Integrated Analysis of Transcriptome and Metabolome Reveals the Accumulation of Anthocyanins in Black Soybean (Glycine max L.) Seed Coats Induced by Low Nitrogen Concentration in the Nutrient Solution
Abstract
1. Introduction
2. Results
2.1. Effect of Low-Nitrogen Stress on Anthocyanin Content in Black Soybeans
2.2. Analysis of Anthocyanin Metabolites in Samples
2.3. Identification of Differentially Anthocyanin Metabolites
2.4. Analysis of Differential Expressed Genes in Seed Coat
2.5. Enrichment Analysis of Differentially Expressed Genes
2.6. Integrated Transcriptomic and Metabolomic Analysis
2.7. Verification of DEGs Using qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Low Nitrogen Stress
4.3. Determination of Anthocyanin Content
4.4. RNA Extraction, Library Construction, and Sequencing
4.5. Transcriptomic Analysis
4.6. Metabolomics Analysis
4.7. Gene Expression Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LN | low nitrogen |
NN | normal nitrogen |
SG | seed swell to fill the pod cavity and the seed coat is green |
SC | seed coat begins to turn from green to black |
SB | seed coat has fully turned black |
DEGs | differentially expressed genes |
Phe | phenylalanine |
CHS | chalcone synthase |
CHI | chalcone isomerase |
F3H | flavanone 3-hydroxylase |
F3′H | flavonoid 3′-hydroxylase |
F3′5′H | flavonoid 3′,5′-hydroxylase |
DFR | dihydroflavonol 4-reductase |
ANS | anthocyanidin synthase |
UFGT | UDPG-flavonoid glycosyl transferase |
ROS | reactive oxygen species |
ABA | abscisic acid |
JA | jasmonate |
PCA | principal component analysis |
CC | cellular component |
MF | molecular function |
BP | biological process |
ADT | arogenate dehydratase |
C4H | cinnamic acid-4-hydroxylase |
OMT | O-methyltransferases |
CRY | cryptochrome |
References
- Sun, C.L.; Deng, L.; Du, M.M.; Zhao, J.H.; Chen, Q.; Huang, T.T.; Jiang, H.L.; Li, C.B.; Li, C.Y. A Transcriptional Network promotes anthocyanin biosynthesis in Tomato flesh. Mol. Plant 2020, 13, 42–58. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Toden, S.; Ravindranathan, P.; Gu, J.H.; Cardenas, J.; Yuchang, M.; Goel, A. Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Sci. Rep. 2018, 8, 3335. [Google Scholar] [CrossRef]
- Bladé, C.; Arola, L.; Salvadó, M.J. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol. Nutr. Food Res. 2010, 54, 37–59. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed]
- Kruger, M.J.; Davies, N.; Myburgh, K.H.; Lecour, S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int. 2014, 59, 41–52. [Google Scholar] [CrossRef]
- Gu, K.D.; Wang, C.K.; Hu, D.G.; Hao, Y.J. How do anthocyanins paint our horticultural products? Sci. Hortic. 2019, 249, 257–262. [Google Scholar] [CrossRef]
- Albert, N.W.; Davies, K.M.; Lewis, D.H.; Zhang, H.B.; Montefiori, M.; Brendolise, C.; Boase, M.R.; Ngo, H.; Jameson, P.E.; Schwinn, K.E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 2014, 26, 962–980. [Google Scholar] [CrossRef]
- Xu, W.J.; Grain, D.; Bobet, S.; Le Gourrierec, J.; Thevenin, J.; Kelemen, Z.; Lepiniec, L.; Dubos, C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol. 2014, 202, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Qu, C.Z.; Jiang, S.H.; Chen, Z.J.; Xu, H.F.; Fang, H.C.; Su, M.Y.; Zhang, J.; Wang, Y.C.; Liu, W.J.; et al. The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples. Plant J. 2018, 96, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.H.; Li, D.; Jin, C.Y.; Duan, S.W.; Qi, S.H.; Liu, K.G.; Wang, H.C.; Ma, H.L.; Chen, M.X. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Biochem. Biophys. Res. Commun. 2017, 485, 360–365. [Google Scholar] [CrossRef]
- Xie, X.B.; Li, S.; Zhang, R.F.; Zhao, J.; Chen, Y.C.; Zhao, Q.; Yao, Y.X.; You, C.X.; Zhang, X.S.; Hao, Y.J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ. 2012, 35, 1884–1897. [Google Scholar] [CrossRef]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef]
- Tian, X.Z.; Xin, H.L.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats1. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef]
- Saigo, T.; Wang, T.; Watanabe, M.; Tohge, T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr Opin Plant Biol. 2020, 55, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Brunetti, C.; Ferdinando, M.D.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Mol. Biol. 2018, 98, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hughes, N.M.; Neufeld, H.S.; Burkey, K.O. Functional role of anthocyanins in high-light winter leaves of the evergreen herb galax urceolata. New Phytol. 2005, 168, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.X.; Wang, B.Z.; Fan, H.; Zhao, K.F. Anthocyanins of leaves and their enviromental significance in plant stress responses. Plant Physiol. Commun. 2003, 6, 688–694. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef]
- Kong, X.J.; Wang, R.; Jia, P.P.; Li, H.B.; Khan, A.; Muhammad, A.; Fiaz, S.; Xing, Q.C.; Zhang, Z.Y. Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.). Plant Mol. Biol. 2025, 115, 19. [Google Scholar] [CrossRef]
- Liang, J.; He, J.X. Protective role of anthocyanins in plants under low nitrogen stress. Biochem. Biophys. Res. Commun. 2018, 498, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, S.; Huarancca Reyes, T.; Guglielminetti, L.; Lu, Y.; Morita, Y.; Sato, T.; Yamaguchi, J. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant Cell Physiol. 2014, 55, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 2009, 21, 3567–3584. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Shi, M.Z.; Xie, D.Y. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 2012, 236, 825–837. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yang, J.; Ma, C.L.; Zhang, Y.; Ge, T.; Qi, Z.; Kang, Y. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. J. Integr. Plant Biol. 2015, 57, 708–721. [Google Scholar] [CrossRef]
- Wan, H.H.; Zhang, J.; Song, T.T.; Tian, J.; Yao, Y.C. Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front Plant Sci. 2015, 6, 673. [Google Scholar] [CrossRef]
- Meng, J.X.; Gao, Y.; Han, M.L.; Liu, P.Y.; Yang, C.; Shen, T.; Li, H.H. In vitro anthocyanin induction and metabolite analysis in malus spectabilis leaves under low nitrogen conditions. Hortic. Plant J. 2020, 6, 284–292. [Google Scholar] [CrossRef]
- Han, Y.; Vimolmangkang, S.; Soria-Guerra, R.E.; Rosales-Mendoza, S.; Zheng, D.; Lygin, A.V.; Korban, S.S. Ectopic expression of apple F3’H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol. 2010, 153, 806–820. [Google Scholar] [CrossRef]
- Truong, H.A.; Lee, W.J.; Jeong, C.Y.; Trịnh, C.S.; Lee, S.; Kang, C.S.; Cheong, Y.K.; Hong, S.W.; Lee, H. Enhanced anthocyanin accumulation confers increased growth performance in plants under low nitrate and high salt stress conditions owing to active modulation of nitrate metabolism. J. Plant Physiol. 2018, 231, 41–48. [Google Scholar] [CrossRef]
- Jin, S.W.; Rahim, M.A.; Jung, H.J.; Afrin, K.S.; Kim, H.T.; Park, J.I.; Kang, J.G.; Nou, I.S. Abscisic acid and ethylene biosynthesis-related genes are associated with anthocyanin accumulation in purple ornamental cabbage (Brassica oleracea var. acephala). Genome 2019, 62, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Onik, J.C.; Hu, X.J.; Lin, Q.; Wang, Z.D. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit. Molecules 2018, 23, 1908. [Google Scholar] [CrossRef] [PubMed]
- An, X.H.; Tian, Y.; Chen, K.Q.; Liu, X.J.; Liu, D.D.; Xie, X.B.; Cheng, C.G.; Cong, P.H.; Hao, Y.J. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol. 2015, 56, 650–662. [Google Scholar] [CrossRef]
- Kuang, Q.; Zhang, S.; Wu, P.Z.; Chen, Y.P.; Li, M.R.; Jiang, H.W.; Wu, G.J. Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency. PLoS ONE 2017, 12, e0182700. [Google Scholar] [CrossRef]
- Kim, G.P.; Lee, J.; Ahn, K.G.; Hwang, Y.S.; Choi, Y.; Chun, J.; Chang, W.S.; Choung, M.G. Differential responses of B vitamins in black soybean seeds. Food Chem. 2014, 153, 101–108. [Google Scholar] [CrossRef]
- Yang, C.; Zheng, L.; Wu, H.; Zhu, Z.; Zou, Y.; Deng, J.; Qin, W.; Zhang, J.; Zhang, Q.; Wang, X.; et al. Yellow- and green-cotyledon seeds of black soybean: Phytochemical and bioactive differences determine edibility and medical applications. Food Biosci. 2021, 39, 100842. [Google Scholar] [CrossRef]
- He, Q.; Ren, Y.J.; Zhao, W.B.; Li, R.; Zhang, L.G. Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.). Genes 2020, 11, 81. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Wang, C.K.; Huang, X.Y.; Hu, D.G. Anthocyanin stability and degradation in plants. Plant Signal. Behav. 2021, 16, 1987767. [Google Scholar] [CrossRef]
- Ma, C.; Feng, Y.L.; Zhou, S.; Zhang, J.; Guo, B.B.; Xiong, Y.; Wu, S.W.; Li, Y.; Li, Y.J.; Li, C.X. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.). Plant Physiol. Biochem. 2023, 200, 107739. [Google Scholar] [CrossRef]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.H.; Li, J.Y.; Chen, J.Y.; Yang, S.X.; Zhao, M.; Xue, Y.B. Transcriptome Sequencing Analysis of Root in Soybean Responding to Mn Poisoning. Int. J. Mol. Sci. 2023, 24, 12727. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhang, Z.M.; Xu, Y.; Zhang, G.C.; Guo, Q.; Qin, F.F.; Dai, L.X. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut. Acta Agron. Sin. 2023, 49, 225–238. [Google Scholar]
- Morris, P.C. MAP kinase signal transduction pathways in plants. New Phytol. 2001, 151, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; Han, T.Y.; Lyu, L.; Li, W.L.; Wu, W.L. Research progress in understanding the biosynthesis and regulation of plant anthocyanins. Sci. Hortic. 2023, 321, 112374. [Google Scholar] [CrossRef]
- Zhao, T.; Li, Q.; Yan, T.; Yu, B.P.; Wang, Q.; Wang, D.L. Sugar and anthocyanins: A scientific exploration of sweet signals and natural pigments. Plant Sci. 2025, 353, 112409. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Chen, Q.W.; Havé, M. Regulation of nutrient recycling via autophagy. Curr. Opin. Plant Biol. 2017, 39, 8–17. [Google Scholar] [CrossRef]
- Bassham, D.C. Function and regulation of macroautophagy in plants. Biochim. Biophys. Acta. 2009, 1793, 1397–1403. [Google Scholar] [CrossRef]
- Guiboileau, A.; Yoshimoto, K.; Soulay, F.; Bataillé, M.P.; Avice, J.C.; Masclaux-Daubresse, C. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012, 194, 732–740. [Google Scholar] [CrossRef]
- Wada, S.; Hayashida, Y.; Izumi, M.; Kurusu, T.; Hanamata, S.; Kanno, K.; Kojima, S.; Yamaya, T.; Kuchitsu, K.; Makino, A. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol. 2015, 168, 60–73. [Google Scholar] [CrossRef]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M.S. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 2015, 27, 2545–2559. [Google Scholar] [CrossRef]
- Pourcel, L.; Irani, N.G.; Lu, Y.H.; Riedl, K.; Schwartz, S.; Grotewold, E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol. Plant 2010, 3, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Masclaux-Daubresse, C.; Clement, G.; Anne, P.; Routaboul, J.M.; Guiboileau, A.; Soulay, F.; Shirasu, K.; Yoshimoto, K. Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. Plant Cell 2014, 26, 1857–1877. [Google Scholar] [CrossRef]
- Li, N.; Mao, P.C.; Zheng, M.L.; Yun, L.; Tian, X.X.; Meng, L. Metabolome and Transcriptome Combined Analysis of Anthocyanin Accumulation Mechanism in Iris lactea var. chinensis Accession Petals. Chin. J. Grassl. 2025, 47, 56–69. [Google Scholar] [CrossRef]
- Tohge, T.; Nishiyama, Y.; Hirai, M.Y.; Yano, M.; Nakajima, J.; Awazuhara, M.; Inoue, E.; Takahashi, H.; Goodenowe, D.B.; Kitayama, M.; et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005, 42, 218–235. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Tohge, T.; Matsuda, F.; Nakabayashi, R.; Takayama, H.; Niida, R.; Watanabe-Takahashi, A.; Inoue, E.; Saito, K. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 2008, 20, 2160–2176. [Google Scholar] [CrossRef]
- Kang, C.Y.; Lian, H.L.; Wang, F.F.; Huang, J.R.; Yang, H.Q. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 2009, 21, 2624–2641. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Y.C.; Sang, Y.; Li, Q.H.; Yang, H.Q. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. USA 2005, 102, 12270–12275. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Fan, Y.T.; Guo, Y.; Li, S.Y.; Zhang, B.; Li, H.; Liu, L.J. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. Plant Cell Environ. 2024, 47, 2044–2057. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef]
Gene ID | Annotation |
---|---|
Glyma.13G309300 | arogenate dehydratase 1 |
Glyma.20G114200 | cinnamate 4-hydroxylase |
Glyma.13G089200 | cryptochrome-1-like |
Glyma.17G171100 | O-methyltransferase 9 |
Glyma.14G200900 | probable O-methyltransferase 3 |
Glyma.08G109500 | chalcone synthase 9 |
Glyma.17G173200 | dihydroflavanol 4-reductase |
Glyma.09G204500 | transcription factor MYC1 |
Glyma.08G271900 | transcription factor MYC2 |
Glyma.07G015200 | auxin-responsive protein |
Glyma.10G222400 | peroxidase |
Glyma.10G106600 | beta-glucosidase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Si, F.; Guo, C.; Chai, Y.; Yang, T.; Wang, P. Integrated Analysis of Transcriptome and Metabolome Reveals the Accumulation of Anthocyanins in Black Soybean (Glycine max L.) Seed Coats Induced by Low Nitrogen Concentration in the Nutrient Solution. Plants 2025, 14, 2993. https://doi.org/10.3390/plants14192993
Liang S, Si F, Guo C, Chai Y, Yang T, Wang P. Integrated Analysis of Transcriptome and Metabolome Reveals the Accumulation of Anthocyanins in Black Soybean (Glycine max L.) Seed Coats Induced by Low Nitrogen Concentration in the Nutrient Solution. Plants. 2025; 14(19):2993. https://doi.org/10.3390/plants14192993
Chicago/Turabian StyleLiang, Suming, Furong Si, Chenyang Guo, Yuan Chai, Tao Yang, and Peng Wang. 2025. "Integrated Analysis of Transcriptome and Metabolome Reveals the Accumulation of Anthocyanins in Black Soybean (Glycine max L.) Seed Coats Induced by Low Nitrogen Concentration in the Nutrient Solution" Plants 14, no. 19: 2993. https://doi.org/10.3390/plants14192993
APA StyleLiang, S., Si, F., Guo, C., Chai, Y., Yang, T., & Wang, P. (2025). Integrated Analysis of Transcriptome and Metabolome Reveals the Accumulation of Anthocyanins in Black Soybean (Glycine max L.) Seed Coats Induced by Low Nitrogen Concentration in the Nutrient Solution. Plants, 14(19), 2993. https://doi.org/10.3390/plants14192993