Potential Suitable Habitat Range Shift Dynamics of the Rare Orchid Cymbidium cyperifolium in China Under Global Warming
Abstract
1. Introduction
2. Results
2.1. Model Parameter Optimization
2.2. Prediction of Potential Suitable Areas for Current C. cyperifolium
2.2.1. Model Fitting Results
2.2.2. Distribution of Suitable Habitats in the Current Context
2.3. Meteorological Factor Response Curve
2.4. Changes in Potential Distribution Areas Under Future Climate Change
2.4.1. Distribution Range of Potential Suitable Areas for C. cyperifolium Under Future Climate Scenarios
2.4.2. Potential Habitat Area of C. cyperifolium Under Future Climate Scenarios
2.5. Centroid Migration of Suitable Area in the Future Climate Scenarios
3. Discussion
3.1. Distribution of C. cyperifolium in China
3.2. Limiting Factors of C. cyperifolium
3.3. Changes in Potential Habitable Areas
4. Materials and Methods
4.1. Species Distribution Location
4.2. Climate Data Sourcing and Screening
4.2.1. Climate Data Sourcing
4.2.2. Climate Factors Screening
4.3. Species Distribution Predictive Modeling Framework
4.3.1. Maxent Model
4.3.2. Implementation of MaxEnt Modeling Workflow
4.3.3. Model Parameterization and Tuning
4.3.4. Model Verification
4.3.5. Response Curves
4.4. Prediction of Potential Suitable Habitats for C. cyperifolium
4.4.1. Prediction of Suitable Habitats
4.4.2. Migration of Centroids in High Suitable Habitats Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, T. Global Biodiversity Outlook 3; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2010. [Google Scholar]
- Edwards, P.N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Kelly, A.E.; Goulden, M.L. Rapid Shifts in Plant Distribution with Recent Climate Change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef]
- Huang, E.; Chen, Y.; Yu, S. Climate Factors Drive Plant Distributions at Higher Taxonomic and Larger Spatial Scales. Front. Ecol. Evol. 2024, 11, 1233936. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, Migration or Extirpation: Climate Change Outcomes for Tree Populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating Extinction Risk from Climate Change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of Global Warming on Wild Animals and Plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plant Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Shao, S.C.; Luo, Y.; Jacquemyn, H. Successful Reintroduction Releases Pressure on China’s Orchid Species. Trends Plant Sci. 2021, 26, 1101–1103. [Google Scholar] [CrossRef]
- Liu, T.; Cai, H.W.; Zhang, G.F. Predicting the Potential Distribution of Endangered Changnienia amoena S.S. Chien in China Based on Ensemble Modeling. Plants 2024, 13, 1234. [Google Scholar]
- Chen, J.; Liu, S.Y.; He, R.; Wei, X.L.; Luo, Y.B. Food-Deceptive Pollination in Cymbidium lancifolium (Orchidaceae) in Guangxi, China. Biodivers. Sci. 2007, 15, 608–617. [Google Scholar] [CrossRef]
- Richards, P.S.; Hans, J.A.; Tllui, K.; Michael, J.H. The Demography of Terrestrial Orchids: Life History, Population Dynamics and Conservation. Bot. J. Linn. Soc. 2020, 192, 315–332. [Google Scholar] [CrossRef]
- Wotavová, K.; Balounová, Z.; Kindlmann, P. Factors Affecting Persistence of Terrestrial Orchids in Wet Meadows and Implications for Their Conservation in a Changing Agricultural Landscape. Biol. Conserv. 2004, 118, 271–279. [Google Scholar] [CrossRef]
- Tsiftsis, S.; Tsiripidis, I. Temporal and Spatial Patterns of Orchid Species Distribution in Greece: Implications for Conservation. Biodivers. Conserv. 2020, 29, 3461–3489. [Google Scholar] [CrossRef]
- Gale, S.W.; Fischer, G.A.; Cribb, P.J.; Fay, M.F. Orchid Conservation: Bridging the Gap between Science and Practice. Bot. J. Linn. Soc. 2018, 186, 425–434. [Google Scholar] [CrossRef]
- Swarts, N.D.; Dixon, K.W. Terrestrial Orchid Conservation in the Age of Extinction. Ann. Bot. 2009, 104, 543–556. [Google Scholar] [CrossRef]
- Arditti, J.; Ghani, A.K.A. Numerical and Physical Properties of Orchid Seeds and Their Biological Implications. New Phytol. 2000, 145, 367–421. [Google Scholar] [CrossRef]
- Jones, O.R.; Scheuerlein, A.; Salguero-Gómez, R.; Camarda, C.G.; Schaible, R.; Casper, B.B.; Dahlgren, J.P.; Ehrlén, J.; García, M.B.; Menges, E.S. Diversity of Ageing Across the Tree of Life. Nature 2014, 505, 169–173. [Google Scholar] [CrossRef]
- Rosmala, A.; Hardarani, N. Orchids Phytochemistry, Biology and Horticulture: Fundamentals and applications. Agron. J. 2024, 116, 2638. [Google Scholar] [CrossRef]
- Liu, H. A Large Number of Wild Orchid Species are Offered Legal Protection in China. Orchid Conserv. News 2021, 3, 10–11. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China (MEE); Chinese Academy of Sciences (CAS). China Biodiversity Red List: Higher Plants; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018; 627p.
- Zhang, Z.; Yan, Y.; Tian, Y.; Yan, Y.J.; He, J.S. Distribution and Conservation of Orchid Species Richness in China. Biol. Conserv. 2015, 181, 64–72. [Google Scholar] [CrossRef]
- Nave, L.E.; DeLyser, K.; Domke, G.M.; Holub, S.M.; Janowiak, M.K.; Kittler, B.; Ontl, T.A.; Sprague, E.; Sucre, E.B.; Walters, B.F.; et al. Disturbance and Management Effects on Forest Soil Organic Carbon Stocks in the Pacific Northwest. Ecol. Appl. 2022, 32, e2611. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, S.; Bai, X.; Tian, Y.C.; Luo, G.J.; Wang, J.F.; Li, Q.; Chen, F.; Deng, Y.C.; Yang, Y.J.; et al. Climate Change Weakens the Positive Effect of Human Activities on Karst Vegetation Productivity Restoration in Southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Feng, C.L.; Deng, Z.H.; Cai, D.X.; Wu, T.G.; Su, Y. Current Status and Conservation Strategies of Wild Orchid Resources in Guangxi Yachang Forests. Plant Sci. J. 2012, 30, 285–292. [Google Scholar] [CrossRef]
- Woodward, F.I.; Williams, B.G. Climate and Plant Distribution at Global and Local Scales. Vegetatio 1987, 69, 189–197. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, S.B.; Yang, L.; Ji, X.J.; Zhang, Y.; Yang, M.Q.; Ren, Z.H.; Liu, Q.H.; Cheng, J. Prediction of Potential Distribution of Cypripedium macranthos under Climate Change Scenarios in China. Acta Ecol. Sin. 2024, 44, 209–223. [Google Scholar] [CrossRef]
- Xu, Y.D.; Huang, Y.; Zhao, H.R.; Yang, M.; Zhuang, Y.; Ye, X. Modelling the Effects of Climate Change on the Distribution of Endangered Cypripedium japonicum in China. Forests 2021, 12, 429. [Google Scholar] [CrossRef]
- Dai, C.Q.; Zhang, D.L.; Yuan, Z.Q.; Peng, B.B.; Zhang, B.; Zhang, W.L. Prediction of the Suitable Habitat for Cypripedium shanxiense in China under Climate Change. Grassl. Turf 2025, 45, 187–195. [Google Scholar] [CrossRef]
- Ying, L.X.; Liu, Y.; Chen, S.T. Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model. Biodivers. Sci. 2016, 24, 453–461. [Google Scholar] [CrossRef]
- Menéndez, R.; González-Megías, A.; Jay-Robert, P.; Marquéz-Ferrando, R. Climate Change and Elevational Range Shifts: Evidence from Dung Beetles in Two European Mountain Ranges. Glob. Ecol. Biogeogr. 2014, 23, 646–657. [Google Scholar] [CrossRef]
- Rowe, K.C.; Rowe, K.M.C.; Tingley, M.W.; Koo, M.S.; Patton, J.L.; Conroy, C.J.; Perrine, J.D.; Beissinger, S.R.; Moritz, C. Spatially Heterogeneous Impact of Climate Change on Small Mammals of Montane California. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141858. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Wang, X.M.; Zhang, X.B.; Luo, X.Q. Analysis of Influence Factors and Growth Status Investigation of Dendrobium officinale. Mol. Plant Breed. 2018, 16, 6175–6182. [Google Scholar] [CrossRef]
- Mccormick, M.K.; Whigham, D.F.; Canchani-Viruet, A. Mycorrhizal Fungi Affect Orchid Distribution and Population Dynamics. New Phytol. 2018, 219, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Mccormick, M.K.; Jacquemyn, H. What Constrains the Distribution of Orchid Populations? New Phytol. 2018, 202, 392–400. [Google Scholar] [CrossRef]
- Liu, K.W.; Liu, Z.J.; Huang, L.Q.; Li, L.Q.; Tang, G.D. Pollination: Self-fertilization Strategy in an Orchid. Nature 2006, 441, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Chen, J.L.; Feng, C.L.; Lu, Z.F.; Li, J.X. Characteristics of Climate Vertical Distribution in Yachang Orchids Nature Reserve. J. Northwest For. Univ. 2008, 23, 39–43. [Google Scholar]
- Zhu, L.Q.; Xu, Y.X.; Zhao, L.J.; Yuan, J.; Yang, L.M. Anatomical Structure and Environmental Adaptability of Cymbidium cyperifolium in Karst Areas. Guihaia 2016, 36, 1179–1185. [Google Scholar] [CrossRef]
- Terashima, I.; Hikosaka, K. Comparative Ecophysiology of Leaf and Canopy Photosynthesis. Plant Cell Environ. 1995, 18, 1111–1128. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Krinner, G.; Tonelli, M.; Haumann, F.A.; Naughten, K.A.; Rackow, T.; Roach, L.A.; Wainer, I. Twenty-First Century Changes in Antarctic and Southern Ocean Surface Climate in CMIP6. Atmos. Sci. Lett. 2020, 21, e952. [Google Scholar] [CrossRef]
- Lenoir, J.; Gegout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation during the 20th Century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Liang, Q.L.; Xu, X.T.; Mao, K.S.; Wang, M.C.; Wang, K.; Xi, Z.X.; Liu, J.Q. Shifts in Plant Distributions in Response to Climate Warming in a Biodiversity Hotspot, the Hengduan Mountains. J. Biogeogr. 2018, 45, 1334–1344. [Google Scholar] [CrossRef]
- Chen, I.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The Distributions of a Wide Range of Taxonomic Groups Are Expanding Polewards. Glob. Change Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Chardon, N.I.C.W.; Cornwell, W.K.; Flint, L.E.; Flint, A.L.; Ackerly, D.D. Topographic, Latitudinal and Climatic Distribution of Pinus coulteri: Geographic Range Limits Are Not at the Edge of the Climate Envelope. Ecography 2015, 38, 590–601. [Google Scholar] [CrossRef]
- Li, Z.X.; He, Y.Q.; Theakstone, W.H.; Wang, X.F.; Zhang, W.; Cao, W.H.; Du, J.; Xin, H.J.; Chang, L. Altitude Dependency of Trends of Daily Climate Extremes in Southwestern China, 1961–2008. J. Geogr. Sci. 2012, 22, 416–430. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, X.; Fan, L.; Yang, X.; Yang, P. Variations of Yunnan Climatic Zones in Recent 50 Years. Prog. Geogr. 2009, 28, 18–24. [Google Scholar] [CrossRef]
- Zheng, F.; Huang, Z.C.; Chen, L.J.; Wang, M.; Yan, Y.H.; Chen, J.B. Prediction of Distribution Patterns and Dominant Climatic Factors of Cymbidium in China Using MaxEnt Model. Guihaia 2023, 43, 1027–1040. [Google Scholar] [CrossRef]
- Li, R. Response of the Distribution of Bamboo Forests to Climate Change in China During Historic Periods. J. Bamboo Res. 2002, 21, 67–70. [Google Scholar]
- Wan, Z.H.; Lai, Y.L.; Hong, Y.J.; Liu, G.X.; Jiang, M.X. Evolution of Jingjiang Section of the Yangtze River Based on Historical Maps and Remote Sensing over the Past 100 Years. Sci. Geogr. Sin. 2019, 39, 696–704. [Google Scholar] [CrossRef]
- Liang, H.Y.; Jiang, X.L.; Kong, Y.H.; Yang, X.T. Prediction of the Potential Geographical Distribution of Cymbidium goeringii and C. faberi under Global Warming. Acta Ecol. Sin. 2018, 38, 8345–8353. [Google Scholar]
- Liang, H.Z.; Lin, Y.; Liu, S.X.; Jiang, Y.; Yang, J.S.; Huang, R.L.; Wang, R.J.; Wang, Y. Evaluating Habitat Suitability of Endangered Plant Horsfieldia hainanensis Based on the Optimized MaxEnt Model. J. Cent. South Univ. For. Technol. 2024, 44, 16–26. [Google Scholar] [CrossRef]
- Bingham, H.; Fitzsimons, J.A.; Redford, K.H.; Mitchell, B.A.; Cumming, T.L. Privately Protected Areas: Advances and Challenges in Guidance, Policy and Documentation. Parks 2017, 23, 13–27. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallen, I.; Negrete-Yankelevich, S.; Reyes-Garcia, V. Community Managed Forests and Forest Protected Areas: An Assessment of their Conservation Effectiveness Across the Tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.mkk7q8 (accessed on 8 March 2023).
- Venne, S.; Currie, D.J. Can Habitat Suitability Estimated from MaxEnt Predict Colonizations and Extinctions? Divers. Distrib. 2021, 27, 1237–1251. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Cao, X.F.; Qian, G.L.; Hu, B.S.; Liu, F.Q. Prediction of Potential Suitable Distribution Area of Flaveria bidentis in China Based on Niche Models. Chin. J. Appl. Ecol. 2010, 21, 3063–3069. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. Proc. Int. Conf. Mach. Learn. 2004, 69, 655–662. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2015, 6, 1198–1205. [Google Scholar] [CrossRef]
RM | FC | AICc 6 | Delta. AICc |
---|---|---|---|
0.5 | H 1 | 2821.38 | 1907.19 |
L 2 | 975.66 | 61.46 | |
LQ 3 | 914.19 | 0.00 | |
LQH | NA | NA | |
LQHP 4 | NA | NA | |
LQHPT 5 | NA | NA | |
1 | H | 1595.29 | 681.09 |
L | 978.67 | 64.48 | |
LQ | 930.89 | 16.70 | |
LQH | 1107.90 | 193.70 | |
LQHP | 1061.47 | 147.28 | |
LQHPT | 1095.81 | 181.61 | |
1.5 | H | 1371.42 | 457.23 |
L | 982.82 | 68.63 | |
LQ | 931.11 | 16.91 | |
LQH | 1017.23 | 103.03 | |
LQHP | 1020.07 | 105.88 | |
LQHPT | 1011.44 | 97.25 | |
2 | H | 1070.73 | 156.54 |
L | 984.86 | 70.66 | |
LQ | 938.16 | 23.97 | |
LQH | 1016.05 | 101.86 | |
LQHP | 969.75 | 55.56 | |
LQHPT | 1014.11 | 99.91 | |
2.5 | H | 1009.80 | 95.61 |
L | 986.81 | 72.62 | |
LQ | 937.75 | 23.56 | |
LQH | 947.89 | 33.69 | |
LQHP | 945.78 | 31.59 | |
LQHPT | 947.13 | 32.93 | |
3 | H | 1069.49 | 155.30 |
L | 989.13 | 74.94 | |
LQ | 941.79 | 27.60 | |
LQH | 925.86 | 11.66 | |
LQHP | 952.43 | 38.24 | |
LQHPT | 940.73 | 26.54 | |
3.5 | H | 1007.02 | 92.83 |
L | 991.79 | 77.60 | |
LQ | 945.93 | 31.74 | |
LQH | 931.43 | 17.24 | |
LQHP | 945.19 | 30.99 | |
LQHPT | 959.40 | 45.21 | |
4 | H | 999.54 | 85.35 |
L | 994.68 | 80.48 | |
LQ | 950.18 | 35.99 | |
LQH | 941.31 | 27.12 | |
LQHP | 952.50 | 38.31 | |
LQHPT | 956.92 | 42.73 |
Time | Shared Socio-Economic Pathways SSPs | All Suitable | Poorly Suitable | Moderately Suitable | Highly Suitable | ||||
---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | ||
Current | 52.37 | 5.45 | 34.58 | 3.60 | 10.12 | 1.05 | 7.67 | 0.80 | |
2030s | 1–2.6 | 53.75 | 5.59 | 34.90 | 3.63 | 10.88 | 1.13 | 7.97 | 0.83 |
2–4.5 | 48.42 | 5.03 | 30.76 | 3.20 | 10.49 | 1.09 | 7.17 | 0.75 | |
3–7.0 | 46.03 | 4.79 | 26.22 | 2.73 | 11.45 | 1.19 | 8.36 | 0.87 | |
5–8.5 | 55.06 | 5.72 | 34.24 | 3.56 | 12.86 | 1.34 | 7.96 | 0.83 | |
2050s | 1–2.6 | 51.84 | 5.39 | 32.09 | 3.34 | 11.77 | 1.22 | 7.98 | 0.83 |
2–4.5 | 59.41 | 6.18 | 38.08 | 3.96 | 13.10 | 1.36 | 8.23 | 0.86 | |
3–7.0 | 55.17 | 5.74 | 34.01 | 3.54 | 12.68 | 1.32 | 8.48 | 0.88 | |
5–8.5 | 58.44 | 6.08 | 37.27 | 3.88 | 12.37 | 1.29 | 8.80 | 0.91 | |
2070s | 1–2.6 | 46.15 | 4.80 | 28.49 | 2.96 | 9.93 | 1.03 | 7.73 | 0.80 |
2–4.5 | 54.53 | 5.67 | 35.00 | 3.64 | 12.07 | 1.25 | 7.46 | 0.78 | |
3–7.0 | 42.42 | 4.41 | 24.80 | 2.58 | 8.91 | 0.93 | 8.71 | 0.91 | |
5–8.5 | 52.59 | 5.47 | 31.28 | 3.25 | 12.85 | 1.34 | 8.46 | 0.88 | |
2090s | 1–2.6 | 47.04 | 4.89 | 29.70 | 3.09 | 9.64 | 1.00 | 7.70 | 0.80 |
2–4.5 | 53.60 | 5.57 | 34.50 | 3.59 | 11.99 | 1.25 | 7.11 | 0.74 | |
3–7.0 | 52.64 | 5.47 | 31.96 | 3.32 | 11.72 | 1.22 | 8.96 | 0.93 | |
5–8.5 | 57.42 | 5.97 | 36.40 | 3.78 | 12.84 | 1.34 | 8.18 | 0.85 |
Code | Name of Bioclimate Variables | Unit |
---|---|---|
Bio 1 | Annual Mean Temperature | ℃ |
Bio 2 | Mean Diurnal Range (Mean of monthly) | ℃ |
Bio 3 | Isothermality | % |
Bio 4 | Temperature Seasonality | ℃ |
Bio 5 | Max Temperature of Warmest Month | ℃ |
Bio 6 | Min Temperature of Coldest Month | ℃ |
Bio 7 | Temperature Annual Range | ℃ |
Bio 8 | Mean Temperature of Wettest Quarter | ℃ |
Bio 9 | Mean Temperature of Driest Quarter | ℃ |
Bio 10 | Mean Temperature of Warmest Quarter | ℃ |
Bio 11 | Mean Temperature of Coldest Quarter | ℃ |
Bio 12 | Annual Precipitation | mm |
Bio 13 | Precipitation of Wettest Month | mm |
Bio 14 | Precipitation of Driest Month | mm |
Bio 15 | Precipitation Seasonality | mm |
Bio 16 | Precipitation of Wettest Quarter | mm |
Bio 17 | Precipitation of Driest Quarter | mm |
Bio 18 | Precipitation of Warmest Quarter | mm |
Bio 19 | Precipitation of Coldest Quarter | mm |
Bio 3 % | Bio 7 ℃ | Bio 9 ℃ | Bio 10 ℃ | Bio 12 mm | Bio 15 mm | Bio 17 mm |
---|---|---|---|---|---|---|
47.93 | 22.06 | 8.82 | 19.32 | 1263 | 76.16 | 65 |
48.78 | 22.68 | 9.13 | 19.72 | 921 | 76.71 | 52 |
48.66 | 23.36 | 12.60 | 23.25 | 960 | 81.90 | 49 |
48.38 | 21.70 | 11.31 | 19.95 | 1029 | 80.01 | 54 |
42.99 | 19.30 | 12.96 | 23.50 | 1396 | 81.60 | 74 |
47.80 | 20.69 | 8.84 | 18.86 | 1300 | 86.03 | 51 |
42.37 | 19.09 | 10.22 | 20.84 | 1555 | 81.38 | 78 |
41.49 | 19.16 | 10.25 | 21.08 | 1630 | 81.24 | 80 |
39.99 | 18.74 | 11.10 | 21.02 | 1762 | 83.44 | 80 |
43.40 | 23.34 | 9.05 | 21.64 | 1108 | 79.80 | 62 |
44.50 | 21.28 | 9.76 | 21.16 | 1297 | 86.04 | 48 |
42.07 | 20.69 | 9.87 | 21.45 | 1356 | 86.96 | 52 |
41.42 | 19.92 | 10.01 | 21.24 | 1667 | 95.96 | 52 |
40.57 | 22.53 | 13.37 | 24.23 | 1133 | 80.13 | 62 |
40.92 | 20.19 | 11.80 | 23.26 | 1561 | 92.21 | 53 |
41.62 | 20.68 | 9.44 | 21.05 | 1392 | 87.90 | 53 |
41.11 | 20.52 | 11.09 | 22.71 | 1530 | 91.96 | 53 |
42.36 | 21.46 | 8.82 | 20.68 | 1244 | 83.15 | 53 |
39.49 | 22.59 | 8.17 | 21.04 | 1235 | 80.10 | 65 |
38.31 | 23.26 | 9.52 | 22.98 | 1257 | 80.61 | 67 |
37.90 | 22.67 | 9.64 | 22.87 | 1240 | 80.47 | 65 |
42.22 | 22.96 | 10.27 | 22.87 | 1076 | 79.47 | 45 |
40.48 | 21.55 | 9.81 | 21.94 | 1205 | 83.87 | 45 |
38.12 | 22.77 | 9.09 | 22.32 | 1257 | 84.34 | 56 |
36.55 | 23.54 | 8.08 | 22.05 | 1309 | 80.52 | 65 |
34.70 | 23.59 | 7.95 | 22.35 | 1307 | 79.62 | 64 |
38.70 | 21.07 | 11.04 | 23.36 | 1367 | 87.15 | 54 |
36.72 | 22.58 | 9.31 | 22.73 | 1268 | 87.41 | 52 |
39.45 | 21.52 | 12.02 | 24.45 | 1291 | 87.49 | 45 |
33.68 | 23.46 | 8.68 | 23.11 | 1320 | 81.40 | 62 |
37.20 | 20.70 | 11.60 | 24.06 | 1420 | 86.86 | 58 |
36.38 | 20.60 | 10.54 | 23.02 | 1416 | 88.00 | 58 |
34.81 | 20.46 | 12.49 | 25.23 | 1501 | 87.90 | 74 |
34.04 | 23.44 | 8.66 | 22.99 | 1249 | 82.00 | 52 |
33.13 | 23.00 | 9.71 | 24.07 | 1305 | 81.85 | 63 |
33.34 | 21.43 | 14.82 | 26.97 | 1466 | 83.53 | 87 |
30.48 | 26.44 | 6.63 | 23.51 | 1274 | 68.50 | 83 |
28.73 | 25.89 | 4.90 | 21.82 | 1293 | 66.73 | 89 |
30.46 | 19.84 | 13.40 | 24.59 | 1862 | 82.00 | 105 |
29.49 | 26.06 | 9.04 | 25.91 | 1409 | 67.39 | 114 |
42.60 | 15.74 | 17.50 | 25.65 | 1420 | 79.03 | 52 |
42.46 | 15.90 | 15.65 | 23.89 | 1594 | 77.59 | 64 |
43.19 | 15.72 | 16.80 | 24.83 | 1591 | 76.18 | 70 |
48.10 | 14.41 | 22.85 | 28.75 | 1456 | 77.74 | 76 |
29.57 | 23.83 | 11.25 | 24.75 | 1613 | 65.65 | 132 |
29.83 | 25.13 | 12.32 | 26.47 | 1553 | 66.11 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Liu, X.; Chen, T.; Chen, C.; Luo, Y.; Xu, L.; Cao, F. Potential Suitable Habitat Range Shift Dynamics of the Rare Orchid Cymbidium cyperifolium in China Under Global Warming. Plants 2025, 14, 3084. https://doi.org/10.3390/plants14193084
Huang Y, Liu X, Chen T, Chen C, Luo Y, Xu L, Cao F. Potential Suitable Habitat Range Shift Dynamics of the Rare Orchid Cymbidium cyperifolium in China Under Global Warming. Plants. 2025; 14(19):3084. https://doi.org/10.3390/plants14193084
Chicago/Turabian StyleHuang, Yaqi, Xiangdong Liu, Ting Chen, Chan Chen, Yibo Luo, Lu Xu, and Fuxiang Cao. 2025. "Potential Suitable Habitat Range Shift Dynamics of the Rare Orchid Cymbidium cyperifolium in China Under Global Warming" Plants 14, no. 19: 3084. https://doi.org/10.3390/plants14193084
APA StyleHuang, Y., Liu, X., Chen, T., Chen, C., Luo, Y., Xu, L., & Cao, F. (2025). Potential Suitable Habitat Range Shift Dynamics of the Rare Orchid Cymbidium cyperifolium in China Under Global Warming. Plants, 14(19), 3084. https://doi.org/10.3390/plants14193084