Effect of Alkaline Salt Stress on Photosynthetic Activities of Potato Plants (Solanum tuberosum L.)
Abstract
1. Introduction
2. Results
2.1. Effects of Different Concentrations of NaHCO3 on Potato Fluorescence Parameters
2.2. Effects of Different Concentrations of NaHCO3 on Potato Chlorophyll
2.3. Effects of Different Concentrations of NaHCO3 on Potato Photosynthesis
2.4. Effect of NaHCO3 on the Expression of Key Genes for Potato Photosynthesis
2.5. Potato Photosynthetic Pathway Diagram Under NaHCO3 Stress
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Potato Determination of Fluorescence Parameters
4.3. Potato Determination of Chlorophyll Content
4.4. Potato Determination of Photosynthetic Gas Exchange
4.5. RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase Chain Reaction
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSII | Photosystem II |
PSI | Photosystem I |
ATP | Adenosine Triphosphate |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate, Reduced |
NPQ | Non-Photochemical Quenching |
OEC | Oxygen-Evolving Complex |
PC | Plastocyanin |
PQH2 | Plastoquinol |
ROS | Reactive Oxygen Species |
QA | Quinone A |
b6f | Cytochrome b6f Complex |
NADP+ | Nicotinamide Adenine Dinucleotide Phosphate, Oxidised |
Rubisco | Ribulose-1,5-bisphosphate Carboxylase/Oxygenase |
References
- Zhu, W.; Gu, S.; Jiang, R.; Zhang, X.; Hatano, R. Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China. Agriculture 2024, 14, 1210. [Google Scholar] [CrossRef]
- Chen, Y.W.; Du, Y.Y.; Yin, H.Y.; Wang, H.Y.; Chen, H.Y.; Li, X.W.; Zhang, Z.T.; Chen, J.Y. Radar Remote Sensing-Based Inversion Model of Soil Salt Content at Different Depths Under Vegetation. PeerJ 2022, 10, e13306. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Y.; Chang, C.Y.; Song, J.X.; Zhuge, Y.P.; Wang, A.L. Precise Monitoring of Soil Salinity in China’s Yellow River Delta Using UAV-Borne Multispectral Imagery and a Soil Salinity Retrieval Index. Sensors 2022, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, S.Q. Impacts of Recent Climate Change on Potato Yields at a Provincial Scale in Northwest China. Agronomy 2020, 10, 426. [Google Scholar] [CrossRef]
- Su, W.; Wang, J. Potato and Food Security in China. Am. J. Potato Res. 2019, 96, 100–101. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; He, K.N.; Zhang, T.; Tang, D.; Li, R.J.; Jia, S.F. Physiological Responses of Goji Berry (Lycium barbarum L.) to Saline-Alkaline Soil from Qinghai Region, China. Sci. Rep. 2019, 9, 12057. [Google Scholar] [CrossRef]
- Kang, Y.C.; Yang, X.Y.; Liu, Y.H.; Shi, M.F.; Zhang, W.N.; Fan, Y.L.; Yao, Y.H.; Zhang, J.L.; Qin, S.H. Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism of Potato (Solanum tuberosum L.) Response to Alkali Stress. Int. J. Biol. Macromol. 2021, 182, 938–949. [Google Scholar]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar] [CrossRef]
- Chen, J.P.; Li, X.X.; Ye, X.X.; Guo, P.; Hu, Z.B.; Qi, G.N.; Cui, F.Q.; Liu, S.K. An S-ribonuclease Binding Protein EBS1 and Brassinolide Signaling Are Specifically Required for Arabidopsis Tolerance to Bicarbonate. J. Exp. Bot. 2021, 72, 1449–1459. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, Q.; Zhang, M.; Wang, Y.C. The High pH Value of Alkaline Salt Destroys the Root Membrane Permeability of Reaumuria trigyna and Leads to Its Serious Physiological Decline. J. Plant Res. 2022, 135, 785–798. [Google Scholar] [CrossRef]
- Pecherina, A.; Grinberg, M.; Ageyeva, M.; Zanegina, D.; Akinchits, E.; Brilkina, A.; Vodeneev, V. Salt-Induced Changes in Cytosolic pH and Photosynthesis in Tobacco and Potato Leaves. Int. J. Mol. Sci. 2023, 24, 491. [Google Scholar]
- ALKahtani, M.D.F.; Attia, K.A.; Hafez, Y.M.; Khan, N.; Eid, A.M.; Ali, M.A.M.; Abdelaal, K.A.A. Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. Agronomy 2020, 10, 1180. [Google Scholar] [CrossRef]
- Gharsallah, C.; Fakhfakh, H.; Grubb, D.; Gorsane, F. Effect of Salt Stress on Ion Concentration, Proline Content, Antioxidant Enzyme Activities and Gene Expression in Tomato Cultivars. AOB Plants 2016, 8, plw055. [Google Scholar]
- Razzaq, M.; Akram, N.A.; Ali, S.; Ashraf, M. Induction of Chromium (Cr) Stress Tolerance in Maize by Foliar Applied Vanillic Acid: Growth, Gas Exchange Characteristics and Antioxidants. Pak. J. Bot. 2023, 55, 419–428. [Google Scholar] [CrossRef]
- Wang, N.N.; Luo, X.M.; Wang, Z.; Liu, J.G. Mitigating Effect of Exogenous Melatonin on Salt and Drought Stress in Cyperus esculentus L. during the Tillering Stage. Agronomy 2024, 14, 1009. [Google Scholar] [CrossRef]
- Cui, J.; Yao, D.R.; Ma, J.; Ye, X.F.; Peng, Y.; Song, J.Q.; Li, J.F.; Chang, Y.J.; Yang, J.; Zhang, Z.; et al. Nutrient Uptake, Physiological Responses and Growth of Tobacco (Nicotiana tabacum L.) in Soil under Composite Salt Stress. Pedosphere 2022, 32, 893–904. [Google Scholar]
- Santanoo, S.; Lontom, W.; Dongsansuk, A.; Vongcharoen, K.; Theerakulpisut, P. Photosynthesis Performance at Different Growth Stages, Growth, and Yield of Rice in Saline Fields. Plants 2023, 12, 1903. [Google Scholar] [CrossRef]
- Xing, H.S.; Wu, J.M.; Chen, J.; Shi, Z.M. Research Progress on Limiting Factors of Plant Photosynthesis and Vegetation Productivity. Acta Ecol. Sin. 2023, 43, 5186–5199. [Google Scholar] [CrossRef]
- Rey, P.; Henri, P.; Alric, J.; Blanchard, L.; Viola, S. Participation of the Stress-Responsive CDSP32 Thioredoxin in the Modulation of Chloroplast ATP-Synthase Activity in (Solanum tuberosum L.). Plant Cell Environ. 2024, 47, 5372–5390. [Google Scholar]
- Zhou, J.; Qi, A.G.; Wang, B.Q.; Zhang, X.J.; Dong, Q.D.; Liu, J.X. Integrated Analyses of Transcriptome and Chlorophyll Fluorescence Characteristics Reveal the Mechanism Underlying Saline-Alkali Stress Tolerance in Kosteletzkya pentacarpos. Front. Plant Sci. 2022, 13, 865572. [Google Scholar]
- Lu, X.; Ma, L.; Zhang, C.C.; Yan, H.K.; Bao, J.Y.; Gong, M.S.; Wang, W.H.; Li, S.; Ma, S.Y.; Chen, B.H. Grapevine (Vitis vinifera) Responses to Salt Stress and Alkali Stress: Transcriptional and Metabolic Profiling. BMC Plant Biol. 2022, 22, 528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Chang, L.; Li, G.H.; Li, Y.F. Advances and Future Research in Ecological Stoichiometry under Saline-Alkali Stress. Environ. Sci. Pollut. Res. 2023, 30, 5475–5486. [Google Scholar]
- Dou, J.H.; Tang, Z.Q.; Yu, J.H.; Wang, G.Z.; An, W.W.; Zhang, Y.H.; Yang, Q. Effects of Exogenous Melatonin on the Growth and Photosynthetic Characteristics of Tomato Seedlings Under Saline-Alkali Stress. Sci. Rep. 2025, 15, 5172. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.J.; Huang, Z.J.; Li, M.Q.; Hou, Z.N. Growth, Ionic Homeostasis, and Physiological Responses of Cotton Under Different Salt and Alkali Stresses. Sci. Rep. 2020, 10, 21844. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, Z.T.; Sui, N. Sensitivity and responses of chloroplasts to salt stress in plants. Front. Plant Sci. 2024, 15, 1374086. [Google Scholar] [CrossRef]
- Li, R.L.; Shi, F.C.; Fukuda, K.; Yang, Y.L. Effects of Salt and Alkali Stresses on Germination, Growth, Photosynthesis and Ion Accumulation in Alfalfa (Medicago sativa L.). Soil. Sci. Plant Nutr. 2010, 56, 725–733. [Google Scholar]
- Liu, D.; Liu, M.; Liu, X.L.; Cheng, X.G.; Liang, Z.W. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress. Front. Plant Sci. 2018, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Sagervanshi, A.; Naeem, A.; Kaiser, H.; Pitann, B.; Mühling, K.H. Early growth reduction in Vicia faba L. under alkali salt stress is mainly caused by excess bicarbonate and related to citrate and malate over accumulation. Environ. Exp. Bot. 2021, 192, 104636. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.P.; Takano, T.; Liu, S.K. A Chloroplast-Localized Rubredoxin Family Protein Gene from Puccinellia tenuiflora (PutRUB) Increases NaCl and NaHCO3 Tolerance by Decreasing H2O2 Accumulation. Int. J. Mol. Sci. 2016, 17, 804. [Google Scholar] [CrossRef] [PubMed]
- Berry, L.L.; Brzezowski, P.; Wilson, K.E. Inactivation of the STT7 Gene Protects PsaF-Deficient Chlamydomonas reinhardtii Cells from Oxidative Stress Under High Light. Physiol. Plant. 2011, 141, 188–196. [Google Scholar]
- Naschberger, A.; Fadeeva, M.; Klaiman, D.; Borovikova-Sheinker, A.; Caspy, I.; Nelson, N.; Amunts, A. Structure of plant photosystem I in a native assembly state defines PsaF as a regulatory checkpoint. Nat. Plants 2024, 10, 874–879. [Google Scholar]
- Subramanyam, R.; Jolley, C.; Thangaraj, B.; Nellaepalli, S.; Webber, A.N.; Fromme, P. Structural and Functional Changes of PSI-LHCI Supercomplexes of Chlamydomonas reinhardtii Cells Grown Under High Salt Conditions. Planta 2010, 231, 913–922. [Google Scholar] [CrossRef]
- Shinohara, F.; Kurisu, G.; Hanke, G.; Bowsher, C.; Hase, T.; Kimata-Ariga, Y. Structural Basis for the Isotype-Specific Interactions of Ferredoxin and Ferredoxin:NADP+ Oxidoreductase: An Evolutionary Switch between Photosynthetic and Heterotrophic Assimilation. Photosynth. Res. 2017, 134, 281–289. [Google Scholar] [CrossRef]
- Wang, J.C.; Ding, C.J.; Cui, C.C.; Song, J.Q.; Ji, G.X.; Sun, N.; Qi, S.Y.; Li, J.; Xu, Z.R.; Zhang, H.H. Physiological and Molecular Responses of Poplar to Salt Stress and Functional Analysis of PagGRXC9 to Salt Tolerance. Tree Physiol. 2025, 45, tpaf039. [Google Scholar] [CrossRef]
- Xu, J.; Lan, H.; Fang, H.; Huang, X.; Zhang, H.; Huang, J. Quantitative Proteomic Analysis of the Rice (Oryza sativa L.) Salt Response. PLoS ONE 2015, 10, e0120978. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.L.; Sun, S.X.; Li, Y.M.; Jia, L.; Ye, S.L.; Yu, Y.X.; Dossa, K.; Luan, Y.P. Transcriptome Analysis Reveals the Key Pathways and Candidate Genes Involved in Salt Stress Responses in Cymbidium ensifolium Leaves. BMC Plant Biol. 2023, 23, 64. [Google Scholar] [CrossRef]
- Chai, H.; Wang, X.L.; Yang, Z.; Li, S.S.; Xu, Y.X.; Wu, Y.; Shen, Z.B. Comparative transcriptome analysis of differentially expressed genes of Medicago falcata L. breeding lines response to saline-alkaline stress. BMC Plant Biol. 2025, 25, 623. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Y.; Li, L.H.; Bhanbhro, N.; Yang, C.W.; Zhang, Z. Photosynthetic response and transcriptomic profiling provide insights into the alkali tolerance of clone halophyte Leymus chinensis. Photosynthetica 2020, 58, 780–789. [Google Scholar] [CrossRef]
- Zait, Y.; Shemer, O.E.; Cochavi, A. Dynamic Responses of Chlorophyll Fluorescence Parameters to Drought across Diverse Plant Families. Physiol. Plant. 2024, 176, e14527. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Cho, M.C.; Yang, E.Y.; Lee, J.G. Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy 2020, 10, 1627. [Google Scholar] [CrossRef]
- Ma, Y.B.; Xu, Z.J.; Wang, L.Y.; Ding, R.X.; Zhang, Y.; Wang, J.R.; Wang, P.J.; Yao, W.H.; Li, X.J.; Li, G.B.; et al. The light-responsive transcription factor SlBBX20 improves saline-alkali resistance of Solanum lycopersicum by affecting photosynthetic capacity, antioxidant capacity, and osmotic adjustment. Environ. Exp. Bot. 2024, 224, 105818. [Google Scholar] [CrossRef]
- Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramírez, R.M. Microvesicles: ROS Scavengers and ROS Producers. J. Extracell. Vesicles 2019, 8, 1626654. [Google Scholar] [CrossRef]
- Ohnishi, N.; Murata, N. Glycinebetaine Counteracts the Inhibitory Effects of Salt Stress on the Degradation and Synthesis of D1 Protein During Photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol. 2006, 141, 758–765. [Google Scholar] [CrossRef]
- Carius, A.B.; Rogne, P.; Duchoslav, M.; Wolf-Watz, M.; Samuelsson, G.; Shutova, T. Dynamic pH-induced Conformational Changes of the PsbO Protein in the Fluctuating Acidity of the Thylakoid Lumen. Physiol. Plant. 2019, 166, 288–299. [Google Scholar] [CrossRef]
- Zhang, H.H.; Xu, N.; Wu, X.Y.; Wang, J.R.; Ma, S.L.; Li, X.; Sun, G.Y. Effects of Four Types of Sodium Salt Stress on Plant Growth and Photosynthetic Apparatus in Sorghum Leaves. J. Plant Interact. 2018, 13, 506–513. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.Y.; Wang, X.X.; Jiao, S.J.; Zhang, W.N.; Kang, Y.C.; Li, M.; Xie, J.L.; Yang, X.Y.; Liu, Y.H.; et al. 24-Epibrassinolide Improves Potato (Solanum tuberosum L.) Tolerance to Alkaline Salt Stress by Regulating Antioxidant Defence and Photosynthetic Properties. J. Agron. Crop Sci. 2025, 211, e70022. [Google Scholar] [CrossRef]
- Yang, F.; Liang, Z.W.; Wang, Z.C.; Chen, Y. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Influencing Factors in Rice under Saline Sodic Stress. Rice Sci. 2008, 15, 119–124. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; Ding, H.; Guo, Q.; Ci, D.W.; Zhang, J.L.; Qin, F.F.; Xu, M.L.; Zhang, G.C. The Impact of Short-Term Drought on the Photosynthetic Characteristics and Yield of Peanuts Grown in Saline Alkali Soil. Plants 2024, 13, 2920. [Google Scholar] [CrossRef]
- Liu, B.S.; Li, M.; Wang, Y.; Li, J.Y.; Xue, H.H. Effects of Saline-Alkali Stress on the Functional Traits and Physiological Characteristics of Leymus chinensis Leaves. Grassl. Sci. 2022, 68, 336–342. [Google Scholar] [CrossRef]
- Amaral, J.; Lobo, A.K.M.; Carmo-Silva, E. Regulation of Rubisco Activity in Crops. New Phytol. 2024, 241, 35–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, D.; Zhang, Z.; Li, Y.P.; Shi, S.Q.; Yang, Y.L. Calcium Signal Regulated Carbohydrate Metabolism in Wheat Seedlings under Salinity Stress. Physiol. Mol. Biol. Pla 2024, 30, 123–136. [Google Scholar] [CrossRef]
- Li, Y.K.; Jiang, F.L.; Niu, L.F.; Wang, G.; Yin, J.; Song, X.M.; Ottosen, C.O.; Rosenqvist, E.; Mittler, R.; Wu, Z.; et al. Synergistic Regulation at Physiological, Transcriptional and Metabolic Levels in Tomato Plants Subjected to a Combination of Salt and Heat Stress. Plant J. 2024, 117, 1656–1675. [Google Scholar] [CrossRef]
- Shen, X.; Sun, M.X.; Nie, B.X.; Li, X.Y. Physiological Adaptation of Cyperus esculentus L. Seedlings to Varying Concentrations of Saline-Alkaline Stress: Insights from Photosynthetic Performance. Plant Physiol. Biochem. 2024, 214, 108911. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhuang, S.; Qian, Z. Effects of Canopy Closure on Photosynthetic Characteristics of Ilex latifolia Thunb. in Phyllostachys pubescens Forests. Res. Ecol. 2020, 2, 16–22. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Zhang, W.N.; Kang, Y.C.; Shi, M.F.; Yang, X.Y.; Li, H.; Yu, H.F.; Wang, Y.; Qin, S.H. Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chem. Biol. Technol. Ag. 2022, 9, 79. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real—Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [PubMed]
Gene ID | Forward Primer | Reverse Primer |
---|---|---|
PGSC0003DMG400010035 | AGCCAACATCATTCACCGTCAAGG | GAACACGCTCACCACCAGGAAG |
PGSC0003DMG400021727 | TCTGGTGGATTGCCTGGAACTTTG | TCTGTGCTTCATCGCTGTTCTTGG |
PGSC0003DMG400022241 | GAAAGGGCTTCCATCACTTGCTAGG | CATCACCACTTGGAGACCACTCATC |
PGSC0003DMG400017556 | TGGGAGAAGCAATAACAGGAAAGGG | GAAGGATTTGCCAGGAGGGATGAC |
PGSC0003DMG400011816 | TCTCAGTAACCCGACCCATCCG | CAGCACCACCTGTTGGCATCTC |
PGSC0003DMG400021144 | TGTTGTCAGCACCAGTTCTTCCAG | TCCTTCCTACCCATCCAATCCATCC |
PGSC0003DMG400016504 | ATGGCGTCTATGGCAACTCTTACTG | TCTGAAGGGAGTTGTAGGGTGATGG |
PGSC0003DMG400027672 | TACCTCTCCAACTTGCCTGCCTAC | CTGGTGCTGTTGATGGATCTCCTTC |
PGSC0003DMG400005805 | TCACCACTGCTTCTTCTGCTAATGC | TCGCACTCCAACGCCAAATCG |
PGSC0003DMG400005890 | AAGACTAGCCTCTCCTCAGACTTCG | AGCACACCATCCATAGCCAGAATTG |
PGSC0003DMG400023985 | AAGTCTTCGCCCTCGTTCAAAGTC | CCATCTGATCATCGTCCAGGAATGC |
PGSC0003DMG400026360 | ATGTTCAAAGCCGCACCTCTGAG | AGCACAAGTTGAGCAAGCACCAG |
PGSC0003DMG402005881 | GCATCAGCATCAGCAGTTTACAAGG | GAGCACATAGCCCTCCTCCATTTG |
PGSC0003DMG400011811 | CTCTCAGGTGTCAGTTGCTGTTCC | TTGTCGCTGTGTATGGTTCCTTGG |
PGSC0003DMG400016959 | CGACGATGCGGTTTACGATTTCTTC | AGTCACCACAGCAAGTTCAGTATCAG |
PGSC0003DMG400025106 | TGAGAATACGCCTTAACGACCAATGG | AGCCTCCACCCGTGTTCTAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Yang, W.; Kang, Y.; Qin, S.; Zhang, W.; Liu, Y.; Qian, S.; Han, Y. Effect of Alkaline Salt Stress on Photosynthetic Activities of Potato Plants (Solanum tuberosum L.). Plants 2025, 14, 2979. https://doi.org/10.3390/plants14192979
Shen C, Yang W, Kang Y, Qin S, Zhang W, Liu Y, Qian S, Han Y. Effect of Alkaline Salt Stress on Photosynthetic Activities of Potato Plants (Solanum tuberosum L.). Plants. 2025; 14(19):2979. https://doi.org/10.3390/plants14192979
Chicago/Turabian StyleShen, Congang, Wenhui Yang, Yichen Kang, Shuhao Qin, Weina Zhang, Yuhui Liu, Siyuan Qian, and Yuchen Han. 2025. "Effect of Alkaline Salt Stress on Photosynthetic Activities of Potato Plants (Solanum tuberosum L.)" Plants 14, no. 19: 2979. https://doi.org/10.3390/plants14192979
APA StyleShen, C., Yang, W., Kang, Y., Qin, S., Zhang, W., Liu, Y., Qian, S., & Han, Y. (2025). Effect of Alkaline Salt Stress on Photosynthetic Activities of Potato Plants (Solanum tuberosum L.). Plants, 14(19), 2979. https://doi.org/10.3390/plants14192979