Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications
Abstract
1. Introduction
2. Cd in the Soil–Plant System: Bioavailability and Toxicity Pathways
3. Regulation of Cd Stress by Essential Macronutrient Elements
3.1. Nitrogen
3.2. Phosphorus
3.3. Potassium
3.4. Calcium
3.5. Magnesium
3.6. Sulfur
4. Regulation of Cd Stress by Essential Micronutrient Elements and Non-Essential Beneficial Elements
4.1. Zinc
4.2. Iron
4.3. Manganese
4.4. Copper
4.5. Silicon
4.6. Selenium
5. Molecular Mechanisms of Nutrient-Mediated Cd Tolerance
5.1. Transcriptional Regulation
5.2. Signaling Pathways
5.3. Epigenetic Regulation
6. Nutrient Interactions and Synergistic Effects
7. Applied Perspectives: Nutrient Management for Cd Mitigation
7.1. Fertilization Strategies
7.2. Breeding and Biotechnology
7.3. Phytoremediation Enhancement
7.4. Limitations of Cd Mitigation Strategies
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Fleischer, M.; Sarofim, A.F.; Fassett, D.W.; Hammond, P.; Shacklette, H.T.; Nisbet, I.C.; Epstein, S. Environmental impact of cadmium: A review by the Panel on Hazardous Trace Substances. Environ. Health Perspect. 1974, 7, 253–323. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Zhao, F.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Zhang, T.; Jiku, M.A.S.; Li, L.; Ren, Y.; Li, L.; Zeng, X.; Colinet, G.; Sun, Y.; Hou, L.; Su, S. Soil ridging combined with biochar or calcium-magnesium-phosphorus fertilizer application: Enhanced interaction with Ca, Fe and Mn in new soil habitat reduces uptake of As and Cd in rice. Environ. Pollut. 2023, 332, 121968. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Su, Y.; Qin, C.; Begum, N.; Ashraf, M.; Zhang, L. Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). Ecotoxicol. Environ. Saf. 2020, 198, 110671. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Naz, S.; Altaf, M.M.; Khan, L.U.; Lal, M.K.; Tiwari, R.K.; Shakoor, A. Melatonin mitigates cadmium toxicity by promoting root architecture and mineral homeostasis of tomato genotypes. J. Soil Sci. Plant Nutr. 2022, 22, 1112–1128. [Google Scholar] [CrossRef]
- Yang, S.; Zu, Y.; Li, B.; Bi, Y.; Jia, L.; He, Y.; Li, Y. Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere 2019, 220, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Quadros, I.P.S.; Madeira, N.N.; Loriato, V.A.P.; Saia, T.F.F.; Silva, J.C.; Soares, F.A.F.; Carvalho, J.R.; Reis, P.A.B.; Fontes, E.P.B.; Clarindo, W.R.; et al. Cadmium-mediated toxicity in plant cells is associated with the DCD/NRP-mediated cell death response. Plant Cell Environ. 2022, 45, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Suhani, I.; Sahab, S.; Srivastava, V.; Singh, R.P. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Banerjee, A.; Mukherjee, S. Defense Responses in Cereal Crops Against Cadmium Toxicity: An Overview. In Plant Responses to Cadmium Toxicity: Insights into Physiology and Defense Mechanisms; Springer: Berlin/Heidelberg, Germany, 2024; pp. 233–257. [Google Scholar] [CrossRef]
- Sterckeman, T.; Thomine, S. Mechanisms of cadmium accumulation in plants. Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
- Yan, Z.; Ding, W.; Xie, G.; Yan, M.; Li, J.; Han, Y.; Xiong, X.; Wang, C. Identification of cadmium phytoavailability in response to cadmium transformation and changes in soil pH and electrical conductivity. Chemosphere 2023, 342, 140042. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Naidu, R. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J. Soil Sci. Plant Nutr. 2015, 15, 524–548. [Google Scholar] [CrossRef]
- Li, B.; Zhu, H.; Zhu, Q.; Zhang, Q.; Xu, C.; Fang, Z.; Huang, D.; Xia, W. Improving liming mode for remediation of Cd-contaminated acidic paddy soils: Identifying the optimal soil pH, model and efficacies. Ecotoxicol. Environ. Saf. 2024, 272, 116038. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, D.; Wang, P. Biogeochemical control on the mobilization of Cd in soil. Curr. Pollut. Rep. 2021, 7, 194–200. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, S.; Shan, X.Q.; Luo, L.E.I.; Pei, Z.; Zhu, Y.G.; Liu, T.; Xie, Y.N.; Gault, A. Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. Environ. Toxicol. Chem. 2006, 25, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Qi, L.; Li, X.; Yue, Z.; Yang, Y.; Han, F.; Xu, R.; Huang, J. Rhizosphere-driven alteration of cadmium bioavailability under Cd stress. Soil Sci. Soc. Am. J. 2025, 89, e70061. [Google Scholar] [CrossRef]
- Martínez, C.E.; McBride, M.B. Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH: Aging effects on metal solubility and extractability by citrate. Environ. Toxicol. Chem. 2001, 20, 122–126. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Haider, F.U.; Maqsood, M.F.; Mohy-Ud-Din, W.; Shabaan, M.; Ahmad, M.; Kaleem, M.; Ishfaq, M.; Aslam, Z.; Shahzad, B. Recent advances in microbial-assisted remediation of cadmium-contaminated soil. Plants 2023, 12, 3147. [Google Scholar] [CrossRef]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef] [PubMed]
- Meier, B.; Mariani, O.; Peiter, E. Manganese handling in plants: Advances in the mechanistic and functional understanding of transport pathways. Quant. Plant Biol. 2025, 6, e16. [Google Scholar] [CrossRef]
- Hanikenne, M.; Talke, I.N.; Haydon, M.J.; Lanz, C.; Nolte, A.; Motte, P.; Kroymann, J.; Weigel, D.; Krämer, U. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 2008, 453, 391–395. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Phytochelatins: Sulfur-containing metal (loid)-chelating ligands in plants. Int. J. Mol. Sci. 2023, 24, 2430. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, M.; Wang, S.; Ma, G.; Huang, X.; Qiao, C.; Wang, R.; Xu, X.; Liang, Y.; Lu, K.; et al. Genome-wide characterization and analysis of metallothionein family genes that function in metal stress tolerance in Brassica napus L. Int. J. Mol. Sci. 2018, 19, 2181. [Google Scholar] [CrossRef]
- Al Mahmud, J.; Bhuyan, M.H.M.B.; Nahar, K.; Parvin, K.; Hasanuzzaman, M. Response and tolerance of Fabaceae plants to metal/metalloid toxicity. In The Plant Family Fabaceae: Biology and Physiological Responses to Environmental Stresses; Springer: Singapore, 2020; pp. 435–482. [Google Scholar]
- Yi, Y.; Liu, H.; Chen, G.; Wu, X.; Zeng, F. Cadmium accumulation in plants: Insights from phylogenetic variation into the evolution and functions of membrane transporters. Sustainability 2023, 15, 12158. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, T.; Wang, Y.; Wang, J.; Song, J.; Cui, C.; Ji, G.; Cao, J.; Muhammad, S.; Ao, H.; et al. Trx CDSP32-overexpressing tobacco plants improves cadmium tolerance by modulating antioxidant mechanism. Plant Physiol. Biochem. 2023, 194, 524–532. [Google Scholar] [CrossRef]
- Loix, C.; Huybrechts, M.; Vangronsveld, J.; Gielen, M.; Keunen, E.; Cuypers, A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front. Plant Sci. 2017, 8, 1867. [Google Scholar] [CrossRef]
- Mondal, S. Heavy metal stress–induced activation of mitogen-activated protein kinase signalling cascade in plants. Plant Mol. Biol. Rep. 2023, 41, 15–26. [Google Scholar] [CrossRef]
- Bilal, S.; Jan, S.S.; Shahid, M.; Asaf, S.; Khan, A.L.; Lubna; Al-Rawahi, A.; Lee, I.-J.; Al-Harrasi, A. Novel insights into exogenous phytohormones: Central regulators in the modulation of physiological, biochemical, and molecular responses in rice under metal (loid) stress. Metabolites 2023, 13, 1036. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Khaliq, A.; Noor, M.A.; Tanveer, M.; Hussain, H.A.; Hussain, S.; Shah, T.; Mehmood, T. Metal toxicity and nitrogen metabolism in plants: An overview. In Carbon and Nitrogen Cycling in Soil; Springer: Berlin/Heidelberg, Germany, 2019; pp. 221–248. [Google Scholar] [CrossRef]
- Xu, D. Large-Scale Impacts of Nutrient Management on Soil Acidification and Cadmium Mobilization in Chinese Croplands. Doctoral Dissertation, Wageningen University and Research, Wageningen, The Netherlands, 2024; p. 213. [Google Scholar] [CrossRef]
- Zaccheo, P.; Crippa, L.; Pasta, V.D.M. Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 2006, 283, 43–56. [Google Scholar] [CrossRef]
- Nogueirol, R.C.; Monteiro, F.A.; de Souza Junior, J.C.; Azevedo, R.A. NO3−/NH4+ proportions affect cadmium bioaccumulation and tolerance of tomato. Environ. Sci. Pollut. Res. 2018, 25, 13916–13928. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, W.; Xu, S.; Shi, H.; Wen, D.; Huang, Y.; Peng, L.; Deng, T.; Du, R.; Li, F.; et al. Increasing ammonium nutrition as a strategy for inhibition of cadmium uptake and xylem transport in rice (Oryza sativa L.) exposed to cadmium stress. Environ. Exp. Bot. 2018, 155, 734–741. [Google Scholar] [CrossRef]
- Hu, P.; Yin, Y.G.; Ishikawa, S.; Suzui, N.; Kawachi, N.; Fujimaki, S.; Igura, M.; Yuan, C.; Huang, J.; Li, Z.; et al. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ. Sci. Pollut. Res. 2013, 20, 6306–6316. [Google Scholar] [CrossRef] [PubMed]
- Chaffei-Haouari, C.; Hajjaji-Nasraoui, A.; Carrayol, E.; Debouba, M.; Ghorbel, M.H.; Gouia, H. Glutamate metabolism on Solanum lycopersicon grown under cadmium stress conditions. Acta Bot. Gall. 2011, 158, 147–159. [Google Scholar] [CrossRef]
- Mir, I.R.; Rather, B.A.; Masood, A.; Anjum, N.A.; Khan, N.A. Nitrogen sources mitigate cadmium phytotoxicity differentially by modulating cellular buffers, N-assimilation, non-protein thiols, and phytochelatins in mustard (Brassica juncea L.). J. Soil Sci. Plant Nutr. 2022, 22, 3847–3867. [Google Scholar] [CrossRef]
- Liu, X.L.; Tang, X.L.; Huang, W.C.; Luo, Y.C.; Wang, L.Y. Effects of nitrogen application on growth and photosynthesis characteristics of Solanum nigrum under cadmium stress. J. West China For. Sci. 2021, 50, 24–30. [Google Scholar] [CrossRef]
- Mir, I.R.; Rather, B.A.; Sehar, Z.; Masood, A.; Khan, N.A. Nitric oxide in co-ordination with nitrogen reverses cadmium-inhibited photosynthetic activity by interacting with ethylene synthesis, strengthening the antioxidant system, and nitrogen and sulfur assimilation in mustard (Brassica juncea L.). Sci. Hortic. 2023, 314, 111958. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Huang, J.; Wu, X.; Tian, F.; Chen, Q.; Luo, P.; Zhang, F.; Wan, X.; Zhong, Y.; Liu, Q.; Lin, T. Changes in proteome and protein phosphorylation reveal the protective roles of exogenous nitrogen in alleviating cadmium toxicity in poplar plants. Int. J. Mol. Sci. 2019, 21, 278. [Google Scholar] [CrossRef]
- Ma, W.; Luo, P.; Ahmed, S.; Hayat, H.S.; Anjum, S.A.; Nian, L.; Wu, J.; Wei, Y.; Ba, W.; Haider, F.U.; et al. Synergistic Effect of Biochar, Phosphate Fertilizer, and Phosphorous Solubilizing Bacteria for Mitigating Cadmium (Cd) Stress and Improving Maize Growth in Cd-Contaminated Soil. Plants 2024, 13, 3333. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Tan, Y.; Yin, J.; Peng, Y.; Wei, M.; Chen, H.; Chen, Q. Phosphate fertilizers’ Dual role in cadmium-polluted acidic agricultural soils: Dosage dependency and passivation potential. Agronomy 2024, 14, 2201. [Google Scholar] [CrossRef]
- Ma, X.; Luo, Z.; Yu, Y.; Liu, L.; Wu, B.; Liu, Q. Insight into mineral-microbe interaction on cadmium immobilization via microbially induced phosphate precipitation with various phosphate minerals. J. Hazard. Mater. 2025, 498, 139854. [Google Scholar] [CrossRef]
- Meng, Q.; Fan, W.; Liu, F.; Wang, G.; Di, X. Effect of Phosphorus Application on Eggplant Cadmium Accumulation and Soil Cadmium Morphology. Sustainability 2023, 15, 16236. [Google Scholar] [CrossRef]
- Islam, M.S.; Rezwan, F.; Kashem, M.A.; Moniruzzaman, M.; Parvin, A.; Das, S.; Hu, H. Impact of a phosphate compound on plant metal uptake when low molecular weight organic acids are present in artificially contaminated soils. Environ. Adv. 2024, 15, 100468. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Huang, Y.; Nan, Z.; Ma, J.; Wang, H. Effects of Cd on uptake of P in potato grown in sierozems. Soil Sediment Contam. Int. J. 2017, 26, 323–335. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Qiu, W.; Chen, Z.; Chen, W.; Li, Y.; Zhu, J.; Rahman, S.U.; Han, Z.; Jiang, Y.; Yang, G.; et al. Phosphorus influence Cd phytoextraction in Populus stems via modulating xylem development, cell wall Cd storage and antioxidant defense. Chemosphere 2020, 242, 125154. [Google Scholar] [CrossRef]
- Iqbal, A.; Gui, H.; Zheng, C.; Wang, X.; Zhang, X.; Song, M.; Ma, X. Phosphorus Supplementation Enhances Growth and Antioxidant Defense Against Cadmium Stress in Cotton. Antioxidants 2025, 14, 686. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Sinumvayabo, N.; Li, Y.; Han, Z.; Tian, J.; Ma, Q.; Pan, Z.; Geng, Z.; Yang, S.; et al. Phosphorus deficiency induces root proliferation and Cd absorption but inhibits Cd tolerance and Cd translocation in roots of Populus× euramericana. Ecotoxicol. Environ. Saf. 2020, 204, 111148. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Demidchik, V.; Straltsova, D.; Medvedev, S.S.; Pozhvanov, G.A.; Sokolik, A.; Yurin, V. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef]
- Kapoor, D.; Sharma, P.; Arora, U.; Gautam, V.; Bhardwaj, S.; Atri, P.; Sharma, N.; Ohri, P.; Bhardwaj, R. Molecular approaches to potassium uptake and cellular homeostasis in plants under abiotic stress. In Role of Potassium in Abiotic Stress; Springer Nature Singapore: Singapore, 2022; pp. 41–75. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tomar, N.S.; Tittal, M.; Argal, S.; Agarwal, R. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 2017, 23, 731–744. [Google Scholar] [CrossRef]
- Alghamdi, S.A.; Alharby, H.F.; Abbas, G.; Al-Solami, H.M.; Younas, A.; Aldehri, M.; Alabdallah, N.M.; Chen, Y. Salicylic acid-and potassium-enhanced resilience of quinoa (Chenopodium quinoa Willd.) against salinity and cadmium stress through mitigating ionic and oxidative stress. Plants 2023, 12, 3450. [Google Scholar] [CrossRef]
- Xu, B.; Liu, C.; Zhou, D.; Wang, Y. Molecular dynamics simulation of metal ion-lipid bilayer interactions. J. Agro-Environ. Sci. 2019, 38, 1482–1489. [Google Scholar] [CrossRef]
- Peuke, A.D. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot. 2010, 61, 635–655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y.; Lv, G.; Liu, T.; Liu, Z.; Jiang, Y.; Hao, Y.; Yu, Y.; Dong, W.; Qian, C. Effects of Malic Acid on Cadmium Uptake and Translocation and Essential Element Accumulation in Rice. Toxics 2025, 13, 811. [Google Scholar] [CrossRef]
- Yin, A.; Shen, C.; Huang, Y.; Fu, H.; Liao, Q.; Xin, J.; Huang, B. Transcriptomic analyses of sweet potato in response to Cd exposure and protective effects of K on Cd-induced physiological alterations. Environ. Sci. Pollut. Res. 2022, 29, 36824–36838. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, Y.; Zhang, T.; Liu, J.; You, Z.; Huang, P.; Zhang, Z.; Wang, C. Plasma membrane-associated calcium signaling modulates cadmium transport. New Phytol. 2023, 238, 313–331. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Nazir, M.M.; Ali, S.; Ouyang, Y.; Ye, S.; Zeng, F. Calcium plays a double-edged role in modulating cadmium uptake and translocation in rice. Int. J. Mol. Sci. 2020, 21, 8058. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M.; et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Choong, G.; Liu, Y.; Templeton, D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. -Biol. Interact. 2014, 211, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ouyang, Y.; Fan, Y.; Qiu, B.; Zhang, G.; Zeng, F. The pathway of transmembrane cadmium influx via calcium-permeable channels and its spatial characteristics along rice root. J. Exp. Bot. 2018, 69, 5279–5291. [Google Scholar] [CrossRef]
- Dong, Q.; Wallrad, L.; Almutairi, B.O.; Kudla, J. Ca2+ signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 2022, 64, 287–300. [Google Scholar] [CrossRef]
- Ghosh, S.; Bheri, M.; Pandey, G.K. Delineating calcium signaling machinery in plants: Taping the potential through functional genomics. Curr. Genom. 2021, 22, 404–439. [Google Scholar] [CrossRef]
- DeFalco, T.A.; Bender, K.W.; Snedden, W.A. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 2010, 425, 27–40. [Google Scholar] [CrossRef]
- Aslam, S.; Gul, N.; Mir, M.A.; Asgher, M.; Al-Sulami, N.; Abulfaraj, A.A.; Qari, S. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Front. Plant Sci. 2021, 12, 668029. [Google Scholar] [CrossRef]
- Ju, C.; Zhang, Z.; Deng, J.; Miao, C.; Wang, Z.; Wallrad, L.; Javed, L.; Fu, D.; Zhang, T.; Kudla, J.; et al. Ca2+-dependent successive phosphorylation of vacuolar transporter MTP8 by CBL2/3-CIPK3/9/26 and CPK5 is critical for manganese homeostasis in Arabidopsis. Mol. Plant 2022, 15, 419–437. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, L.; Su, N.; Shabala, L.; Wang, H.; Huang, X.; Wen, R.; Yu, M.; Cui, J.; Shabala, S. Calcium-dependent hydrogen peroxide mediates hydrogen-rich water-reduced cadmium uptake in plant roots. Plant Physiol. 2020, 183, 1331–1344. [Google Scholar] [CrossRef]
- He, H.; Wang, X.; Wu, M.; Guo, L.; Fan, C.; Peng, Q. Cadmium and lead affect the status of mineral nutrients in alfalfa grown on a calcareous soil. Soil Sci. Plant Nutr. 2020, 66, 506–514. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, X.; Ackah, M.; Amoako, F.K.; Li, J.; Tsigbey, V.E.; Li, H.; Cui, Z.; Sun, L.; Zhao, C.; et al. Comparative physio-biochemical and transcriptome analyses reveal contrasting responses to magnesium imbalances in leaves of mulberry (Morus alba L.) plants. Antioxidants 2024, 13, 516. [Google Scholar] [CrossRef]
- Ding, Y.-C.; Chang, C.-R.; Luo, W.; Wu, Y.-S.; Ren, X.-L.; Wang, P.; Xu, G.-H. High potassium aggravates the oxidative stress inducedy by magnesium deflciency in rice leaves. Pedosphere 2008, 18, 316–327. [Google Scholar] [CrossRef]
- Li, D.; Xiao, S.; Ma, W.N.; Peng, Z.; Khan, D.; Yang, Q.; Wang, X.; Kong, X.; Zhang, B.; Yang, E.; et al. Magnesium reduces cadmium accumulation by decreasing the nitrate reductase-mediated nitric oxide production in Panax notoginseng roots. J. Plant Physiol. 2020, 248, 153131. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Regulation of Cadmium Absorption and Tolerance by Gene Manipulation of AtMGT1 in Plant. Master Dissertation, Southwest University, Chongqing, China, 2014. [Google Scholar]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Arinzechi, C.; Dong, C.; Huang, P.; Zhao, P.; Liao, Q.; Li, Q.; Yang, Z. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. Environ. Geochem. Health 2024, 46, 435. [Google Scholar] [CrossRef]
- Nocito, F.F.; Lancilli, C.; Giacomini, B.; Sacchi, G.A. Sulfur metabolism and cadmium stress in higher plants. Plant Stress 2007, 1, 142–156. [Google Scholar]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.I.; Neukermans, J.; Marquez-Garcia, B.E.L.E.N.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef]
- Vatamaniuk, O.K.; Mari, S.; Lu, Y.P.; Rea, P.A. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 2000, 275, 31451–31459. [Google Scholar] [CrossRef]
- Ortiz, D.F.; Ruscitti, T.; McCue, K.F.; Ow, D.W. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem. 1995, 270, 4721–4728. [Google Scholar] [CrossRef]
- Sagar, L.; Singh, S.; Kumar, D.; Praharaj, S.; Pattanayak, S.; Malik, G.C.; Pramanick, B.; Shankar, T.; Hossain, A.; Maitra, S. Role of sulfur in plant tolerance to environmental stresses. In Biology and Biotechnology of Environmental Stress Tolerance in Plants; Apple Academic Press: Palm Bay, FL, USA, 2023; pp. 387–414. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003346203-16/role-sulfur-protection-major-environmental-stress-plants-snehalata-majumdar-falguni-barman-alivia-paul-rita-kundu (accessed on 21 June 2025).
- Shi, G.; Liu, H.; Zhou, D.; Zhou, H.; Fan, G.; Chen, W.; Li, J.; Lou, L.; Gao, Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 1032681. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant Signal. Behav. 2011, 6, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Gigolashvili, T.; Kopriva, S. Transporters in plant sulfur metabolism. Front. Plant Sci. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Oliver, D.J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 1998, 10, 1539–1550. [Google Scholar] [CrossRef]
- Shahzad, M.; Bibi, A.; Khan, A.; Shahzad, A.; Xu, Z.; Maruza, T.M.; Zhang, G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. Plants 2025, 14, 707. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Bio/Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, W.; Wang, M.; Chen, W.; Li, X.; Li, Y.; Cai, Y. Mechanisms and uncertainties of zn supply on regulating rice cd uptake. Environ. Pollut. 2019, 253, 959–965. [Google Scholar] [CrossRef]
- Duan, Z.; Soviguidi, D.R.J.; Pan, B.; Lei, R.; Song, Z.; Liang, G. Genome-wide identification and expression analysis of the ZRT, IRT-like protein (ZIP) family in Nicotiana tabacum. Metallomics 2024, 16, mfae047. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low-and high-Cd wheat cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar] [CrossRef]
- Petering, D.H. Reactions of the Zn proteome with Cd2+ and other xenobiotics: Trafficking and toxicity. Chem. Res. Toxicol. 2017, 30, 189–202. [Google Scholar] [CrossRef]
- Formigari, A.; Irato, P.; Santon, A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Umair Hassan, M.; Huang, G.; Haider, F.U.; Khan, T.A.; Noor, M.A.; Luo, F.; Zhou, Q.; Yang, B.; Haq, M.I.U.; Iqbal, M.M. Application of zinc oxide nanoparticles to mitigate cadmium toxicity: Mechanisms and future prospects. Plants 2024, 13, 1706. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, C.; Lv, G.; Shuai, H.; Zhang, Q.; Zhu, Q.; Zhu, H.; Huang, D. Foliar zinc reduced cd accumulation in grains by inhibiting cd mobility in the xylem and increasing cd retention ability in roots1. Environ. Pollut. 2023, 333, 122046. [Google Scholar] [CrossRef]
- Li, W.; Qin, F.; Luo, B.; Huang, Q.; Xu, A.; Wu, R. Zinc and manganese impact on cabbage (Brassica rapa) cadmium tolerance: Comparative transcriptomic and metabolomic study. Plant Soil 2025, 1–20. [Google Scholar] [CrossRef]
- Tang, L.; Yao, A.; Yuan, M.; Tang, Y.; Liu, J.; Liu, X.; Qiu, R. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 2016, 164, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Kermeur, N.; Pédrot, M.; Cabello-Hurtado, F. Iron availability and homeostasis in plants: A review of responses, adaptive mechanisms, and signaling. Plant Abiotic Stress Signal 2023, 2642, 49–81. [Google Scholar] [CrossRef]
- Rodrigues, W.F.C.; Lisboa, A.B.P.; Lima, J.E.; Ricachenevsky, F.K.; Del-Bem, L.E. Ferrous iron uptake via IRT1/ZIP evolved at least twice in green plants. New Phytol. 2023, 237, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.R.; You, T.T.; Liu, W.Y.; Ye, K.; Zhao, F.J.; Wang, P. Mitigating cadmium accumulation in dicotyledonous vegetables by iron fertilizer through inhibiting Fe transporter IRT1-mediated Cd uptake. Chemosphere 2024, 346, 140559. [Google Scholar] [CrossRef]
- Yoneyama, T. Iron delivery to the growing leaves associated with leaf chlorosis in mugineic acid family phytosiderophores-generating graminaceous crops. Soil Sci. Plant Nutr. 2021, 67, 415–426. [Google Scholar] [CrossRef]
- Shao, G.; Chen, M.; Wang, W.; Mou, R.; Zhang, G. Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul. 2007, 53, 33–42. [Google Scholar] [CrossRef]
- Luo, P.; Wu, J.; Li, T.T.; Shi, P.; Ma, Q.; Di, D.W. An overview of the mechanisms through which plants regulate ROS homeostasis under cadmium stress. Antioxidants 2024, 13, 1174. [Google Scholar] [CrossRef]
- Wang, X.; Deng, S.; Zhou, Y.; Long, J.; Ding, D.; Du, H.; Lei, M.; Chen, C.; Tie, B.Q. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. Environ. Sci. Pollut. Res. 2021, 28, 7828–7839. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yao, H.; Wong, M.H.; Ye, Z. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environ. Geochem. Health 2013, 35, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, F.; Riaz, A.; Ali, S.; Zhang, G. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. Sci. Total Environ. 2024, 921, 171005. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Husted, S. The biochemical properties of manganese in plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, K.; Xing, W.; Shao, R.; Gao, X.; Zhang, S.; Li, L. Physiological, transcriptomic, and metabolomic association analyses revealed key factors involved in manganese sulfate mitigates cadmium toxicity in wheat. Plant Physiol. Biochem. 2025, 229, 110313. [Google Scholar] [CrossRef]
- Anas, M.; Bibi, S.; Farwa, U.; Khan, A.; Quraishi, U.M. Manganese oxide nanoparticles elicit cadmium tolerance in wheat seedlings by ionomic and phenomic adjustment, regulation of AsA–GSH pathway, cellular thickness recovery, and antioxidant modulation. Environ. Sci. Nano 2024, 11, 4588–4605. [Google Scholar] [CrossRef]
- Takagi, D. Manganese Toxicity and Tolerance in Photosynthetic Organisms and Breeding Strategy for Improving Manganese Tolerance in Crop Plants: Physiological and Omics Approach Perspectives. In Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach; Wiley: Hoboken, NJ, USA, 2023; pp. 141–168. [Google Scholar] [CrossRef]
- Chen, X.; Yang, S.; Ma, J.; Huang, Y.; Wang, Y.; Zeng, J.; Cheng, Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). J. Hazard. Mater. 2023, 448, 130998. [Google Scholar] [CrossRef]
- Kanwal, F.; Riaz, A.; Khan, A.; Ali, S.; Zhang, G. Manganese enhances cadmium tolerance in barley through mediating chloroplast integrity, antioxidant system, and HvNRAMP expression. J. Hazard. Mater. 2024, 480, 135777. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef]
- Palmer, C.M.; Guerinot, M.L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5, 333–340. [Google Scholar] [CrossRef]
- Chu, C.C.; Lee, W.C.; Guo, W.Y.; Pan, S.M.; Chen, L.J.; Li, H.M.; Jinn, T.L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol. 2005, 139, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Gaddam, S.R.; Sharma, A.; Trivedi, P.K. miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. J. Hazard. Mater. 2024, 465, 133100. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Pathak, G.C.; Pandey, D.K.; Pandey, R. Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz. J. Plant Physiol. 2009, 21, 103–111. [Google Scholar] [CrossRef]
- Mudge, A.J.; Mehdi, S.; Michaels, W.; Orosa-Puente, B.; Shen, W.; Tomlinson, C.; Wei, W.; Hoppen, C.; Uzun, B.; Roy, D.; et al. POLARIS is a copper-binding peptide that interacts with ETR1 to negatively regulate ethylene signaling in Arabidopsis. Plant Commun. 2025, 6, 101432. [Google Scholar] [CrossRef]
- Thao, N.P.; Khan, M.I.R.; Thu, N.B.A.; Hoang, X.L.T.; Asgher, M.; Khan, N.A.; Tran, L.S.P. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol. 2015, 169, 73–84. [Google Scholar] [CrossRef]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. The controversies of silicon’s role in plant biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, V.; Sharma, A. Interaction of silicon with cell wall components in plants: A review. J. Appl. Nat. Sci. 2023, 15, 480–497. [Google Scholar] [CrossRef]
- Min, F.; Wang, X.; Li, L.; Xin, Z.; Li, X.; Zhang, T.; Sun, X.; You, H. Effects of silicate stabilizers on cadmium reduction and the quality of rice grains in acidic paddy soil. Sci. Rep. 2024, 14, 20551. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fahad, S.; Wang, X. Nano-silicon mediated alleviation of Cd toxicity by cell wall adsorption and antioxidant defense system in rice seedlings. Plant Soil 2023, 486, 103–117. [Google Scholar] [CrossRef]
- Shah, T.; Khan, Z.; Khan, S.R.; Imran, A.; Asad, M.; Ahmad, A.; Ahmad, P. Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants. Environ. Sci. Pollut. Res. 2023, 30, 123996–124009. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Peng, H.; Xie, Y.; Wang, X.; Huang, R.; Chen, H.; Ji, X. The role of silicon in cadmium alleviation by rice root cell wall retention and vacuole compartmentalization under different durations of Cd exposure. Ecotoxicol. Environ. Saf. 2021, 226, 112810. [Google Scholar] [CrossRef]
- Ur Rahman, S.H.; Qi, X.; Zhang, Z.; Ashraf, M.N.; Du, Z.; Zhong, Y.L.; Mehmood, F.; Ur, R.S.; Shehzad, M. The effect of silicon foliar and root application on growth, physiology, and antioxidant enzyme activity of wheat plants under cadmium toxicity. Appl. Ecol. Environ. Res. 2020, 18, 3349–3371. [Google Scholar] [CrossRef]
- Zhou, Q.; Cai, Z.; Xian, P.; Yang, Y.; Cheng, Y.; Lian, T.; Ma, Q.; Nian, H. Silicon-enhanced tolerance to cadmium toxicity in soybean by enhancing antioxidant defense capacity and changing cadmium distribution and transport. Ecotoxicol. Environ. Saf. 2022, 241, 113766. [Google Scholar] [CrossRef]
- Kim, Y.H.; Khan, A.L.; Kim, D.H.; Lee, S.Y.; Kim, K.M.; Waqas, M.; Jung, H.Y.; Shin, J.H.; Kim, J.G.; Lee, I.J. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Sakouhi, L.; Mahjoubi, Y.; Labben, A.; Kharbech, O.; Chaoui, A.; Djebali, W. Effects of cadmium–selenium interaction on glyoxalase and antioxidant systems of Pisum sativum germinating seeds. J. Plant Growth Regul. 2023, 42, 3084–3099. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Xuan, Z.; Wu, C.; Cheng, Y.; Xu, C.; Ma, X.; Wang, D. Effects of selenium on the AsA-GSH system and photosynthesis of pakchoi (Brassica chinensis L.) under lead stress. J. Soil Sci. Plant Nutr. 2022, 22, 5111–5122. [Google Scholar] [CrossRef]
- Kang, Y.; Qin, H.; Wang, G.; Lei, B.; Yang, X.; Zhong, M. Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines. J. Agric. Food Chem. 2024, 72, 1473–1486. [Google Scholar] [CrossRef]
- Zhou, Y.; Nie, K.; Geng, L.; Wang, Y.; Li, L.; Cheng, H. Selenium’s role in plant secondary metabolism: Regulation and mechanistic insights. Agronomy 2024, 15, 54. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Nazir, F.; Asgher, M.; Per, T.S.; Khan, N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 2015, 173, 9–18. [Google Scholar] [CrossRef]
- Sahito, J.H.; Ma, C.; Zhang, J.; Li, J.; Zhao, J.; Mu, L.; Zhang, Y.; Gishkori, Z.G.N.; Ding, D.; Zhang, X.; et al. Selenium and its mechanisms mitigate cadmium toxicity in plants: Promising role and future potentials. Ecotoxicol. Environ. Saf. 2025, 300, 118422. [Google Scholar] [CrossRef]
- Sun, S.K.; Chen, J.; Zhao, F.J. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants. J. Exp. Bot. 2023, 74, 3286–3299. [Google Scholar] [CrossRef]
- Shaikhali, J.; Norén, L.; Barajas-López, J.d.D.; Srivastava, V.; König, J.; Sauer, U.H.; Wingsle, G.; Dietz, K.-J.; Strand, Å. Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis. J. Biol. Chem. 2012, 287, 27510–27525. [Google Scholar] [CrossRef]
- Liang, T.; Ding, H.; Wang, G.; Kang, J.; Pang, H.; Lv, J. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol. Environ. Saf. 2016, 124, 129–137. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, R.; Ju, Q.; Li, W.; Tran, L.S.P.; Xu, J. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiol. 2019, 180, 529–542. [Google Scholar] [CrossRef]
- Li, F.; Deng, Y.; Liu, Y.; Mai, C.; Xu, Y.; Wu, J.; Zheng, X.; Liang, C.; Wang, J. Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression. J. Hazard. Mater. 2023, 460, 132496. [Google Scholar] [CrossRef]
- Bouzroud, S.; Fayezizadeh, M.R.; Das, S.; Sarraf, M.; Saleem, M.H.; Ercisli, S.; Mirmazloum, I.; Hasanuzzaman, M. Molecular Insights into NAC Transcription Factors: Key Regulators of Plant Response to Metal Stress. J. Plant Growth Regul. 2025, 1–18. [Google Scholar] [CrossRef]
- Assunção, A.G. The F-bZIP-regulated Zn deficiency response in land plants. Planta 2022, 256, 108. [Google Scholar] [CrossRef]
- Bastow, E.L.; Garcia de la Torre, V.S.; Maclean, A.E.; Green, R.T.; Merlot, S.; Thomine, S.; Balk, J. Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiol. 2018, 177, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńska, A.; Sirko, A. To control and to be controlled: Understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family. Front. Plant Sci. 2014, 5, 575. [Google Scholar] [CrossRef] [PubMed]
- Dietzen, C.; Koprivova, A.; Whitcomb, S.J.; Langen, G.; Jobe, T.O.; Hoefgen, R.; Kopriva, S. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response. Plant Physiol. 2020, 184, 2120–2136. [Google Scholar] [CrossRef] [PubMed]
- Sarwat, M.; Ahmad, P.; Nabi, G.; Hu, X. Ca2+ signals: The versatile decoders of environmental cues. Crit. Rev. Biotechnol. 2013, 33, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, H.; Huang, R.N.; Xu, J.; Huang, L.; Yang, J.; Chen, W. CIP1, a CIPK23-interacting transporter, is implicated in Cd tolerance and phytoremediation. J. Hazard. Mater. 2024, 471, 134276. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, Y.; Zhong, M.; Hussian, J.; Tang, Y.; Liu, S.; Qi, G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. Theor. Appl. Genet. 2023, 136, 210. [Google Scholar] [CrossRef]
- Bogeski, I.; Kappl, R.; Kummerow, C.; Gulaboski, R.; Hoth, M.; Niemeyer, B.A. Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium 2011, 50, 407–423. [Google Scholar] [CrossRef]
- Cuypers, A.; Hendrix, S.; Amaral dos Reis, R.; De Smet, S.; Deckers, J.; Gielen, H.; Jozefczak, M.; Loix, C.; Vercampt, H.; Vangronsveld, J.; et al. Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front. Plant Sci. 2016, 7, 470. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X.; Zhang, J.; Li, J.; Niu, T.; Tang, C.; Wang, C.; Xie, J. Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. Front. Plant Sci. 2022, 13, 1015745. [Google Scholar] [CrossRef]
- Dai, Z.H.; Guan, D.X.; Bundschuh, J.; Ma, L.Q. Roles of phytohormones in mitigating abiotic stress in plants induced by metal (loid) s As, Cd, Cr, Hg, and Pb. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1310–1330. [Google Scholar] [CrossRef]
- Rubio, V.; Bustos, R.; Irigoyen, M.L.; Cardona-López, X.; Rojas-Triana, M.; Paz-Ares, J. Plant hormones and nutrient signaling. Plant Mol. Biol. 2009, 69, 361–373. [Google Scholar] [CrossRef]
- Robaglia, C.; Thomas, M.; Meyer, C. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr. Opin. Plant Biol. 2012, 15, 301–307. [Google Scholar] [CrossRef]
- Margalha, L.; Confraria, A.; Baena-González, E. SnRK1 and TOR: Modulating growth–defense trade-offs in plant stress responses. J. Exp. Bot. 2019, 70, 2261–2274. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Zhou, M.; Chen, Z.; Ding, Y.; Zhu, C. Transcriptional regulatory network of plant cadmium stress response. Int. J. Mol. Sci. 2023, 24, 4378. [Google Scholar] [CrossRef]
- Li, L.; Yi, H.; Xue, M.; Yi, M. miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana. Ecotoxicology 2017, 26, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Tauqeer, A.; Waheed, A.; Zeng, F. MicroRNA mediated plant responses to nutrient stress. Int. J. Mol. Sci. 2022, 23, 2562. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; Giannelli, G.; Varotto, S.; Visioli, G.; Bellin, D.; Furini, A.; DalCorso, G. Epigenetic control of plant response to heavy metals. Plants 2023, 12, 3195. [Google Scholar] [CrossRef]
- Yu, M.H.; Liao, W.C.; Wu, K. Histone methylation in plant responses to abiotic stresses. J. Exp. Bot. 2025, eraf058. [Google Scholar] [CrossRef]
- Yan, X.; Ma, L.; Pang, H.; Wang, P.; Liu, L.; Cheng, Y.; Cheng, J.; Guo, Y.; Li, Q. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiol. 2019, 181, 249–261. [Google Scholar] [CrossRef]
- Zaid, A.; Bhat, J.A.; Wani, S.H.; Masoodi, K.Z. Role of nitrogen and sulfur in mitigating cadmium induced metabolism alterations in plants. J. Plant Sci. Res. 2019, 35, 121–141. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Wan, Y.; Wang, Q.; Luo, Z.; Qiao, Y.; Su, D.; Li, H. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 2018, 215, 13–21. [Google Scholar] [CrossRef]
- Qin, X.; Xia, Y.; Hu, C.; Yu, M.; Shabala, S.; Wu, S.; Tan, Q.; Xu, S.; Sun, X. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. Ecotoxicol. Environ. Saf. 2021, 223, 112623. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, D.; Xu, M.; Long, L.; Li, Q.; Jin, J.; Chen, C.; Wu, J.; Yang, G. Foliar application of silicon and selenium reduce the toxicity of cadmium to soybeans. Chemosphere 2024, 366, 143390. [Google Scholar] [CrossRef]
- Guan, X.; Liu, D.; Liu, B.; Wu, C.; Liu, C.; Wang, X.; Zou, C.; Chen, X. Critical Leaf Magnesium concentrations for adequate photosynthate production of Soilless cultured Cherry Tomato—Interaction with Potassium. Agronomy 2020, 10, 1863. [Google Scholar] [CrossRef]
- Guo, J.; Liu, W.; Zhu, C.; Luo, G.; Kong, Y.; Ling, N.; Wang, M.; Shen, Q.; Guo, S.; Dai, J. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 2018, 424, 335–349. [Google Scholar] [CrossRef]
- Lebeau, T.; Bagot, D.; Jézéquel, K.; Fabre, B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 2002, 291, 73–83. [Google Scholar] [CrossRef]
- Zeng, X.; Zou, D.; Wang, A.; Zhou, Y.; Liu, Y.; Li, Z.; Liu, F.; Wang, H.; Zeng, Q.; Xiao, Z. Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers. J. Environ. Manag. 2020, 255, 109885. [Google Scholar] [CrossRef]
- Sornhiran, N.; Aramrak, S.; Prakongkep, N.; Wisawapipat, W. Silicate minerals control the potential uses of phosphorus-laden mineral-engineered biochar as phosphorus fertilizers. Biochar 2022, 4, 2. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Zhang, Y.; Jiang, Q.; Wang, Q.; Gu, Y.; Song, X.; Li, Y.; Ye, Y.; Wang, F.; et al. Foliar spraying of Zn/Si affects Cd accumulation in paddy grains by regulating the remobilization and transport of Cd in vegetative organs. Plant Physiol. Biochem. 2024, 207, 108351. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Adeel, M.; Gulshan, A.B.; Iqbal, J.; Khan, S.; Rehman, M.; Azeem, M. Effects of organic and inorganic passivators on the immobilization of cadmium in contaminated soils: A review. Environ. Eng. Sci. 2019, 36, 986–998. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Jin, L.; Peng, R. Crosstalk between Ca2+ and other regulators assists plants in responding to abiotic stress. Plants 2022, 11, 1351. [Google Scholar] [CrossRef]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47, S-88. [Google Scholar] [CrossRef]
- Tang, L.; Dong, J.; Qu, M.; Lv, Q.; Zhang, L.; Peng, C.; Hu, Y.; Li, Y.; Ji, Z.; Mao, B.; et al. Knockout of OsNRAMP5 enhances rice tolerance to cadmium toxicity in response to varying external cadmium concentrations via distinct mechanisms. Sci. Total Environ. 2022, 832, 155006. [Google Scholar] [CrossRef]
- Hu, Z.; Cai, X.; Huang, Y.; Feng, H.; Cai, L.; Luo, W.; Liu, G.; Tang, Y.; Sirguey, C.; Morel, J.L.; et al. Root Zn sequestration transporter heavy metal ATPase 3 from Odontarrhena chalcidica enhance Cd tolerance and accumulation in Arabidopsis thaliana. J. Hazard. Mater. 2024, 480, 135827. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhao, X.; Sun, Z.; Li, G.; Hussain, S.; Li, X.; Zhang, L.; Wang, Z.; Gong, H.; et al. Effects of SpGSH1 and SpPCS1 overexpression or co-overexpression on cadmium accumulation in yeast and Spirodela polyrhiza. Plant Physiol. Biochem. 2024, 216, 109097. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Peng, Z.; Zhang, H.; Wang, B.; Xu, W.; He, Z. Cadmium Minimization in Crops: A Trade-Off With Mineral Nutrients in Safe Breeding. Plant Cell Environ. 2025, 48, 838–851. [Google Scholar] [CrossRef]
- Cao, K.; Jaime-Pérez, N.; Mijovilovich, A.; Morina, F.; Bokhari, S.N.H.; Liu, Y.; Küpper, H.; Tao, Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. Ecotoxicol. Environ. Saf. 2024, 275, 116272. [Google Scholar] [CrossRef]
- Checa-Fernandez, A.; Santos, A.; Romero, A.; Dominguez, C.M. Application of chelating agents to enhance fenton process in soil remediation: A review. Catalysts 2021, 11, 722. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Stein, M.; Schaller, J. Silicon in plants: Alleviation of metal (loid) toxicity and consequential perspectives for phytoremediation. Plants 2023, 12, 2407. [Google Scholar] [CrossRef]
- Sladkovska, T.; Wolski, K.; Bujak, H.; Radkowski, A.; Sobol, Ł. A review of research on the use of selected grass species in removal of heavy metals. Agronomy 2022, 12, 2587. [Google Scholar] [CrossRef]
- Hong, C.O.; Owens, V.N.; Kim, Y.G.; Lee, S.M.; Park, H.C.; Kim, K.K.; Son, H.J.; Suh, J.M.; Kim, P.J. Soil pH effect on phosphate induced cadmium precipitation in arable soil. Bull. Environ. Contam. Toxicol. 2014, 93, 101–105. [Google Scholar] [CrossRef]
- Slamet-Loedin, I.H.; Johnson-Beebout, S.E.; Impa, S.; Tsakirpaloglou, N. Enriching rice with Zn and Fe while minimizing Cd risk. Front. Plant Sci. 2015, 6, 121. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Rinklebe, J.; Tsang, D.C.; Bashir, A.; Maqbool, A.; Tack, F.M.G.; Ok, Y.S. Cadmium phytoremediation potential of Brassica crop species: A review. Sci. Total Environ. 2018, 631, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Takahashi, E. Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 1990, 126, 115–119. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A. On the ecology of selenium accumulation in plants. Plants 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed]
Elements | Key Mechanisms of Cd Stress Alleviation | References |
N | 1. NO3−-mediated rhizosphere alkalinization reduces Cd solubility; NH4+ causes acidification (opposite effect). 2. Enhances GSH/PC synthesis via GS/GOGAT cycle for Cd chelation. 3. Maintains photosynthetic efficiency and antioxidant enzyme (SOD, APX) activity. | [33,34,42] |
P | 1. Precipitates Cd as insoluble Cd5(PO4)3OH/Cd3(PO4)2 in soil, reducing bioavailability. 2. Supports ATP-dependent vacuolar sequestration (via HMAs/ABCCs). 3. Enhances antioxidant defense (SOD, POD) and membrane stability. | [45,46,51,53] |
K | 1. Competes with Cd2+ for cell wall/membrane binding sites (similar hydrated radius). 2. Maintains membrane integrity via H+-ATPase, reducing K+ leakage and Cd influx. 3. Activates ROS-scavenging enzymes (e.g., SOD) and modulates Cd transporter (HMA) expression. | [55,59,60,63] |
Ca | 1. Competes with Cd2+ for root transporters (e.g., annexins) and cell wall pectin binding sites. 2. Stabilizes plasma membrane to inhibit Cd-induced lipid peroxidation. 3. Triggers Ca2+ signaling (CBL-CIPK pathway) to activate Cd detoxification genes (PCS, HMA). | [64,65,66,70] |
Mg | 1. Protects chloroplast structure and photosynthetic apparatus from Cd damage. 2. Acts as cofactor for GSH synthesis (γ-ECS, GS) and AsA-GSH cycle enzymes (GR). 3. Reduces Cd accumulation in photosynthetic tissues via competitive uptake. | [75,76,80,81] |
S | 1. Precursor for cysteine, GSH, and PCs (key Cd chelators) via ATPS/APR-mediated assimilation. 2. Enhances vacuolar sequestration of Cd-PC complexes (via ABCC transporters). 3. Modulates redox homeostasis via GSH/GSSG ratio. | [82,84,86,87] |
Elements | Key Mechanisms of Cd Stress Alleviation | References |
Zn | 1. Competes with Cd2+ for ZIP/IRT/Nramp transporters (e.g., OsZIP1, AtIRT1) to reduce Cd uptake. 2. Downregulates Cd influx transporters (ZIPs) under sufficient supply. 3. Enhances Cu/Zn-SOD activity and GSH levels to mitigate oxidative stress. | [91,93,95,98] |
Fe | 1. Suppresses IRT1 expression (major Cd/Fe transporter) in strategy I plants, reducing Cd uptake. 2. Maintains Fe-containing antioxidant enzymes (CAT, POD) to inhibit Fenton reaction-induced ROS. 3. Fe plaque on rice roots adsorbs and immobilizes Cd. | [102,103,104,109] |
Mn | 1. Protects photosystem II (OEC) by preventing Cd-induced Mn displacement, reducing photoinhibition. 2. Activates Mn-SOD (mitochondrial/peroxisomal) to scavenge O2−. 3. Enhances lignin biosynthesis (via Mn-peroxidases) to restrict apoplastic Cd movement. | [111,112,113,116] |
Cu | 1. Cofactor for Cu/Zn-SOD (cytosolic/chloroplastic) to dismutate O2−. 2. Regulates ET signaling by interacting with receptors. 3. Competes with Cd for COPT/ZIP transporters (minor antagonistic effect). | [117,119,120,122] |
Si | 1. Increases soil pH and Cd adsorption onto colloids; deposits in cell walls to bind Cd2+. 2. Downregulates Cd influx transporters (OsNramp5, OsIRT1) and upregulates vacuolar sequestration (OsHMA3). 3. Enhances antioxidant enzyme (SOD, CAT) activity and modulates phytohormones (JA/SA). | [125,126,127,131] |
Se | 1. Scavenges ROS directly and activates GPX/SOD to reduce lipid peroxidation. 2. Forms inert Cd-Se complexes and enhances vacuolar sequestration. 3. Modulates S metabolism (SeCys/SeMet) to influence GSH/PC synthesis (dose-dependent). | [133,134,135,139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhang, L.; Gu, Y.; Wang, P.; Liu, H.; Qiang, L.; Huang, Q. Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications. Plants 2025, 14, 3081. https://doi.org/10.3390/plants14193081
Sun X, Zhang L, Gu Y, Wang P, Liu H, Qiang L, Huang Q. Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications. Plants. 2025; 14(19):3081. https://doi.org/10.3390/plants14193081
Chicago/Turabian StyleSun, Xichao, Liwen Zhang, Yingchen Gu, Peng Wang, Haiwei Liu, Liwen Qiang, and Qingqing Huang. 2025. "Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications" Plants 14, no. 19: 3081. https://doi.org/10.3390/plants14193081
APA StyleSun, X., Zhang, L., Gu, Y., Wang, P., Liu, H., Qiang, L., & Huang, Q. (2025). Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications. Plants, 14(19), 3081. https://doi.org/10.3390/plants14193081