Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture
Abstract
1. Introduction
2. The Effect and Regulation Mechanism of Plant Growth Regulators on Plant Growth
2.1. The Role and Regulatory Mechanism of Auxin
2.2. Role of Cytokinins and Regulatory Mechanisms
2.3. Role and Regulatory Mechanisms of Gibberellins
3. Application of Exogenous Plant Growth Regulators in Jujube In Vitro Culture
3.1. Research In Vitro Culture Rapid Propagation System of Jujube Plants
3.2. Application of Plant Growth Regulators in the Primary Induction Stage
3.3. Application of Exogenous Plant Growth Regulators in the Subculture Proliferation Stage
3.4. Application of Exogenous Plant Growth Regulators in the Rooting Culture Stage
3.5. Analysis of Effects of Exogenous Plant Growth Regulators in Each Stage of Rapid Propagation of Jujube In Vitro Culture
4. Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Liu, M.J.; Wang, J.R.; Liu, P.; Lin, M.J.; Xiao, J.; Liu, Z.G.; Sun, X.C. Design and Practice of Non-Emasculation Hybrid Breeding in Jujube. Acta Hortic. Sin. 2014, 41, 1495–1502. [Google Scholar]
- Li, D.K.; Wang, Y.K.; Xue, X.F.; Ren, H.Y.; Zhao, A.L. Advances in Research and Utilization of Jujube Germplasm Resources in China. Fruit Resour. 2021, 2, 1–6. [Google Scholar]
- Liu, X.G.; Peng, Y.F.; Li, J.; Zhang, L. Study on Efficient Micrografting System of Jujube. Hebei Norm. Univ. Natl. 2015, 35, 34–38. [Google Scholar]
- Gao, Y.; Bo, W.H.; Li, Y.Y.; Cao, M.; Pang, X.M. Establishment of an Efficient In Vitro Leaf Regeneration System for ‘Jingzao 39’. Beijing For. Univ. 2023, 45, 68–77. [Google Scholar]
- Zhang, D.X.; Zhou, Z.C.; Bu, Y.L.; Zhang, J.; Zhang, X.W.; Zhang, C.B.; Cai, W.J.; Kang, J.; Xiao, Z. Research Progress on Applications of Plant Tissue Culture Technology. North. Hortic. 2011, 6, 209–213. [Google Scholar]
- Song, S.Q.; Liu, J.; Tang, C.F.; Zhang, W.H.; Xu, H.H.; Zhang, Q.; Gao, J.D. Auxin Metabolism and Signaling Transduction: Molecular Mechanisms Regulating Seed Dormancy and Germination. Chin. Sci. Bull. 2020, 65, 3924–3943. [Google Scholar] [CrossRef]
- Luo, J.L.; Li, F.; Hao, R.J.; Li, L.L. Effects of Exogenous Auxin on Adventitious Rooting and Related Oxidases in Pyrus betulaefolia Tissue Culture. Nonwood For. Res. 2020, 38, 125–132. [Google Scholar]
- Zhou, X.X.; Li, R.Y.; Zang, S.Y.; Kun, P.; Yang, L. Effects of Exogenous Auxin Concentration and Cutting Substrate on Rooting of Acer mono Softwood Cuttings. For. Eng. 2022, 38, 1–9. [Google Scholar]
- Duan, S.Y. Molecular Mechanism of PlARF2 Transcription Factor in Regulating Peony Seed Dormancy Release. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2024. [Google Scholar]
- Shuai, H.W.; Meng, Y.J.; Luo, X.F.; Chen, F.; Zhou, W.G.; Dai, Y.J.; Du, J.B.; Yang, F.; Liu, J.; Yang, W.Y.; et al. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci. Rep. 2017, 7, 12620. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, F.Y.; Li, X.Y.; Cao, H.; Ding, M.; Zhang, C.; Zuo, J.H.; Xu, C.N.; Xu, J.M.; Deng, X.; et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat. Commun. 2016, 7, 13412. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, R.L. Rooting Ability and Its Correlation with Endogenous Hormone Content in Pinus massoniana During Subculture. Sci. Silvae Sin. 2020, 56, 38–46. [Google Scholar]
- Feng, C.C.; Gao, J.; Xu, L.F.; Wang, Y.; Song, W.J.; Ling, A.F.; Dong, J.X.; Meng, L. Effects of Exogenous Auxin on Growth and Development of Flue-Cured Tobacco Seedlings. Chin. Tob. Sci. 2020, 41, 27–31. [Google Scholar]
- Feng, H. Preliminary Study on H2O2 Sources During Auxin-Promoted Adventitious Root Growth in Cucumber Hypocotyls. Master’s Thesis, Suzhou University, Suzhou, China, 2018. [Google Scholar]
- Xiao, G.L.; Yang, Q.H.; Li, F.S.; Yang, S.C. Effects of Exogenous Hormones on Sugarcane Seedling Differentiation and Endogenous Hormones. Yunnan Agric. Univ. 2002, 17, 154–157. [Google Scholar]
- Cheng, Z.J.; Tang, Y.Y.; Ding, T.T.; Zhang, X.S. Molecular Basis of Auxin and Cytokinin Interaction Regulating Organogenesis in Arabidopsis. In Proceedings of the From Plant Science to Agricultural Development—Proceedings of the 2012 National Plant Biology Conference, Xi’an, China, 11 October 2012. [Google Scholar]
- Sun, W. Cytokinin Type-B ARRs Participate in Arabidopsis In Vitro Shoot Development via Regulating Auxin-Related Gene Expression. Master’s Thesis, Shandong Agricultural University, Taian, China, 2011. [Google Scholar]
- Lin, D.B. Regulatory Mechanisms of Auxin Receptor SlTIR1/AFBs Family Genes in Tomato Growth and Development. Ph.D. Thesis, Chongqing University, Chongqing, China, 2016. [Google Scholar]
- Sima, X.J.; Zheng, B.S. Advances in Primary Auxin-Responsive Aux/IAA Genes in Plants. Zhejiang A&F Univ. 2015, 32, 313–318. [Google Scholar]
- Zhang, Y.; Yu, J.; Xu, X.; Wang, R.; Liu, Y.; Huang, S.; Wei, H.; Wei, Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int. J. Mol. Sci. 2022, 23, 12495. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sundaram, S.; Armitage, L.; Evans, J.P.; Hawkes, T.; Kepinski, S.; Ferro, N.; Napier, R.M. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem. Biol. 2014, 9, 673–682. [Google Scholar] [CrossRef]
- Lu, B.Y. Mechanism of TIR1/AFB2 Oxidative Modification in Regulating Auxin Signaling Transduction. Ph.D. Thesis, East China Normal University, Shanghai, China, 2023. [Google Scholar]
- Li, B.Z. Auxin Response Factor ARF4 Regulates Arabidopsis Shoot Regeneration via Interaction with IAA12. Master’s Thesis, Shandong Agricultural University, Taian, China, 2020. [Google Scholar]
- Pi, D.M.; Liu, Y.P. Current Research on Plant Auxin Receptor Proteins. Biotechnol. Bull. 2011, 6, 7–11. [Google Scholar]
- Hu, X.; Hou, X.; Yuan, X.; Guan, D.; Liu, Y.P. Advances in ARF and Aux/IAA Regulation of Fruit Development and Ripening. Biotechnol. Bull. 2017, 33, 37–44. [Google Scholar]
- Kong, X.P.; Zhang, M.Y.; Ding, Z.J. Light at the End of the Tunnel: New Breakthroughs in Extracellular Auxin Perception. Chin. Bull. Bot. 2023, 58, 861–865. [Google Scholar]
- Zhou, Y.Y.; Chen, H.; Liu, S.M. Advances in Atypical Aux/IAA Proteins in Response to Auxin Signaling. Chin. Bull. Bot. 2024, 59, 651–658. [Google Scholar]
- Cao, M.; Chen, R.; Li, P.; Yu, Y.Q.; Zheng, R.; Ge, D.F.; Zheng, W.; Wang, X.H.; Gelová, Z.; Friml, J.; et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 2019, 568, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Márquez, G.; Alarcón, M.V.; Salguero, J. Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings. Biol. Plant 2016, 60, 367–375. [Google Scholar] [CrossRef]
- Li, X.G. Study on Cytokinin Regulation of Arabidopsis Flower Development. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2008. [Google Scholar]
- Hu, Q.Y.; Chen, B.J.; Yang, L.F.; Ma, Y.H.; Li, Q.Y.; Li, Q.M.; Huang, L.Y. Research Progress on Plant Hormone Regulation of Apical Meristem Development. Hunan Agric. Sci. 2022, 1, 105–110. [Google Scholar]
- Xu, Y.N.; Liu, Y.J.; Huang, J.X.; Han, Q.H.; Gao, Y.Z.; Lu, M.Y.; Gu, Y. Research Progress on Auxin and Cytokinin-Induced Embryogenic Callus in Plants. Changjiang Veg. 2024, 4, 33–37. [Google Scholar]
- Perner, H.; Zhou, R.; Perner, W.; Jiang, H.; Lee, Y.I. Cypripedium subtropicum embryo development and cytokinin requirements for asymbiotic germination. Bot. Stud. 2022, 63, 28. [Google Scholar] [CrossRef]
- Ren, B.; Liang, Y.; Deng, Y.; Chen, Q.; Zhang, J.; Yang, X.; Zuo, J. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res. 2009, 19, 1178–1190. [Google Scholar] [CrossRef]
- Wu, J.D. Effects of Hormones on Seed Germination of Callicarpa formosana. Jilin Agric. 2019, 12, 45–46. [Google Scholar]
- Li, X. Molecular Mechanism of Cytokinin-Mediated Inhibition of Lateral Root Initiation and Root Development in Arabidopsis. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2006. [Google Scholar]
- Liu, F. Effects of Cytokinin on OsAUX1-Mediated Rice Root Development. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Tomkins, J.P.; Hall, M.H.; Bai, P. Cytokinin Promotion of Alfalfa Bud and Stem Development. Foreign Anim. Husb. (Grassl. Forage) 1995, 1, 44–46. [Google Scholar]
- Peng, K.X.; Zhang, W.; Zhu, X.X.; Zhang, K.W. Advances in Mechanisms of Cytokinin-Mediated Leaf Senescence Delay. Plant Physiol. 2021, 57, 12–18. [Google Scholar]
- Li, S.H.; Han, H.Z.; Zhang, L.H. Effects of BA and KT on Axillary Bud Induction in Cinnamomum camphora Stem Segments. Anhui Agric. Sci. Bull. 2016, 22, 29–30. [Google Scholar]
- He, G.R. Molecular Mechanism of Cytokinin Regulating Bulbil Formation in Lily. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Aman, T.; Prabhuling, G.; Hipparagi, K.; Prakash, D.P.; Babu, A.G. In vitro Multiplication of Banana cv. Rajapuri Bale (Musa spp., AAB Group). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3141–3151. [Google Scholar] [CrossRef]
- Mulumbati, M.C.; Godoy Jara, M.; Baboy Longanza, L.; Bogaert, J.; Werbrouck, S.; Sikuzani, Y.U.; Mazinga Kwey, M. In Vitro Regeneration Protocol for Securidaca longepedunculata Fresen., a Threatened Medicinal Plant within the Region of Lubumbashi (Democratic Republic of the Congo). Conservation 2023, 3, 411–425. [Google Scholar] [CrossRef]
- Riefler, M. Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell 2005, 18, 40–54. [Google Scholar] [CrossRef]
- Kubiasová, K.; Montesinosuan, J.C.; Šamajová, O.; Nisler, J.; Mik, V.; Semerádová, H.; Plíhalová, L.; Novák, O.; Marhavý, P.; Cavallari, N.; et al. Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum. Nat. Commun. 2020, 11, 4285. [Google Scholar] [CrossRef]
- Luo, T.L. Brief Discussion on Physiological Effects of Gibberellins. Middle Sch. Biol. 2006, 8, 6. [Google Scholar]
- Li, D.L.; Duan, H.X.; Liu, H.C.; Wang, S.S.; Peng, W.; Yang, X.L. Advances in Gibberellins, Their Functional Analogs and Gibberellin Receptors. Chin. J. Pestic. Sci. 2013, 15, 601–608. [Google Scholar]
- Tan, X.; Ma, X.R. Advances in Gibberellin Biosynthesis Pathway and Related Research. Chin. J. Appl. Environ. Biol. 2008, 14, 571–577. [Google Scholar]
- Huang, X.Z.; Jiang, C.F.; Liao, L.L.; Fu, X.D. Advances in Molecular Basis and Regulatory Models of Gibberellin Action Mechanisms. Chin. Bull. Bot. 2006, 23, 499–510. [Google Scholar]
- Okamoto, M. CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8′-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis. Plant Physiol. 2006, 141, 97–107. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kumar, R.; Rehal, P.K.; Toora, P.K.; Ayele, B.T. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Front. Plant Sci. 2018, 9, 668. [Google Scholar] [CrossRef]
- Xu, H.H.; Li, N.; Liu, S.J.; Wang, W.Q.; Wang, W.P.; Zhang, H.; Cheng, H.Y.; Song, S.Q. Advances in Seed Germination and Its Regulation. Acta Agron. Sin. 2014, 40, 1141–1156. [Google Scholar] [CrossRef]
- Sohn, S.I.; Pandian, S.; Kumar, T.S.; Zoclanclounon, Y.A.B.; Muthuramalingam, P.; Shilpha, J.; Satish, L. Seed Dormancy and Pre-Harvest Sprouting in Rice—An Updated Overview. Int. J. Mol. Sci. 2021, 22, 11804. [Google Scholar] [CrossRef]
- Dong, J.; Hong, L.; Chen, L.H.; Ruan, M.Y. Study on Rapid Germination and Tissue Culture Seedling Techniques of Sweet Cherry Seeds. Acta Agric. Jiangxi 2022, 34, 35–38+44. [Google Scholar]
- Potter, I.; Fry, S.C. Xyloglucan Endotransglycosylase Activity in Pea Internodes [Effects of Applied Gibberellic Acid]. Plant Physiol. 1993, 103, 235–241. [Google Scholar] [CrossRef]
- Zhang, F.R.; Hao, W.S.; Zhao, Y.X. Application of Gibberellin in Potato Tissue Culture. Chin. Potato J. 2009, 23, 235–239. [Google Scholar]
- Li, Y.X. Study on Rice Receptor-Like Protein Kinase PSRK2 Involved in Gibberellin Response. Ph.D. Thesis, Hunan University, Changsha, China, 2018. [Google Scholar]
- Kou, E.F.; Huang, X.M.; Zhu, Y.N.; Su, W.; Liu, H.C.; Sun, G.W.; Chen, R.Y.; Hao, Y.W.; Song, S.W. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Sci. Rep. 2021, 11, 3976. [Google Scholar] [CrossRef]
- Yu, W.G.; Liu, L.; Wu, D.P.; Liu, F.X.; Guo, J.; Li, G.H.; Lu, D.L.; Zhao, X.X. Research Advances in Abscisic Acid and Gibberellin Regulation of Seed Dormancy and Germination. Plant Genet. Resour. 2025, 26, 611–621. [Google Scholar]
- Schwechheimer, C. Gibberellin Signaling in Plants—The Extended Version. Front. Plant Sci. 2012, 2, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Steinmacher, D. Plant Tissue Culture In Vitro: A Long Journey with Lingering Challenges. Int. J. Plant Biol. 2025, 16, 97. [Google Scholar] [CrossRef]
- Lin, B.N. A review of tissue culture of fruit trees. Chin. Fruit Trees 1978, 3–4, 9–27. [Google Scholar]
- Chen, W.L.; Guo, D.H. Embryoid Formation in Tissue Culture of Zizyphus jujuba var. spinosus Hu. Acta Phytophysiol. Sin. 1981, 7, 83–84. [Google Scholar]
- Zhang, F.Q.; Wang, J.C.; Li, F.; Liu, Z.S.; Ma, Z.Y. Preliminary Report on In Vitro Culture of Jujube Stem Segments. China Fruits 1983, 3, 46–47. [Google Scholar]
- Tao, A.Q. Study on Tissue Culture Techniques of ‘Mid-Autumn Crisp’ Jujube. Agric. J. 2015, 5, 88–91. [Google Scholar]
- Guo, Y. Establishment of In Vitro Leaf Regeneration System and Preliminary Polyploid Induction in Elite Jujube Varieties. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Fang, L.Y. Establishment of In Vitro Regeneration System and Polyploid Induction of ‘Huizao’ Jujube. Master’s Thesis, Tarim University, Alar, China, 2023. [Google Scholar]
- Yang, D.Z.; Ma, Q.H.; Zhang, H.Y.; Wu, C.Y.; Lin, M.J.; Yan, F.F. Tissue Culture Rapid Propagation of Triploid Jujube Superior Lines. Mol. Plant Breed. 2023, 5, 1–21. [Google Scholar]
- Shang, C.H.; Tian, C.J.; Dou, B.S.; Xu, Y.L.; Wang, Y.X. Study on Tissue Culture Rapid Propagation of ‘Pingguozao’ Jujube. Shandong For. Sci. Technol. 2000, 2, 39–40. [Google Scholar]
- Yuan, D.Y.; Hu, X.Y.; Zhao, S.D. Virus-Free Tissue Culture and Rapid Propagation of ‘Pingguozao’ Jujube. Nonwood For. Res. 2004, 22, 35–36. [Google Scholar]
- Xu, J.R.; Li, C.L.; Sun, J.S. Study on Tissue Culture Rapid Propagation of Ziziphus mauritiana. Beijing For. Univ. 2003, 25, 28–32. [Google Scholar]
- Xu, H.L.; Chen, J.X.; Yu, D.H.; Shao, Q.L.; Cui, H.W. Study on Tissue Culture Rapid Propagation of ‘Zhanhua’ Winter Jujube. Shandong For. Sci. Technol. 2003, 5, 29–30. [Google Scholar]
- Zhou, R.J. Establishment of High-Efficiency Regeneration System from In Vitro Leaves of Ziziphus jujuba Mill. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2004. [Google Scholar]
- Li, F.J. Study on Tissue Culture Rapid Propagation of ‘Lubei’ Winter Jujube. Decid. Fruits 2006, 4, 6–8. [Google Scholar]
- Yu, X.M. Establishment of High-Efficiency Regeneration System from In Vitro Leaves of ‘Huizao’ Jujube. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2009. [Google Scholar]
- Chen, R.H.; Wang, H.H.; Guo, T.R.; Xu, C.C.; Xie, B.Q.; Li, Y.F.; Huang, J. Study on Tissue Culture Rapid Propagation System and Mycorrhizal Seedling Technique of Junzao Jujube. Northwest For. Univ. 2025, 40, 111–118. [Google Scholar]
- Qi, X.Y.; Qi, L.; Chen, Z.L. Tissue Culture Rapid Propagation and Chromosome Stability Observation of ‘Jinzao’ Jujube. Hubei Agric. Sci. 2010, 49, 1550–1552. [Google Scholar]
- Liu, J.F.; Li, Y.H.; Wu, H.P. Study on Tissue Culture Rapid Propagation of ‘Zhongning Small’ Jujube. North. Hortic. 2012, 16, 98–100. [Google Scholar]
- Guan, Q.Z.; Zhang, Q.; Sun, H.Y.; Zhou, G.F.; Sun, Q.R. Anther Callus Induction and Adventitious Bud Differentiation in ‘Luzao 2’ and ‘Luzao 6’. Hebei Norm. Univ. Sci. Technol. 2017, 31, 10–14. [Google Scholar]
- Han, J.; Wang, J.R.; Dai, L.; Liu, Y.; Xiao, J.; Liu, M.J. Adventitious Bud Induction from In Vitro Anthers of ‘Changhongzao’ and ‘Jinsixiaozao’ Jujube. Hebei Agric. Univ. 2014, 37, 38–42. [Google Scholar]
- Xiao, R.; Wang, G.P.; Li, C.Y.; Zhang, Y.B. Plant Regeneration from In Vitro Leaves of ‘Lajiaozao’ Jujube. Shanxi Agric. Sci. 2012, 40, 193–196+216. [Google Scholar]
- Zhou, X.L.; Peng, J.Y.; Duan, H.X. Preliminary Study on Adventitious Bud Regeneration from Non-Bud Stem Segments of ‘Fuping’ Jujube. Chin. Agric. Sci. Bull. 2009, 25, 150–153. [Google Scholar]
- Dou, Y.J.; Sun, H.Q.; Dai, L.; Yang, Y.; Fu, Q.X.; Huang, L.H.; Zhu, H. Preliminary Report on Callus Induction of Seedless Jujube. Hortic. Seed. 2022, 42, 14–15+20. [Google Scholar]
- Xu, X.B.; Gao, F.J.; Zhu, J.Y. Study on Tissue Culture Rapid Propagation System of ‘Leling Seedless’ Jujube. Shandong Agric. Univ. (Nat. Sci. Ed.) 2008, 39, 195–202. [Google Scholar]
- Yang, D.Z. Establishment of Tissue Culture Rapid Propagation System and Micrografting Technique for Fresh-Eating Jujube Superior Lines. Master’s Thesis, Tarim University, Alar, China, 2023. [Google Scholar]
Variety | Explant | Basic Culture Medium and Plant Growth Regulators | Result | Reference |
---|---|---|---|---|
Ping guo zao | Stem | P: 6-BA 6 mg/L + NAA 0.1 mg/L S: 6-BA 6 mg/L + NAA 0.1 mg/L R: IBA 0.6 mg/L | PC: 6.2 RR: 91.6% TSR: 98% | [69] |
Stem | P: 6-BA 1 mg/L + KT 0.5 mg/L S: 6-BA 1.5 mg/L + IBA 0.5 mg/L R: MS + 6-BA 1 mg/L + IAA 0.5 mg/L | Callus induction rate: 98% PC: 4–5 TSR: 96% | [70] | |
Mao ye zao | Stem | P: 6-BA 0.8 mg/L + IBA 0.4 mg/L S: 6-BA 1.2 mg/L + IBA 0.5 mg/L R: IBA 3 mg/L | Effective germination rate: 75.9% PC: 6.3 RR: 84.3% | [71] |
Zhan hua Dong zao | Shoot tips | P: 6-BA 2 mg/L + KT 0.5 mg/L + NAA 0.1 mg/L S: 6-BA 2 mg/L + KT 0.5 mg/L + NAA 0.1 mg/L R: 6-BA 0.2 mg/L + IBA 0.8 mg/L | PC: 5.5 RR: 87.2% TSR: more than 80% | [72] |
Huang hua Dong zao | Leaf | P: TDZ 1 mg/L + IBA 0.1~0.5 mg/L S: 6-BA 1 mg/L + KT 0.5 mg/L + IBA 0.1 mg/L R: IAA 1 mg/L | Leaf regeneration rate: 91.33% PC 3.64 RR: 87.10% | [73] |
Lu bei Dong zao | Young branch tip | P: 6-BA 0.5 mg/L + KT 1 mg/L + IAA 0.5 mg/L S: 6-BA 2 mg/L + KT 0.5 mg/L + 2,4-D 0.2 mg/L R: IAA 0.5 mg/L + IBA 1 mg/L | Initial survival rate: 22.2% PC: 4 RR: 80% Average root number: 5 TSR: 90% | [74] |
Dong zao | Leaf | P: TDZ 0.5 mg/L + NAA 0.1 mg/L S: TDZ 1 mg/L + NAA 0.3 mg/L | Adventitious bud differentiation coefficient: 2.77 | [66] |
Hui zao | Leaf | P: 1/2 MS + 6-BA 0.5 mg/L + 2,4-D 2 mg/L S: 6-BA 2.0 mg/L + IBA 0.5 mg/L + KT 0.5 mg/L R: NAA 0.5 mg/L | Callus induction rate: 96.67% PC: 3.06 RR: 95.56% | [75] |
Leaf | P: WPM + TDZ 1 mg/L + IBA 0.3 mg/L | Adventitious bud induction rate: 86.67% Average number of adventitious buds:1.99 | [66] | |
Stem | P: 6-BA 1 mg/L + IBA 0.2 mg/L S: 6-BA 1 mg/L + NAA 0.1 mg/L R: NAA 0.5 mg/L | Germination rate: 100% Proliferation rate: 83.33% | [67] | |
Leaf | P: WPM + TDZ 1 mg/L + NAA 0.2 mg/L S: 6-BA 1 mg/L + IBA 0.2 mg/L + TDZ 0.005 mg/L R: IBA 0.5 mg/L + NAA 0.2 mg/L | Adventitious bud induction rate: 96.67% PC: 4.47 Average plant height: 2.00 cm RR: 100% Average number of roots: 11.23 Average root length: 0.49 cm | [66] | |
Stem | P: 6-BA 1 mg/L + IBA 0.2 mg/L + TDZ 0.01 mg/L S: 6-BA 1 mg/L + IBA 0.2 mg/L + TDZ 0.012 mg/L R: IBA 0.6 mg/L | PC: 4.26 RR: 86.89% TSR: 96.30% | [76] | |
Jin zao | Shoot tips | P: 6-BA 0.5 mg/L S: TDZ 0.01 mg/L + IBA 0.2 mg/L + 6-BA 1 mg/L | PC: 4.50 Average plant height: 4.35 cm Number of new buds: 135 | [77] |
Zhong ning Xiao zao | Kernel of jujube | P: 6-BA 1 mg/L + NAA 1 mg/L S: KT 2 mg/L + IBA 1 mg/L + GA3 1 mg/L R: IBA 0.8 mg/L + NAA 0.2 mg/L | Induction germination rate: 88.7% Bud differentiation rate: 66.7% Differentiation coefficient: 2–3 RR: 64% | [78] |
Shoot tips | P: 6-BA 2.5 mg/L + NAA 0.15 mg/L S: 6-BA 1.5 mg/L + NAA 0.5 mg/L R: NAA 0.15 mg/L | Induction rate of adventitious buds: 94.00% Average number of adventitious buds: 6.5 Average root count: 3.6 | [65] | |
Lu zao 2 hao | Anther callus | P: 1/4 MS + NAA 0.3 mg/L + 2,4-D 1.5 mg/L S: WPM + KT 0.2 mg/L + IAA 0.5 mg/L + GA3 1 mg/L | Differentiation rate of indeterminate buds: 100.0%. | [79] |
Lu zao 6 hao | Anther callus | P: 1/4 MS + NAA 0.3 mg/L + 2,4-D 1.5 mg/L S: WPM + TDZ 0.1 mg/L + IAA 0.5 mg/L + GA3 1 mg/L | Differentiation rate of indeterminate buds: 50.0%. | [79] |
Chang hong zao | Anther callus | P: 6-BA 2 mg/L + NAA 0.05 mg/L S: 6-BA 1~2 mg/L + NAA 0.5 mg/L | Callus induction rate: over 94% Callus germination rate: above 60.0%. | [80] |
La jiao zao | Leaf | P: 1/2 MS + TDZ 0.3 mg/L + IBA0.1 mg/L | Average number of adventitious buds regenerated per leaf: 5.4 | [81] |
Fu ping da zao | non-bud stem | P: 6-BA 1 mg/L + IBA 0.1 mg/L | Indeterminate bud regeneration rate: 85.42% Average number of buds sprouting: 3.23. | [82] |
Jin si xiao zao | Anther callus | P: 1/2 MS + 2,4-D 1 mg/L S: 6-BA 1 mg/L + NAA 0.5 mg/L | Callus induction rate: 56.17% Callus budding rate: 20.36% | [80] |
Wu he zao | Leaf | P: TDZ 1 mg/L + NAA 0.2 mg/L | Induction rate of adventitious buds: 52.2% | [83] |
Le ling wu he jin si xiao zao | Shoot tips | P: modified MS + 6-BA 0.5 mg/L + IBA 0.2 mg/L S: modified MS + 6-BA 2 mg/L+ NAA 0.2 mg/L R: modified 1/2 MS + IAA 0.2 mg/L+ IBA 0.2 mg/L | Initiation survival rate of cultivation: 21.4% Differentiation coefficient: 4.2 RR: 91% Average number of roots: 4.1 | [84] |
T-185 | Stem | P: 6-BA 2 mg/L + NAA 0.2 mg/L S: 6-BA 2 mg/L+ IBA0.2 mg/L + TDZ 0.1 mg/L R: IBA 2 mg/L + IAA 0.2 mg/L | Effective germination rate: 85% Average number of adventitious buds: 1.15 PC: 1.97 RR: 73.0%. | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Luo, Z.; Zhu, X.; Ji, Y.; Ma, Q.; Yan, F. Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture. Plants 2025, 14, 3012. https://doi.org/10.3390/plants14193012
Yang B, Luo Z, Zhu X, Ji Y, Ma Q, Yan F. Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture. Plants. 2025; 14(19):3012. https://doi.org/10.3390/plants14193012
Chicago/Turabian StyleYang, Bochao, Zhi Luo, Xingyu Zhu, Yinzhong Ji, Quanhui Ma, and Fenfen Yan. 2025. "Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture" Plants 14, no. 19: 3012. https://doi.org/10.3390/plants14193012
APA StyleYang, B., Luo, Z., Zhu, X., Ji, Y., Ma, Q., & Yan, F. (2025). Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture. Plants, 14(19), 3012. https://doi.org/10.3390/plants14193012