shahzad, M.; Shabbir, A.; Jahan, S.; Saleem, M.; Bukhari, I.A.; Assiri, A.M. Amelioration of adjuvant induced arthritis in Sprague Dawley rats through modulation of inflammatory mediators by Ribes alpestre Decne. J. Ethnopharmacol. 2019, 235, 460–471. [Google Scholar] [CrossRef]
- Abbas, Q.; Khan, S.W.; Khatoon, S.; Hussain, S.A.; Hassan, S.N.; Hussain, A.; Qureshi, R.; Hussain, I. Floristic biodiversıty and traditional uses of medicinal plants of haramosh valley central karakoram national Park of Gilgit district, gilgit-baltistan. J. Biodivers. Environ. Sci. (JBES) 2014, 5, 75–86. [Google Scholar]
- Khan, B.; Abdukadir, A.; Qureshi, R.; Mustafa, G. Medicinal uses of plants by the inhabitants of Khunjerab National park, Gilgit, Pakistan. Pak. J. Bot. 2011, 43, 2301–2310. [Google Scholar]
- Committee on Herbal Medicinal Products (HMPC). Community Herbal Monograph on Ribes nigrum L. Folium; European Medicines Agency: London, UK, 2009. [Google Scholar]
- Sun, X.; Zhan, Y.; Li, S.; Liu, Y.; Fu, Q.; Quan, X.; Xiong, J.; Gang, H.; Zhang, L.; Qi, H.; et al. Complete chloroplast genome assembly and phylogenetic analysis of blackcurrant (Ribes nigrum), red and white currant (Ribes rubrum), and gooseberry (Ribes uva-crispa) provide new insights into the phylogeny of Grossulariaceae. PeerJ 2023, 11, e16272. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Z.; Xu, Z.; Zheng, B. A Phylogenetic and Morphological Evolution Study of Ribes L. in China Using RAD-Seq. Plants 2023, 12, 829. [Google Scholar] [CrossRef]
- Schultheis, L.M.; Donoghue, M.J. Molecular Phylogeny and Biogeography of Ribes (Grossulariaceae), with an Emphasis on Gooseberries (subg. Grossularia). Syst. Bot. 2004, 29, 77–96. [Google Scholar] [CrossRef]
- Kłubowicz, K.; Sawicki, J.; Paukszto, Ł.; Ciborowski, K.; Maździarz, M.; Krawczyk, K. Organellar genome evolution in Ribes L.: Hotspots of mutation, sequence transfer, codon usage, and phylogenetic context. Tree Genet. Genomes 2024, 20, 51. [Google Scholar] [CrossRef]
- Russell, J.R.; Bayer, M.; Booth, C.; Cardle, L.; Hackett, C.A.; Hedley, P.E.; Jorgensen, L.; Morris, J.A.; Brennan, R.M. Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum). BMC Plant Biol. 2011, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Lin, Q. A revision of Elaeagnus L. (Elaeagnaceae) in mainland China. J. Syst. Evol. 2010, 48, 356–390. [Google Scholar] [CrossRef]
- Luckow, M. Species Concepts: Assumptions, Methods, and Applications. Syst. Bot. 1995, 20, 589. [Google Scholar] [CrossRef]
- Chan, K.O.; Hutter, C.R.; Wood, P.L.; Grismer, L.L.; Brown, R.M. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Mol. Phylogenetics Evol. 2020, 151, 106899. [Google Scholar] [CrossRef]
- Senters, A.E.; Soltis, D.E. Phylogenetic Relationships in Ribes (Grossulariaceae) Inferred from ITS Sequence Data. Taxon 2003, 52, 51. [Google Scholar] [CrossRef]
- Lu, R.-S.; Yang, T.; Chen, Y.; Wang, S.-Y.; Cai, M.-Q.; Cameron, K.M.; Li, P.; Fu, C.-X. Comparative plastome genomics and phylogenetic analyses of Liliaceae. Bot. J. Linn. Soc. 2021, 196, 279–293. [Google Scholar] [CrossRef]
- Cui, X.; Liu, K.; Li, E.; Zhang, Z.; Dong, W. Chloroplast Genomes Evolution and Phylogenetic Relationships of Caragana species. Int. J. Mol. Sci. 2024, 25, 6786. [Google Scholar] [CrossRef]
- Bohm, B.A. External and vacuolar flavonoids of Ribes viscossisimum. Biochem. Syst. Ecol. 1993, 21, 745. [Google Scholar] [CrossRef]
- Farooque, S.; Rose, P.M.; Benohoud, M.; Blackburn, R.S.; Rayner, C.M. Enhancing the Potential Exploitation of Food Waste: Extraction, Purification, and Characterization of Renewable Specialty Chemicals from Blackcurrants (Ribes nigrum L.). J. Agric. Food Chem. 2018, 66, 12265–12273. [Google Scholar] [CrossRef]
- Slimestad, R.; Solheim, H. Anthocyanins from Black Currants (Ribes nigrum L.). J. Agric. Food Chem. 2002, 50, 3228–3231. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. High-Performance Liquid Chromatography Analysis of Black Currant (Ribes nigrum L.) Fruit Phenolics Grown either Conventionally or Organically. J. Agric. Food Chem. 2006, 54, 7530–7538. [Google Scholar] [CrossRef] [PubMed]
- Määttä, K.R.; Kamal-Eldin, A.; Törrönen, A.R. High-Performance Liquid Chromatography (HPLC) Analysis of Phenolic Compounds in Berries with Diode Array and Electrospray Ionization Mass Spectrometric (MS) Detection: Ribes Species. J. Agric. Food Chem. 2003, 51, 6736–6744. [Google Scholar] [CrossRef] [PubMed]
- Sandell, M.; Laaksonen, O.; Järvinen, R.; Rostiala, N.; Pohjanheimo, T.; Tiitinen, K.; Kallio, H. Orosensory Profiles and Chemical Composition of Black Currant (Ribes nigrum) Juice and Fractions of Press Residue. J. Agric. Food Chem. 2009, 57, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Horie, K.; Yamanouchi, K.; Tomisawa, T.; Kitajima, M.; Oey, I.; Maeda, H. Blackcurrant (Ribes nigrum) Extract Prevents Dyslipidemia and Hepatic Steatosis in Ovariectomized Rats. Nutrients 2020, 12, 1541. [Google Scholar] [CrossRef] [PubMed]
- Haasbach, E.; Hartmayer, C.; Hettler, A.; Sarnecka, A.; Wulle, U.; Ehrhardt, C.; Ludwig, S.; Planz, O. Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza A virus in vitro and in vivo. Front. Microbiol. 2014, 5, 171. [Google Scholar] [CrossRef] [PubMed]
- Laczkó-Zöld, E.; Komlósi, A.; Ülkei, T.; Fogarasi, E.; Croitoru, M.; Fülöp, I.; Domokos, E.; Ştefănescu, R.; Varga, E. Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. Acta Biol. Hung. 2018, 69, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hwang, E.; Ngo, H.T.T.; Seo, S.A.; Lin, P.; Gao, W.; Liu, Y.; Yi, T. Ribes nigrum L. Prevents UVB-mediated Photoaging in Human Dermal Fibroblasts: Potential Antioxidant and Antiinflammatory Activity. Photochem. Photobiol. 2018, 94, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.P.; Nawaz, M.A.; Sabitov, A.S.; Golokhvast, K.S. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha—Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int. J. Mol. Sci. 2024, 25, 10085. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Front Cover: Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 11. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, B.; Zhang, W.; Yang, G.; Zhang, C.; Cao, Z. Chemical constituents from aerial parts of Ribes mandshuricum. Chin. Tradit. Herb. Drugs 2018, 49, 772–779. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Zhao, Y.; Ge, J.; He, D. Phenolic Profiles, Antioxidant, and Hypoglycemic Activities of Ribes meyeri Fruits. Foods 2023, 12, 2406. [Google Scholar] [CrossRef]
- Liu, C.; Lei, Y.; Liu, Y.; Guo, J.; Chen, X.; Tang, Y.; Dang, J.; Wu, M. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle ex Decne and Their Potential Target Proteins. Antioxidants 2023, 12, 835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knox, Y.M.; Suzutani, T.; Yosida, I.; Azuma, M. Anti-influenza virus activity of crude extract of Ribes nigrum L. Phytother. Res. 2003, 17, 120–122. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Yang, H.; Bai, J.; Ma, C.; Wang, L.; Li, X.; Zhang, Y.; Xu, Y.; Yang, Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. Int. J. Biol. Macromol. 2020, 165, 738–746. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, C.; Zou, X.; Xu, J.; Li, Y.; Li, X.; Chai, C.; Cao, Z. Chemical constituents from the aerial Parts of Ribes diacanthum Pall. Chin. Pharmaceut. J. 2016, 51, 1918–1922. [Google Scholar] [CrossRef]
- Dvaranauskaite, A.; Venskutonis, P.R.; Raynaud, C.; Talou, T.; Viškelis, P.; Dambrauskiene, E. Characterization of Steam Volatiles in the Essential Oil of Black Currant Buds and the Antioxidant Properties of Different Bud Extracts. J. Agric. Food Chem. 2008, 56, 3279–3286. [Google Scholar] [CrossRef] [PubMed]
- Ðorđević, B.S.; Pljevljakušić, D.S.; Šavikin, K.P.; Stević, T.R.; Bigović, D.J. Essential Oil from Blackcurrant Buds as Chemotaxonomy Marker and Antimicrobial Agent. Chem. Biodivers. 2014, 11, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Oprea, E.; Farcasanu, I.C.; Radulescu, V.; Balotescu, C.; Bucur, M.; Lazar, V.; Mladin, P. Chemical and biological studies of Ribes nigrum L. buds essential oil. Biofactors 2008, 34, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bai, J.; Bu, X.; Yin, Y.; Wang, L.; Yang, Y.; Xu, Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Li, M.; Yun, Y.; Li, J.; Bai, J. Extraction and characterization of polysaccharides from blackcurrant fruits and its inhibitory effects on acetylcholinesterase. Int. J. Biol. Macromol. 2024, 262, 130047. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, S.; Guo, Y.; Yu, B.; Zhao, M.; Guo, P.; Bai, J.; Yang, Y. Structure characterization of polysaccharide isolated from Ribes nigrum L. and it’s bioactivity against gout. Int. J. Biol. Macromol. 2025, 306, 141359. [Google Scholar] [CrossRef]
- Burgos-Edwards, A.; Theoduloz, C.; Miño, S.; Ghosh, D.; Shulaev, V.; Ramírez, C.; Sánchez-Jardón, L.; Rozzi, R.; Schmeda-Hirschmann, G. Phenolic composition and bioactivity of Ribes magellanicum fruits from southern Patagonia. Heliyon 2024, 10, e25542. [Google Scholar] [CrossRef] [PubMed]
- Lappi, J.; Raninen, K.; Väkeväinen, K.; Kårlund, A.; Törrönen, R.; Kolehmainen, M. Blackcurrant (Ribes nigrum) lowers sugar-induced postprandial glycaemia independently and in a product with fermented quinoa: A randomised crossover trial. Br. J. Nutr. 2021, 126, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Dashti, S.; Hadjzadeh, M.A.; Ghorbani, A.; Mohebbi, M.; Gholamnezhad, Z. The antihyperglycemic and hypolipidemic effects of Ribes khorassanicum hydro-ethanolic extract co-administration in type 2 diabetic patients: A randomized double blind placebo controlled trial. Avicenna J. Phytomed. 2022, 12, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, P.; Schetinger, M.R.C.; Baldissarelli, J.; Stefanello, N.; Lopes, T.F.; Reichert, K.P.; Assmann, C.E.; Bottari, N.B.; Miron, V.V.; Vargas, F.F.A.; et al. Blackcurrant (Ribes nigrum L.) improves cholinergic signaling and protects against chronic Scopolamine-induced memory impairment in mice. J. Psychopharmacol. 2024, 38, 1170–1183. [Google Scholar] [CrossRef]
- Shimada, M.; Maeda, H.; Nanashima, N.; Yamada, K.; Nakajima, A. Anthocyanin-rich blackcurrant extract improves long-term memory impairment and emotional abnormality in senescence-accelerated mice. J. Food Biochem. 2022, 46, e14295. [Google Scholar] [CrossRef]
- Lomiwes, D.; Günther, C.S.; Bloor, S.J.; Trower, T.M.; Ngametua, N.; Kanon, A.P.; Jensen, D.A.; Lo, K.; Sawyer, G.; Walker, E.G.; et al. Identification of Sarmentosin as a Key Bioactive from Blackcurrants (Ribes nigrum) for Inhibiting Platelet Monoamine Oxidase in Humans. J. Agric. Food Chem. 2024, 72, 16777–16789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, X.; Han, Y.; Li, J.; Hu, C.; Liu, C.; Xiao, W. Sarmentosin promotes USP17 and regulates Nrf2-mediated mitophagy and cellular oxidative stress to alleviate APAP-induced acute liver failure. Phytomedicine 2022, 104, 154337. [Google Scholar] [CrossRef]
- Lyashenko, S.; López-Ruiz, R.; García-Cervantes, A.M.; Rodríguez-García, I.; Yunusova, S.; Guil-Guerrero, J.L. Phenolic Profiles and Antitumor Activity Against Colorectal Cancer Cells of Seeds from Selected Ribes Taxa. Appl. Sci. 2024, 14, 2428. [Google Scholar] [CrossRef]
- Nosal, B.M.; Thornton, S.N.; Mofrad, M.D.; Sakaki, J.R.; Mahoney, K.J.; Macdonald, Z.; Daddi, L.; Tran, T.D.B.; Weinstock, G.; Zhou, Y.; et al. Blackcurrants shape gut microbiota profile and reduce risk of postmenopausal osteoporosis via the gut-bone axis: Evidence from a pilot randomized controlled trial. J. Nutr. Biochem. 2024, 133, 109701. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.M.; Zhou, R.; Austermann, K.; Králová, D.; Serra, G.; Ibrahim, I.S.; Corona, G.; Bergillos-Meca, T.; Aboufarrag, H.; A Kroon, P.; et al. Acute Effects of an Anthocyanin-Rich Blackcurrant Beverage on Markers of Cardiovascular Disease Risk in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. J. Nutr. 2025, 155, 2275–2289. [Google Scholar] [CrossRef]
- Lengsfeld, C.; Deters, A.; Faller, G.; Hensel, A. High Molecular Weight Polysaccharides from Black Currant Seeds Inhibit Adhesion of Helicobacter pylori to Human Gastric Mucosa. Planta Med. 2004, 70, 620–626. [Google Scholar] [CrossRef]
- Krisch, J.; Ördögh, L.; Galgóczy, L.; Papp, T.; Vágvölgyi, C. Anticandidal effect of berry juices and extracts from Ribes species. Open Life Sci. 2009, 4, 86–89. [Google Scholar] [CrossRef]
- Bendokas, V.; Šarkinas, A.; Jasinauskienë, D.; Anisimovienë, N.; Morkûnaitë-Haimi, Š.; Stanys, V.; Šikšnianas, T. Antimicrobial activity of berries extracts of four Ribes species, their phenolic content and anthocyanin composition. Folia Hortic. 2018, 30, 249–257. [Google Scholar] [CrossRef]
- Hovhannisyan, Z.; Timotina, M.; Manoyan, J.; Gabrielyan, L.; Petrosyan, M.; Kusznierewicz, B.; Bartoszek, A.; Jacob, C.; Ginovyan, M.; Trchounian, K.; et al. Ribes nigrum L. Extract-Mediated Green Synthesis and Antibacterial Action Mechanisms of Silver Nanoparticles. Antibiotics 2022, 11, 1415. [Google Scholar] [CrossRef] [PubMed]
- Sermukhamedova, O.; Wojtanowski, K.K.; Widelski, J.; Korona-Głowniak, I.; Elansary, H.O.; Sakipova, Z.; Malm, A.; Głowniak, K.; Skalicka-Woźniak, K. Metabolic Profile of and Antimicrobial Activity in the Aerial Part of Leonurus turkestanicus V.I. Krecz. et Kuprian. from Kazakhstan. J. AOAC Int. 2017, 100, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Sabitov, A.; Gaweł-Bęben, K.; Sakipova, Z.; Strzępek-Gomółka, M.; Hoian, U.; Satbayeva, E.; Głowniak, K.; Ludwiczuk, A. Rosa platyacantha Schrenk from Kazakhstan—Natural Source of Bioactive Compounds with Cosmetic Significance. Molecules 2021, 26, 2578. [Google Scholar] [CrossRef]
- Gao, J.; Wu, Y.; He, D.; Zhu, X.; Li, H.; Liu, H.; Liu, H. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging 2020, 12, 17738–17753. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnik, E.I.; Deineka, L.A.; Sorokopudov, V.N.; Deineka, V.I.; Burmenko, Y.V.; Kartushinsky, V.V.; Tregubov, A.V. Biologically active substances of Ribes l. fruits. Reg. Geosystems 2011, 15, 239–249. [Google Scholar]
- Gülmez, G.; Şen, A.; Şekerler, T.; Algül, F.K.; Çilingir-Kaya, Ö.T.; Şener, A. The antioxidant, anti-inflammatory, and antiplatelet effects of Ribes rubrum L. fruit extract in the diabetic rats. J. Food Biochem. 2022, 46, e14124. [Google Scholar] [CrossRef]
- Minasyan, A.; Pires, V.; Gondcaille, C.; Ginovyan, M.; Mróz, M.; Savary, S.; Cherkaoui-Malki, M.; Kusznierewicz, B.; Bartoszek, A.; Andreoletti, P.; et al. Ribes nigrum leaf extract downregulates pro-inflammatory gene expression and regulates redox balance in microglial cells. BMC Complement Med. Ther. 2025, 25, 49. [Google Scholar] [CrossRef] [PubMed]
- Magnavacca, A.; Piazza, S.; Cammisa, A.; Fumagalli, M.; Martinelli, G.; Giavarini, F.; Sangiovanni, E.; Dell’Agli, M. Ribes Nigrum Leaf Extract Preferentially Inhibits IFN-γ-Mediated Inflammation in HaCaT Keratinocytes. Molecules 2021, 26, 3044. [Google Scholar] [CrossRef]
- Garbacki, N.; Tits, M.; Angenot, L.; Damas, J. Inhibitory Effects of Proanthocyanidins from Ribes nigrum Leaves on Carrageenin Acute Inflammatory Reactions Induced in Rats. BMC Pharmacol. 2004, 4, 25. [Google Scholar] [CrossRef]
- Karlsen, A.; Retterstøl, L.; Laake, P.; Paur, I.; Kjølsrud-Bøhn, S.; Sandvik, L.; Blomhoff, R. Anthocyanins Inhibit Nuclear Factor-κB Activation in Monocytes and Reduce Plasma Concentrations of Pro-Inflammatory Mediators in Healthy Adults, 3. J. Nutr. 2007, 137, 1951–1954. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.; Kim, B.; Park, Y.-K.; Yang, Y.; Pham, T.X.; Ku, C.S.; Farruggia, C.; Harness, E.; Smyth, J.A.; Lee, J.-Y. Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br. J. Nutr. 2015, 113, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.; Kim, B.; Park, Y.-K.; Wegner, C.J.; Harness, E.; Nam, T.-G.; Kim, D.-O.; Lee, J.S.; Lee, J.-Y. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J. Nutr. Biochem. 2014, 25, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Pham, T.X.; Bae, M.; Hu, S.; O’Neill, E.; Chun, O.K.; Han, M.J.; Koo, S.I.; Park, Y.-K.; Lee, J.-Y. Blackcurrant (Ribes nigrum) Prevents Obesity-Induced Nonalcoholic Steatohepatitis in Mice. Obesity 2019, 27, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.Y. Blackcurrant (Ribes nigrum) Extract Exerts an Anti-Inflammatory Action by Modulating Macrophage Phenotypes. Nutrients 2019, 11, 975. [Google Scholar] [CrossRef] [PubMed]

| Chemical Group | Compounds | Species | Source |
|---|---|---|---|
| Aurones | Aureusidin | R. nigrum | [52,53,54] |
| Flavanones | Pinocembrine 7-methyl ether | R. viscossisimum | [14] |
| Flavones | Formononetin | R. aureum | [59] |
| Luteolin-O-hexoside | R. aureum, R. triste, R. pauciflorum | [59] | |
| Acacetin | R. triste | [59] | |
| Dihydroxy-methoxy(iso)-flavone | R. aureum, R. triste, R. pauciflorum, R. dikuscha | [59] | |
| Cirsimaritin | R. aureum, R. triste, R. pauciflorum, R. dikuscha | [59] | |
| Dihydroxy-dimethoxy(iso)flavone | R. aureum, R. triste, R. pauciflorum, R. dikuscha | [59] | |
| Chrysoeriol 7-O-neohesperidoside | R. aureum, R. triste, R. pauciflorum, R. dikuscha | [59] | |
| Chrysoeriol O-rhamnosyl glucoside | R. aureum, R. triste, R. pauciflorum, R. dikuscha | [59] | |
| Isovitexin | R. aureum | [59] | |
| Tetrahydroxydimethoxyflavone | R. dikuscha | [59] | |
| Luteolin | R. meyeri, R. triste | [59,60] | |
| Apigenin | R. meyeri, R. triste, R. pauciflorum, R. aureum | [59,60] | |
| Hydroxygenkwanin | R. meyeri | [60] | |
| Flavonols | Galangin | R. viscossisimum | [14] |
| Myricetin | R. nigrum | [49,54] | |
| Kaempferol | R. nigrum, R. mandshuricum, R. pauciflorum, R. dikuscha, R. triste, R. meyeri | [55,58,59,60,61] | |
| Quercetin | R. nigrum, R. meyeri, R. triste, R. pauciflorum, R. dikuscha | [55,59,60] | |
| Myricetin-3-O-glucoside | R. nigrum | [54] | |
| Myricetin-3-O-galactoside | R. nigrum | [54] | |
| Myricetin-3-O-arabinoside | R. nigrum | [54] | |
| Myricetin-3-O-rutinoside | R. nigrum | [54] | |
| Dihydroquercetin | R. nigrum | [54] | |
| Dihydromyricetin | R. meyeri | [62] | |
| Quercetin-3-O-glucoside | R. nigrum, R.meyeri | [54,62] | |
| Quercetin-3-O-galactoside | R. nigrum | [55] | |
| Quercetin-3-O-arabinoside | R. nigrum | [54] | |
| Quercetin-3-O-rutinoside | R. nigrum | [57] | |
| Kaempferol-3-O-glucoside | R. nigrum | [55,57] | |
| Kaempferol-3-O-rutinoside | R. nigrum, R. meyeri | [56,60] | |
| Rutin | R. nigrum, R. meyeri | [56,60] | |
| Hyperoside | R. nigrum | [56] | |
| Myricetin 3-O-glucoside | R. nigrum | [55] | |
| Isoquercitrin | R. meyeri | [60] | |
| Astragalin | R. meyeri, R. pauciflorum, R. dikuscha | [59,60] | |
| Flavan-3-ols | Epicatechin | R. meyeri | [60] |
| Epigallocatechin | R. nigrum, R. meyeri | [55,60] | |
| Anthocyanins | Cyanidin-3-O-glucoside | R. nigrum, R. meyeri | [56,62] |
| Pelargonidin | R. nigrum, R. meyeri | [51,62] | |
| Pelargonidin3-O-glucoside | R. nigrum | [51] | |
| Pelargonidin3-O-rutinoside | R. nigrum | [51] | |
| Peonidin | R. nigrum | [51] | |
| Peonidin3-O-glucoside | R. nigrum | [51] | |
| Peonidin3-O-rutinoside | R. nigrum | [51] | |
| Cyanidin | R. nigrum | [51] | |
| Delphinidin | R. nigrum | [51] | |
| Petunidin Chloride | R. nigrum | [51] | |
| Malvidin | R. nigrum | [51] | |
| Malvidin3-O-glucoside | R. nigrum | [51] | |
| Cyanidin3-O-arabinoside | R. nigrum | [51] | |
| Cyanidin-3-O-rutinoside | R. nigrum, R. meyeri | [51,62] | |
| Delphinidin-3-O-rutinoside | R. nigrum, R. meyeri | [51,62] | |
| Delphinidin-3-O-glucoside | R. nigrum, R. meyeri | [51,63] | |
| Delphinidin-3,5-dihexoside | R. dikuscha | [59] | |
| Petunidin-3-O-glucoside | R. dikuscha | [59] | |
| Phenolic acids | p- Coumaric acid | R. nigrum, R. meyeri | [62,64] |
| o- Coumaric acid | R. nigrum | [65] | |
| Ferulic acid | R. nigrum | [66] | |
| Isoferulinic acid | R. nigrum | [65] | |
| Gallic acid monohydrate | R. nigrum | [65] | |
| p-Hydroxybenzoic acid | R. nigrum | [65] | |
| Ellagic acid | R. nigrum | [65] | |
| Sinapic acid | R. nigrum | [55] | |
| Caffeic acid | R. nigrum, R. meyeri | [60,62,65] | |
| Chlorogenic acid | R. nigrum | [65] | |
| Neochlorogenic acid | R. nigrum | [55] | |
| Cryptochlorogenic acid | R. nigrum | [55] | |
| Salicylic acid | R. nigrum | [65] | |
| Protocatechuic acid | R. nigrum, R. mandshuricum, R. meyeri | [58,60,65,67] | |
| Dihydroxyphenylacetic acid | R. nigrum | [65] | |
| 2.5-dihydroxybenzoic acid | R. nigrum | [65] | |
| Vanillic acid | R. nigrum | [65] | |
| Gallic acid | R. nigrum, R. mandshuricum | [19,20,21,55,61] | |
| Syringic acid | R. nigrum, R. diacanthum Pall. | [65,67] | |
| p-Hydroxybenzoic acid | R. nigrum | [65] | |
| 4-Hydroxyphenylacetic acid | R. nigrum | [65] | |
| Tannins acids | R. nigrum | [21] | |
| Fatty acids | Linoleic acid | R. nigrum | [21] |
| Stearidonic acid | R. nigrum | [21] | |
| Oleic acid | R. nigrum | [21] | |
| Palmitic acid | R. nigrum | [21] | |
| Stearic acid | R. nigrum | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izteleuova, E.Y.; Zhumashova, G.T.; Bekezhanova, T.S.; Allambergenova, Z.B.; Zhaparkulova, K.A.; Karaubayeva, A.A.; Kaldybayeva, A.K.; Sakipova, Z.B.; Ibragimova, L.N.; Korona-Glowniak, I. The Current State of Knowledge on Ribes spp. (Currant) Plants. Plants 2025, 14, 3196. https://doi.org/10.3390/plants14203196
Izteleuova EY, Zhumashova GT, Bekezhanova TS, Allambergenova ZB, Zhaparkulova KA, Karaubayeva AA, Kaldybayeva AK, Sakipova ZB, Ibragimova LN, Korona-Glowniak I. The Current State of Knowledge on Ribes spp. (Currant) Plants. Plants. 2025; 14(20):3196. https://doi.org/10.3390/plants14203196
Chicago/Turabian StyleIzteleuova, Elnura Y., Gulsim T. Zhumashova, Tolkyn S. Bekezhanova, Zoya B. Allambergenova, Karlygash A. Zhaparkulova, Aigerim A. Karaubayeva, Aigul K. Kaldybayeva, Zuriyadda B. Sakipova, Liliya N. Ibragimova, and Izabela Korona-Glowniak. 2025. "The Current State of Knowledge on Ribes spp. (Currant) Plants" Plants 14, no. 20: 3196. https://doi.org/10.3390/plants14203196
APA StyleIzteleuova, E. Y., Zhumashova, G. T., Bekezhanova, T. S., Allambergenova, Z. B., Zhaparkulova, K. A., Karaubayeva, A. A., Kaldybayeva, A. K., Sakipova, Z. B., Ibragimova, L. N., & Korona-Glowniak, I. (2025). The Current State of Knowledge on Ribes spp. (Currant) Plants. Plants, 14(20), 3196. https://doi.org/10.3390/plants14203196

