Nitrogen Use Efficiency in Agriculture: Integrating Biotechnology, Microbiology, and Novel Delivery Systems for Sustainable Agriculture
Abstract
1. Introduction
2. Biological Nitrogen Fixation (BNF) for NUE
2.1. Plant-Microbe Association for N Nutrition
2.2. Factors Affecting Biological N Fixation
2.3. How Can Biotechnological Approaches Improve N Fixation in the Future?
3. Molecular Pathways Regulating NUE in Plants
3.1. Gene Characterization
3.2. Functional Roles in Improving NUE
4. Novel Approaches for Improving NUE
4.1. De Novo Domestication
4.2. Nutrient Release
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkesford, M.J.; Cakmak, I.; Coskun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P.J. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–281. ISBN 978-0-12-819773-8. [Google Scholar]
- Sinha, D.; Tandon, P.K. An Overview of Nitrogen, Phosphorus and Potassium: Key Players of Nutrition Process in Plants. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Mishra, K., Tandon, P.K., Srivastava, S., Eds.; Springer: Singapore, 2020; pp. 85–117. ISBN 978-981-15-8635-4. [Google Scholar]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nature Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, MA, USA, 2004; ISBN 0-262-69313-5. [Google Scholar]
- Cassim, B.M.A.R.; Lisboa, I.P.; Besen, M.R.; Otto, R.; Cantarella, H.; Inoue, T.T.; Batista, M.A. Nitrogen: From Discovery, Plant Assimilation, Sustainable Usage to Current Enhanced Efficiency Fertilizers Technologies—A Review. Rev. Bras. Ciência Solo 2024, 48, e0230037. [Google Scholar] [CrossRef]
- Galloway, J.N.; Leach, A.M.; Erisman, J.W.; Bleeker, A. Nitrogen: The Historical Progression from Ignorance to Knowledge, with a View to Future Solutions. Soil Res. 2017, 55, 417. [Google Scholar] [CrossRef]
- Cushman, G.T. Guano and the Opening of the Pacific World: A Global Ecological History; Cambridge University Press: Cambridge, MA, USA, 2013; ISBN 1-107-31072-5. [Google Scholar]
- Betancourt, M. Guano and the Rise of the American Empire. Socius Sociol. Res. A Dyn. World 2024, 10, 23780231241274187. [Google Scholar] [CrossRef]
- Johnson, B. The State of Ammonia Synthesis at the Turn of the Twentieth Century: The Arena for Discovery. In Making Ammonia; Springer International Publishing: Cham, Switzerland, 2022; pp. 77–89. ISBN 978-3-030-85531-4. [Google Scholar]
- Johnson, B. Making Ammonia: Fritz Haber, Walther Nernst, and the Nature of Scientific Discovery; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-85531-4. [Google Scholar]
- Vojvodic, A.; Medford, A.J.; Studt, F.; Abild-Pedersen, F.; Khan, T.S.; Bligaard, T.; Nørskov, J.K. Exploring the Limits: A Low-Pressure, Low-Temperature Haber–Bosch Process. Chem. Phys. Lett. 2014, 598, 108–112. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The Global Nitrogen Cycle in the Twenty-First Century. Phil. Trans. R. Soc. B 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Ameen, A.; Raza, S. Green Revolution: A Review. Int. J. Adv. Sci. Res. 2017, 3, 129–137. [Google Scholar] [CrossRef]
- Pingali, P.L. Green Revolution: Impacts, Limits, and the Path Ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural Sustainability and Intensive Production Practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, X.; Qin, Q.; Dinkins, R.D.; Zhu, H. The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes. Front. Genet. 2020, 11, 00973. [Google Scholar] [CrossRef] [PubMed]
- Kavamura, V.N.; Robinson, R.J.; Hughes, D.; Clark, I.; Rossmann, M.; Melo, I.S.D.; Hirsch, P.R.; Mendes, R.; Mauchline, T.H. Wheat Dwarfing Influences Selection of the Rhizosphere Microbiome. Sci. Rep. 2020, 10, 1452. [Google Scholar] [CrossRef]
- Rossmann, M.; Pérez-Jaramillo, J.E.; Kavamura, V.N.; Chiaramonte, J.B.; Dumack, K.; Fiore-Donno, A.M.; Mendes, L.W.; Ferreira, M.M.C.; Bonkowski, M.; Raaijmakers, J.M.; et al. Multitrophic Interactions in the Rhizosphere Microbiome of Wheat: From Bacteria and Fungi to Protists. FEMS Microbiol. Ecol. 2020, 96, fiaa032. [Google Scholar] [CrossRef]
- Oldroyd, G.E.; Dixon, R. Biotechnological Solutions to the Nitrogen Problem. Curr. Opin. Biotechnol. 2014, 26, 19–24. [Google Scholar] [CrossRef]
- Abdo, A.I.; Sun, D.; Shi, Z.; Abdel-Fattah, M.K.; Zhang, J.; Kuzyakov, Y. Conventional Agriculture Increases Global Warming While Decreasing System Sustainability. Nat. Clim. Change 2025, 15, 110–117. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-Term Effects of Mineral Fertilizers on Soil Microorganisms—A Review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Howe, J.A.; McDonald, M.D.; Burke, J.; Robertson, I.; Coker, H.; Gentry, T.J.; Lewis, K.L. Influence of Fertilizer and Manure Inputs on Soil Health: A Review. Soil Secur. 2024, 16, 100155. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of Agricultural Practices on Bacterial Community of Cultivated Soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Xu, J.; Ren, C.; Zhang, X.; Wang, C.; Wang, S.; Ma, B.; He, Y.; Hu, L.; Liu, X.; Zhang, F.; et al. Soil Health Contributes to Variations in Crop Production and Nitrogen Use Efficiency. Nat. Food 2025, 6, 597–609. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, X.; Reis, S.; Wang, S.; Jin, J.; Xu, J.; Gu, B. Climate Change Unequally Affects Nitrogen Use and Losses in Global Croplands. Nat. Food 2023, 4, 294–304. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Hoque, M.S.; Masle, J.; Udvardi, M.K.; Ryan, P.R.; Upadhyaya, N.M. Over-Expression of the Rice OsAMT1-1 Gene Increases Ammonium Uptake and Content, but Impairs Growth and Development of Plants under High Ammonium Nutrition. Funct. Plant Biol. 2006, 33, 153. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-H.; Wu, J.; Tang, H.; Yuan, Y.; Wang, S.-M.; Wang, Y.-P.; Zhu, Q.-S.; Li, S.-G.; Xiang, C.-B. Overexpression of Arabidopsis NLP7 Improves Plant Growth under Both Nitrogen-Limiting and -Sufficient Conditions by Enhancing Nitrogen and Carbon Assimilation. Sci. Rep. 2016, 6, 27795. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Yan, J. De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol. Plant 2019, 12, 615–631. [Google Scholar] [CrossRef]
- Zsögön, A.; Čermák, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De Novo Domestication of Wild Tomato Using Genome Editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef]
- Fathi Qarachal, J.; Alizadeh, M. Harnessing Precision Agriculture and Nanotechnology for Sustainable Farming: A Review. Nanotechnol. Environ. Eng. 2025, 10, 37. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Gu, B. Managing Nitrogen to Achieve Sustainable Food-Energy-Water Nexus in China. Nat. Commun. 2025, 16, 4804. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Ros, G.H.; Chen, Y.; Zhang, F.; De Vries, W. Optimized Agricultural Management Reduces Global Cropland Nitrogen Losses to Air and Water. Nat. Food 2024, 5, 995–1004. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The Role of Cover Crops in Improving Soil Fertility and Plant Nutritional Status in Temperate Climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C. Nitrogen Fixation with Soybean: The Perfect Symbiosis? In Biological Nitrogen Fixation; De Bruijn, F.J., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1009–1024. ISBN 978-1-118-63704-3. [Google Scholar]
- Büchi, L.; Gebhard, C.-A.; Liebisch, F.; Sinaj, S.; Ramseier, H.; Charles, R. Accumulation of Biologically Fixed Nitrogen by Legumes Cultivated as Cover Crops in Switzerland. Plant Soil 2015, 393, 163–175. [Google Scholar] [CrossRef]
- Zannopoulos, S.; Gazoulis, I.; Kokkini, M.; Antonopoulos, N.; Kanatas, P.; Kanetsi, M.; Travlos, I. The Potential of Three Summer Legume Cover Crops to Suppress Weeds and Provide Ecosystem Services—A Review. Agronomy 2024, 14, 1192. [Google Scholar] [CrossRef]
- Congreves, K.A.; Dutta, B.; Grant, B.B.; Smith, W.N.; Desjardins, R.L.; Wagner-Riddle, C. How Does Climate Variability Influence Nitrogen Loss in Temperate Agroecosystems under Contrasting Management Systems? Agric. Ecosyst. Environ. 2016, 227, 33–41. [Google Scholar] [CrossRef]
- Rowe, E.C.; Emmett, B.A.; Frogbrook, Z.L.; Robinson, D.A.; Hughes, S. Nitrogen Deposition and Climate Effects on Soil Nitrogen Availability: Influences of Habitat Type and Soil Characteristics. Sci. Total Environ. 2012, 434, 62–70. [Google Scholar] [CrossRef]
- Martens, D.A. Nitrogen Cycling under Different Soil Management Systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2001; Volume 70, pp. 143–192. ISBN 978-0-12-200077-5. [Google Scholar]
- White, C.M.; DuPont, S.T.; Hautau, M.; Hartman, D.; Finney, D.M.; Bradley, B.; LaChance, J.C.; Kaye, J.P. Managing the Trade off between Nitrogen Supply and Retention with Cover Crop Mixtures. Agric. Ecosyst. Environ. 2017, 237, 121–133. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Samantaray, A.; Chattaraj, S.; Mitra, D.; Ganguly, A.; Kumar, R.; Gaur, A.; Mohapatra, P.K.D.; Santos-Villalobos, S.D.L.; Rani, A.; Thatoi, H. Advances in Microbial Based Bio-Inoculum for Amelioration of Soil Health and Sustainable Crop Production. Curr. Res. Microb. Sci. 2024, 7, 100251. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sangwan, S.; Kaur, H.; Patra, A.; Anamika; Mehta, S. Diversity and Evolution of Nitrogen Fixing Bacteria. In Sustainable Agriculture Reviews 60; Singh, N.K., Chattopadhyay, A., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer Nature: Cham, Switzerland, 2023; Volume 60, pp. 95–120. ISBN 978-3-031-24180-2. [Google Scholar]
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Sheoran, S.; Kumar, S.; Kumar, P.; Meena, R.S.; Rakshit, S. Nitrogen Fixation in Maize: Breeding Opportunities. Theor. Appl. Genet 2021, 134, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Gaspareto, R.N.; Jalal, A.; Ito, W.C.N.; Oliveira, C.E.D.S.; Garcia, C.M.D.P.; Boleta, E.H.M.; Rosa, P.A.L.; Galindo, F.S.; Buzetti, S.; Ghaley, B.B.; et al. Inoculation with Plant Growth-Promoting Bacteria and Nitrogen Doses Improves Wheat Productivity and Nitrogen Use Efficiency. Microorganisms 2023, 11, 1046. [Google Scholar] [CrossRef]
- Guo, K.; Yang, J.; Yu, N.; Luo, L.; Wang, E. Biological Nitrogen Fixation in Cereal Crops: Progress, Strategies, and Perspectives. Plant Commun. 2023, 4, 100499. [Google Scholar] [CrossRef]
- Wu, L.; Dong, J.; Song, J.; Zhu, Y.; Che, S.; Qin, X.; Xu, Y.; Tian, S.; Wang, D.; Tian, P.; et al. The Nitrogen Fixation Characteristics of Terrestrial Nitrogen-Fixing Cyanobacteria and Their Role in Promoting Rice Growth. Agronomy 2024, 15, 62. [Google Scholar] [CrossRef]
- Lepetit, M.; Brouquisse, R. Control of the Rhizobium–Legume Symbiosis by the Plant Nitrogen Demand Is Tightly Integrated at the Whole Plant Level and Requires Inter-Organ Systemic Signaling. Front. Plant Sci. 2023, 14, 1114840. [Google Scholar] [CrossRef]
- Bloom, A.J. Energetics of Nitrogen Acquisition. In Annual Plant Reviews Volume 42; Foyer, C.H., Zhang, H., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 63–81. ISBN 978-1-4051-6264-7. [Google Scholar]
- Pate, J.S.; Layzell, D.B. Energetics and Biological Costs of Nitrogen Assimilation. In Intermediary Nitrogen Metabolism; Elsevier: Amsterdam, The Netherlands, 1990; pp. 1–42. ISBN 978-0-08-092616-2. [Google Scholar]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen Uptake, Fixation and Response to Fertilizer N in Soybeans: A Review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Sadiq, M.; Rahim, N.; Iqbal, M.A.; Alqahtani, M.D.; Tahir, M.M.; Majeed, A.; Ahmed, R. Rhizobia Inoculation Supplemented with Nitrogen Fertilization Enhances Root Nodulation, Productivity, and Nitrogen Dynamics in Soil and Black Gram (Vigna mungo (L.) Hepper). Land 2023, 12, 1434. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.; Glick, B.R. The Recent Use of Plant-Growth-Promoting Bacteria to Promote the Growth of Agricultural Food Crops. Agriculture 2023, 13, 1089. [Google Scholar] [CrossRef]
- Nosheen, A.; Bano, A.; Naz, R.; Yasmin, H.; Hussain, I.; Ullah, F.; Keyani, R.; Hassan, M.N.; Tahir, A.T. Nutritional Value of Sesamum Indicum L. Was Improved by Azospirillum and Azotobacter under Low Input of NP Fertilizers. BMC Plant Biol. 2019, 19, 466. [Google Scholar] [CrossRef]
- Karimi, M.; Sayfzadeh, S.; Pazoki, A.; Hadidi Masouleh, E.; Zakerin, H.R. Effects of Bio-Fertilizers and Nitrogen Levels on Yield and Quality of Single-Cross Maize (KSC 704). J. Plant Nutr. 2025, 48, 1987–2003. [Google Scholar] [CrossRef]
- Kuan, K.B.; Othman, R.; Abdul Rahim, K.; Shamsuddin, Z.H. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. PLoS ONE 2016, 11, e0152478. [Google Scholar] [CrossRef]
- Varinderpal-Singh; Sharma, S.; Kunal; Gosal, S.K.; Choudhary, R.; Singh, R.; Adholeya, A.; Singh, B. Synergistic Use of Plant Growth—Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi, and Spectral Properties for Improving Nutrient Use Efficiencies in Wheat (Triticum aestivum L.). Commun. Soil Sci. Plant Anal. 2020, 51, 14–27. [Google Scholar] [CrossRef]
- Venancio, W.S.; Gomes, J.M.; Nakatani, A.S.; Hungria, M.; Araujo, R.S. Lettuce Production under Reduced Levels of N-Fertilizer in the Presence of Plant Growth-Promoting Bacillus spp. Bacteria. J. Pure Appl. Microbiol. 2019, 13, 1941–1952. [Google Scholar] [CrossRef]
- Prasanna, R.; Babu, S.; Rana, A.; Kabi, S.R.; Chaudhary, V.; Gupta, V.; Kumar, A.; Shivay, Y.S.; Nain, L.; Pal, R.K. Evaluating the Establishment and Agronomic Proficiency of Cyanobacterial Consortia as Organic Options in Wheat–Rice Cropping Sequence. Exp. Agric. 2013, 49, 416–434. [Google Scholar] [CrossRef]
- Nawaz, T.; Fahad, S.; Gu, L.; Xu, L.; Zhou, R. Harnessing Nitrogen-Fixing Cyanobacteria for Sustainable Agriculture: Opportunities, Challenges, and Implications for Food Security. Nitrogen 2025, 6, 16. [Google Scholar] [CrossRef]
- Adhikari, K.; Bhandari, S.; Acharya, S. An Overview of Azolla in Rice Production: A Review. Rev. Food Agric. 2020, 2, 4–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, S.; Xue, X.; Hu, X.; Rehman, O.U.; Liu, W.; Zhu, F.; Wang, R.; Sobhi, M.; Wang, F.; et al. Combined Application of Nitrogen-Fixing Cyanobacteria Enhances Rice Growth and Nutritional Quality in Saline Environments. Algal Res. 2025, 89, 104061. [Google Scholar] [CrossRef]
- Bücking, H.; Kafle, A. Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps. Agronomy 2015, 5, 587–612. [Google Scholar] [CrossRef]
- Xie, K.; Ren, Y.; Chen, A.; Yang, C.; Zheng, Q.; Chen, J.; Wang, D.; Li, Y.; Hu, S.; Xu, G. Plant Nitrogen Nutrition: The Roles of Arbuscular Mycorrhizal Fungi. J. Plant Physiol. 2022, 269, 153591. [Google Scholar] [CrossRef] [PubMed]
- De Novais, C.B.; Sbrana, C.; Da Conceição Jesus, E.; Rouws, L.F.M.; Giovannetti, M.; Avio, L.; Siqueira, J.O.; Saggin Júnior, O.J.; Da Silva, E.M.R.; De Faria, S.M. Mycorrhizal Networks Facilitate the Colonization of Legume Roots by a Symbiotic Nitrogen-Fixing Bacterium. Mycorrhiza 2020, 30, 389–396. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef]
- Steinkellner, S.; Lendzemo, V.; Langer, I.; Schweiger, P.; Khaosaad, T.; Toussaint, J.-P.; Vierheilig, H. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 2007, 12, 1290–1306. [Google Scholar] [CrossRef]
- Foo, E.; Reid, J.B. Strigolactones: New Physiological Roles for an Ancient Signal. J. Plant Growth Regul. 2013, 32, 429–442. [Google Scholar] [CrossRef]
- Luo, L.; Wang, H.; Liu, X.; Hu, J.; Zhu, X.; Pan, S.; Qin, R.; Wang, Y.; Zhao, P.; Fan, X.; et al. Strigolactones Affect the Translocation of Nitrogen in Rice. Plant Sci. 2018, 270, 190–197. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.; Del Pozo, A.; Cabeza, R.A. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Ott, T.; Van Dongen, J.T.; Gu¨nther, C.; Krusell, L.; Desbrosses, G.; Vigeolas, H.; Bock, V.; Czechowski, T.; Geigenberger, P.; Udvardi, M.K. Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Curr. Biol. 2005, 15, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular Basis of Symbiotic Promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef]
- Dixon, R.; Kahn, D. Genetic Regulation of Biological Nitrogen Fixation. Nat. Rev. Microbiol. 2004, 2, 621–631. [Google Scholar] [CrossRef]
- Kawaharada, Y.; Kelly, S.; Nielsen, M.W.; Hjuler, C.T.; Gysel, K.; Muszyński, A.; Carlson, R.W.; Thygesen, M.B.; Sandal, N.; Asmussen, M.H.; et al. Receptor-Mediated Exopolysaccharide Perception Controls Bacterial Infection. Nature 2015, 523, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-W.; Murray, J. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants 2016, 5, 33. [Google Scholar] [CrossRef]
- Rubio, L.M.; Ludden, P.W. Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase. Annu. Rev. Microbiol. 2008, 62, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Kasper, S.; Christoffersen, B.; Soti, P.; Racelis, A. Abiotic and Biotic Limitations to Nodulation by Leguminous Cover Crops in South Texas. Agriculture 2019, 9, 209. [Google Scholar] [CrossRef]
- Ferreira, T.C.; Aguilar, J.V.; Souza, L.A.; Justino, G.C.; Aguiar, L.F.; Camargos, L.S. pH Effects on Nodulation and Biological Nitrogen Fixation in Calopogonium Mucunoides. Braz. J. Bot. 2016, 39, 1015–1020. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Chen, L.; Yang, H.; Wang, G.; Wang, C.; Dong, X. Effects of Excessive Nitrogen on Nitrogen Uptake and Transformation in the Wetland Soils of Liaohe Estuary, Northeast China. Sci. Total Environ. 2021, 791, 148228. [Google Scholar] [CrossRef]
- Sarkar, S.; Jaswal, A.; Singh, A. Sources of Inorganic Nonmetallic Contaminants (Synthetic Fertilizers, Pesticides) in Agricultural Soil and Their Impacts on the Adjacent Ecosystems. In Bioremediation of Emerging Contaminants from Soils; Elsevier: Amsterdam, The Netherlands, 2024; pp. 135–161. ISBN 978-0-443-13993-2. [Google Scholar]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. ISBN 978-0-08-103017-2. [Google Scholar]
- Corrales, A.; Turner, B.L.; Tedersoo, L.; Anslan, S.; Dalling, J.W. Nitrogen Addition Alters Ectomycorrhizal Fungal Communities and Soil Enzyme Activities in a Tropical Montane Forest. Fungal Ecol. 2017, 27, 14–23. [Google Scholar] [CrossRef]
- Jia, X.; Zhong, Y.; Liu, J.; Zhu, G.; Shangguan, Z.; Yan, W. Effects of Nitrogen Enrichment on Soil Microbial Characteristics: From Biomass to Enzyme Activities. Geoderma 2020, 366, 114256. [Google Scholar] [CrossRef]
- Kasanke, S.A.; Cheeke, T.E.; Moran, J.J.; Roley, S.S. Tripartite Interactions among Free-living, N-fixing Bacteria, Arbuscular Mycorrhizal Fungi, and Plants: Mutualistic Benefits and Community Response to Co-inoculation. Soil Sci. Soc. Am. J. 2024, 88, 1000–1013. [Google Scholar] [CrossRef]
- Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of Nanofertilizers on Soil and Plant-Associated Microbial Communities: Emerging Trends and Perspectives. Chemosphere 2022, 287, 132107. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, Y.; Liu, Z.; Gai, S.; Cheng, K.; Yang, F. Effect of Humic Substances on Nitrogen Cycling in Soil-Plant Ecosystems: Advances, Issues, and Future Perspectives. J. Environ. Manag. 2024, 351, 119738. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.Y.; Klotz, M.G. The Nitrogen Cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef]
- Hu, H.-W.; Chen, D.; He, J.-Z. Microbial Regulation of Terrestrial Nitrous Oxide Formation: Understanding the Biological Pathways for Prediction of Emission Rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Braker, G.; Conrad, R. Diversity, Structure, and Size of N2O-Producing Microbial Communities in Soils—What Matters for Their Functioning? In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 75, pp. 33–70. ISBN 978-0-12-387046-9. [Google Scholar]
- Arat, S.; Bullerjahn, G.S.; Laubenbacher, R. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa. PLoS ONE 2015, 10, e0118235. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N2O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Huang, T.; Gao, B.; Hu, X.-K.; Lu, X.; Well, R.; Christie, P.; Bakken, L.R.; Ju, X.-T. Ammonia-Oxidation as an Engine to Generate Nitrous Oxide in an Intensively Managed Calcareous Fluvo-Aquic Soil. Sci. Rep. 2014, 4, 3950. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Phil. Trans. R. Soc. B 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Coale, T.H.; Loconte, V.; Turk-Kubo, K.A.; Vanslembrouck, B.; Mak, W.K.E.; Cheung, S.; Ekman, A.; Chen, J.-H.; Hagino, K.; Takano, Y.; et al. Nitrogen-Fixing Organelle in a Marine Alga. Science 2024, 384, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Fernie, A.R.; Zhang, Y. Can a Nitrogen-Fixing Organelle Be Engineered within Plants? Trends Plant Sci. 2024, 29, 1168–1171. [Google Scholar] [CrossRef]
- Rong, W.; Lin, L.; Wang, G. Nitroplasts Suggest the Creation of Artificial Nitrogen-Fixing Eukaryotes. Trends Biotechnol. 2024, 42, 946–948. [Google Scholar] [CrossRef]
- Verma, S.K.; White, J.F. From ‘Nitrosome’ to ‘Nitroplast’: Stages in the Evolution of Nitrogen-Fixing Organelles from Free-Living Diazotrophs. Symbiosis 2025, 95, 29–34. [Google Scholar] [CrossRef]
- López-Torrejón, G.; Jiménez-Vicente, E.; Buesa, J.M.; Hernandez, J.A.; Verma, H.K.; Rubio, L.M. Expression of a Functional Oxygen-Labile Nitrogenase Component in the Mitochondrial Matrix of Aerobically Grown Yeast. Nat. Commun. 2016, 7, 11426. [Google Scholar] [CrossRef]
- Burén, S.; Young, E.M.; Sweeny, E.A.; Lopez-Torrejón, G.; Veldhuizen, M.; Voigt, C.A.; Rubio, L.M. Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae. ACS Synth. Biol. 2017, 6, 1043–1055. [Google Scholar] [CrossRef]
- Tripp, H.J.; Bench, S.R.; Turk, K.A.; Foster, R.A.; Desany, B.A.; Niazi, F.; Affourtit, J.P.; Zehr, J.P. Metabolic Streamlining in an Open-Ocean Nitrogen-Fixing Cyanobacterium. Nature 2010, 464, 90–94. [Google Scholar] [CrossRef]
- Mus, F.; Crook, M.B.; Garcia, K.; Garcia Costas, A.; Geddes, B.A.; Kouri, E.D.; Paramasivan, P.; Ryu, M.-H.; Oldroyd, G.E.D.; Poole, P.S.; et al. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016, 82, 3698–3710. [Google Scholar] [CrossRef]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The Interconnected Rhizosphere: High Network Complexity Dominates Rhizosphere Assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Tajima, H.; Cline, L.C.; Fong, R.Y.; Ottaviani, J.I.; Shapiro, H.; Blumwald, E. Genetic Modification of Flavone Biosynthesis in Rice Enhances Biofilm Formation of Soil Diazotrophic Bacteria and Biological Nitrogen Fixation. Plant Biotechnol. J. 2022, 20, 2135–2148. [Google Scholar] [CrossRef] [PubMed]
- Bloch, S.E.; Clark, R.; Gottlieb, S.S.; Wood, L.K.; Shah, N.; Mak, S.-M.; Lorigan, J.G.; Johnson, J.; Davis-Richardson, A.G.; Williams, L.; et al. Biological Nitrogen Fixation in Maize: Optimizing Nitrogenase Expression in a Root-Associated Diazotroph. J. Exp. Bot. 2020, 71, 4591–4603. [Google Scholar] [CrossRef]
- Wen, A.; Havens, K.L.; Bloch, S.E.; Shah, N.; Higgins, D.A.; Davis-Richardson, A.G.; Sharon, J.; Rezaei, F.; Mohiti-Asli, M.; Johnson, A.; et al. Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synth. Biol. 2021, 10, 3264–3277. [Google Scholar] [CrossRef]
- Ryu, M.-H.; Zhang, J.; Toth, T.; Khokhani, D.; Geddes, B.A.; Mus, F.; Garcia-Costas, A.; Peters, J.W.; Poole, P.S.; Ané, J.-M.; et al. Control of Nitrogen Fixation in Bacteria That Associate with Cereals. Nat. Microbiol. 2019, 5, 314–330. [Google Scholar] [CrossRef]
- Haskett, T.L.; Paramasivan, P.; Mendes, M.D.; Green, P.; Geddes, B.A.; Knights, H.E.; Jorrin, B.; Ryu, M.-H.; Brett, P.; Voigt, C.A.; et al. Engineered Plant Control of Associative Nitrogen Fixation. Proc. Natl. Acad. Sci. USA 2022, 119, e2117465119. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011; ISBN 0-12-384906-3. [Google Scholar]
- Ali, A.; Jabeen, N.; Farruhbek, R.; Chachar, Z.; Laghari, A.A.; Chachar, S.; Ahmed, N.; Ahmed, S.; Yang, Z. Enhancing Nitrogen Use Efficiency in Agriculture by Integrating Agronomic Practices and Genetic Advances. Front. Plant Sci. 2025, 16, 1543714. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Orsel, M.; Filleur, S.; Fraisier, V.; Daniel-Vedele, F. Nitrate Transport in Plants: Which Gene and Which Control? J. Exp. Bot. 2002, 53, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Bizior, A.; Harris, T.; Pritchard, L.; Hoskisson, P.A.; Javelle, A. Biological Ammonium Transporters from the Amt/Mep/Rh Superfamily: Mechanism, Energetics, and Technical Limitations. Biosci. Rep. 2024, 44, BSR20211209. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Euring, D.; Volmer, K.; Janz, D.; Polle, A. The Nitrate Transporter (NRT) Gene Family in Poplar. PLoS ONE 2013, 8, e72126. [Google Scholar] [CrossRef]
- Dechorgnat, J.; Nguyen, C.T.; Armengaud, P.; Jossier, M.; Diatloff, E.; Filleur, S.; Daniel-Vedele, F. From the Soil to the Seeds: The Long Journey of Nitrate in Plants. J. Exp. Bot. 2011, 62, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Z.; Fang, S.Q.; Ye, Z.Q.; Liu, D.; Zhao, K.L.; Jin, C.W. NRT1.1 Dual-Affinity Nitrate Transport/Signalling and Its Roles in Plant Abiotic Stress Resistance. Front. Plant Sci. 2021, 12, 715694. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, B.; Chu, C. Nitrogen Assimilation in Plants: Current Status and Future Prospects. J. Genet. Genom. 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Li, A.; Chu, C. NRT1.1s in Plants: Functions beyond Nitrate Transport. J. Exp. Bot. 2020, 71, 4373–4379. [Google Scholar] [CrossRef]
- Parker, J.L.; Newstead, S. Molecular Basis of Nitrate Uptake by the Plant Nitrate Transporter NRT1.1. Nature 2014, 507, 68–72. [Google Scholar] [CrossRef]
- Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; et al. Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Dev. Cell 2010, 18, 927–937. [Google Scholar] [CrossRef]
- Okamoto, M.; Vidmar, J.J.; Glass, A.D.M. Regulation of NRT1 and NRT2 Gene Families of Arabidopsis thaliana: Responses to Nitrate Provision. Plant Cell Physiol. 2003, 44, 304–317. [Google Scholar] [CrossRef]
- Orsel, M.; Krapp, A.; Daniel-Vedele, F. Analysis of the NRT2 Nitrate Transporter Family in Arabidopsis. Structure and Gene Expression. Plant Physiol. 2002, 129, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Shi, Y.; Lu, L.; Wang, L.; Sun, Y.; Ning, W.; Liu, Z.; Cheng, S. PsNRT2.3 Interacts with PsNAR to Promote High-Affinity Nitrate Uptake in Pea (Pisum sativum L.). Plant Physiol. Biochem. 2024, 206, 108191. [Google Scholar] [CrossRef]
- Buchner, P.; Hawkesford, M.J. Complex Phylogeny and Gene Expression Patterns of Members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family (NPF) in Wheat. J. Exp. Bot. 2014, 65, 5697–5710. [Google Scholar] [CrossRef] [PubMed]
- Asim, M.; Ullah, Z.; Oluwaseun, A.; Wang, Q.; Liu, H. Signalling Overlaps between Nitrate and Auxin in Regulation of The Root System Architecture: Insights from the Arabidopsis thaliana. Int. J. Mol. Sci. 2020, 21, 2880. [Google Scholar] [CrossRef] [PubMed]
- Taochy, C.; Gaillard, I.; Ipotesi, E.; Oomen, R.; Leonhardt, N.; Zimmermann, S.; Peltier, J.; Szponarski, W.; Simonneau, T.; Sentenac, H.; et al. The Arabidopsis Root Stele Transporter NPF2.3 Contributes to Nitrate Translocation to Shoots under Salt Stress. Plant J. 2015, 83, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Nedelyaeva, O.I.; Khramov, D.E.; Balnokin, Y.V.; Volkov, V.S. Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily. Int. J. Mol. Sci. 2024, 25, 13648. [Google Scholar] [CrossRef] [PubMed]
- Corratgé-Faillie, C.; Lacombe, B. Substrate (Un)Specificity of Arabidopsis NRT1/PTR FAMILY (NPF) Proteins. J. Exp. Bot. 2017, 68, 3107–3113. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Martinoia, E.; Geisler, M. Plant Hormone Transporters: What We Know and What We Would like to Know. BMC Biol. 2017, 15, 93. [Google Scholar] [CrossRef]
- Kanstrup, C.; Nour-Eldin, H.H. The Emerging Role of the Nitrate and Peptide Transporter Family: NPF in Plant Specialized Metabolism. Curr. Opin. Plant Biol. 2022, 68, 102243. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Nan, L. Genome-Wide Identification of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family under Phytohormones and Abiotic Stresses in Alfalfa (Medicago sativa). Sci. Rep. 2024, 14, 31920. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, M.; Xu, W.; Liu, J.-H.; Li, C. Genome-Wide Identification of NRT Gene Family and Expression Analysis of Nitrate Transporters in Response to Salt Stress in Poncirus trifoliata. Genes 2022, 13, 1115. [Google Scholar] [CrossRef]
- Forde, B.G. Nitrate Transporters in Plants: Structure, Function and Regulation. Biochim. Biophys. Acta (BBA)-Biomembr. 2000, 1465, 219–235. [Google Scholar] [CrossRef]
- Andrade, S.L.A.; Einsle, O. The Amt/Mep/Rh Family of Ammonium Transport Proteins (Review). Mol. Membr. Biol. 2007, 24, 357–365. [Google Scholar] [CrossRef]
- Yuan, L.; Loqué, D.; Kojima, S.; Rauch, S.; Ishiyama, K.; Inoue, E.; Takahashi, H.; Von Wirén, N. The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters. Plant Cell 2007, 19, 2636–2652. [Google Scholar] [CrossRef]
- Hao, D.-L.; Yang, S.-Y.; Liu, S.-X.; Zhou, J.-Y.; Huang, Y.-N.; Véry, A.-A.; Sentenac, H.; Su, Y.-H. Functional Characterization of the Arabidopsis Ammonium Transporter AtAMT1;3 with the Emphasis on Structural Determinants of Substrate Binding and Permeation Properties. Front. Plant Sci. 2020, 11, 571. [Google Scholar] [CrossRef]
- Koltun, A.; Maniero, R.A.; Vitti, M.; De Setta, N.; Giehl, R.F.H.; Lima, J.E.; Figueira, A. Functional Characterization of the Sugarcane (Saccharum spp.) Ammonium Transporter AMT2;1 Suggests a Role in Ammonium Root-to-Shoot Translocation. Front. Plant Sci. 2022, 13, 1039041. [Google Scholar] [CrossRef]
- Maniero, R.A.; Koltun, A.; Vitti, M.; Factor, B.G.; De Setta, N.; Câmara, A.S.; Lima, J.E.; Figueira, A. Identification and Functional Characterization of the Sugarcane (Saccharum Spp.) AMT2-Type Ammonium Transporter ScAMT3;3 Revealed a Presumed Role in Shoot Ammonium Remobilization. Front. Plant Sci. 2023, 14, 1299025. [Google Scholar] [CrossRef]
- Ganz, P.; Mink, R.; Ijato, T.; Porras-Murillo, R.; Ludewig, U.; Neuhäuser, B. A Pore-Occluding Phenylalanine Gate Prevents Ion Slippage through Plant Ammonium Transporters. Sci. Rep. 2019, 9, 16765. [Google Scholar] [CrossRef] [PubMed]
- Neuhäuser, B.; Dynowski, M.; Ludewig, U. Switching Substrate Specificity of AMT/MEP/Rh Proteins. Channels 2014, 8, 496–502. [Google Scholar] [CrossRef]
- Wang, W.; Li, A.; Zhang, Z.; Chu, C. Posttranslational Modifications: Regulation of Nitrogen Utilization and Signaling. Plant Cell Physiol. 2021, 62, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Olas, J.J.; Wahl, V. Tissue-Specific NIA1 and NIA2 Expression in Arabidopsis thaliana. Plant Signal. Behav. 2019, 14, 1656035. [Google Scholar] [CrossRef]
- Kamp, A.; Høgslund, S.; Risgaard-Petersen, N.; Stief, P. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes. Front. Microbiol. 2015, 6, 1492. [Google Scholar] [CrossRef] [PubMed]
- Valderrama-Martín, J.M.; Ortigosa, F.; Ávila, C.; Cánovas, F.M.; Hirel, B.; Cantón, F.R.; Cañas, R.A. A Revised View on the Evolution of Glutamine Synthetase Isoenzymes in Plants. Plant J. 2022, 110, 946–960. [Google Scholar] [CrossRef]
- Qiao, Z.; Chen, M.; Ma, W.; Zhao, J.; Zhu, J.; Zhu, K.; Tan, P.; Peng, F. Genome-Wide Identification and Expression Analysis of GS and GOGAT Gene Family in Pecan (Carya illinoinensis) under Different Nitrogen Forms. Phyton 2024, 93, 2349–2365. [Google Scholar] [CrossRef]
- Sajjad, N.; Bhat, E.A.; Shah, D.; Manzoor, I.; Noor, W.; Shah, S.; Hassan, S.; Ali, R. Nitrogen Uptake, Assimilation, and Mobilization in Plants under Abiotic Stress. In Transporters and Plant Osmotic Stress; Elsevier: Amsterdam, The Netherlands, 2021; pp. 215–233. ISBN 978-0-12-817958-1. [Google Scholar]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.-C. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Yang, X.; Nong, B.; Chen, C.; Wang, J.; Xia, X.; Zhang, Z.; Wei, Y.; Zeng, Y.; Feng, R.; Wu, Y.; et al. OsNPF3.1, a Member of the NRT1/PTR Family, Increases Nitrogen Use Efficiency and Biomass Production in Rice. Crop J. 2023, 11, 108–118. [Google Scholar] [CrossRef]
- Fang, Z.; Xia, K.; Yang, X.; Grotemeyer, M.S.; Meier, S.; Rentsch, D.; Xu, X.; Zhang, M. Altered Expression of the PTR/NRT 1 Homologue Os PTR 9 Affects Nitrogen Utilization Efficiency, Growth and Grain Yield in Rice. Plant Biotechnol. J. 2013, 11, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Bai, G.; Huang, W.; Wang, Z.; Wang, X.; Zhang, M. The Rice Peptide Transporter OsNPF7.3 Is Induced by Organic Nitrogen, and Contributes to Nitrogen Allocation and Grain Yield. Front. Plant Sci. 2017, 8, 1338. [Google Scholar] [CrossRef]
- Luo, J.; Hang, J.; Wu, B.; Wei, X.; Zhao, Q.; Fang, Z. Co-Overexpression of Genes for Nitrogen Transport, Assimilation, and Utilization Boosts Rice Grain Yield and Nitrogen Use Efficiency. Crop J. 2023, 11, 785–799. [Google Scholar] [CrossRef]
- He, Y.; Xi, X.; Zha, Q.; Lu, Y.; Jiang, A. Ectopic Expression of a Grape Nitrate Transporter VvNPF6.5 Improves Nitrate Content and Nitrogen Use Efficiency in Arabidopsis. BMC Plant Biol. 2020, 20, 549. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, D.; Hu, Y.; Xu, J.; Li, J.; Lu, Z. Genome-Wide Identification, Expression Analysis, and Transcriptome Analysis of the NPF Gene Family under Various Nitrogen Conditions in Eucalyptus grandis. Forests 2024, 15, 1697. [Google Scholar] [CrossRef]
- Carillo, P.; Rouphael, Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. Front. Plant Sci. 2022, 13, 899522. [Google Scholar] [CrossRef]
- Remans, T.; Nacry, P.; Pervent, M.; Girin, T.; Tillard, P.; Lepetit, M.; Gojon, A. A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis. Plant Physiol. 2006, 140, 909–921. [Google Scholar] [CrossRef]
- Kiba, T.; Feria-Bourrellier, A.-B.; Lafouge, F.; Lezhneva, L.; Boutet-Mercey, S.; Orsel, M.; Bréhaut, V.; Miller, A.; Daniel-Vedele, F.; Sakakibara, H.; et al. The Arabidopsis Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants. Plant Cell 2012, 24, 245–258. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B Contributes to Nitrate-Use Divergence between Rice Subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef]
- Fan, X.; Tang, Z.; Tan, Y.; Zhang, Y.; Luo, B.; Yang, M.; Lian, X.; Shen, Q.; Miller, A.J.; Xu, G. Overexpression of a pH-Sensitive Nitrate Transporter in Rice Increases Crop Yields. Proc. Natl. Acad. Sci. USA 2016, 113, 7118–7123. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Han, Y.; Hua, Y.; Guan, C.; Zhang, Z. Low Nitrogen Enhances Nitrogen Use Efficiency by Triggering NO3− Uptake and Its Long-Distance Translocation. J. Agric. Food Chem. 2019, 67, 6736–6747. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Marmagne, A.; Park, J.; Fabien, C.; Yim, Y.; Kim, S.; Kim, T.; Lim, P.O.; Masclaux-Daubresse, C.; Nam, H.G. Concurrent Activation of OsAMT1;2 and OsGOGAT1 in Rice Leads to Enhanced Nitrogen Use Efficiency under Nitrogen Limitation. Plant J. 2020, 103, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhong, L.; Huang, X.; Su, W.; Liu, H.; Sun, G.; Song, S.; Chen, R. BcAMT1;5 Mediates Nitrogen Uptake and Assimilation in Flowering Chinese Cabbage and Improves Plant Growth When Overexpressed in Arabidopsis. Horticulturae 2023, 9, 43. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yu, Y.; Chen, S.; He, Z.; Wang, Y.; Jiang, L.; Wang, G.; Yang, C.; Liu, B.; et al. Drought Enhances Nitrogen Uptake and Assimilation in Maize Roots. Agron. J. 2017, 109, 39–46. [Google Scholar] [CrossRef]
- Massel, K.; Campbell, B.C.; Mace, E.S.; Tai, S.; Tao, Y.; Worland, B.G.; Jordan, D.R.; Botella, J.R.; Godwin, I.D. Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum Bicolor. Front. Plant Sci. 2016, 7, 1544. [Google Scholar] [CrossRef]
- Jagadhesan, B.; Meena, H.S.; Jha, S.K.; Krishna, K.G.; Kumar, S.; Elangovan, A.; Chinnusamy, V.; Kumar, A.; Sathee, L. Association of Nitrogen Utilisation Efficiency with Sustenance of Reproductive Stage Nitrogen Assimilation, Transcript Abundance and Sequence Variation of Nitrogen Metabolism Genes in Rice (Oryza sativa L.) Sub-Species. Plant Physiol. Rep. 2024, 29, 931–947. [Google Scholar] [CrossRef]
- Wu, H.; Salomón, R.L.; Rodríguez-Calcerrada, J.; Liu, Y.; Li, C.; Shen, H.; Zhang, P. Selective Uptake of Organic and Inorganic Nitrogen by Betula platyphylla Seedlings from Different Provenances. New For. 2023, 54, 921–944. [Google Scholar] [CrossRef]
- Kölln, O.T.; Boschiero, B.N.; Franco, H.C.J.; Soldi, M.C.M.; Sanches, G.M.; Castro, S.G.D.Q.; Trivelin, P.C.O. Preferential Mineral N Form Uptake by Sugarcane Genotypes Contrasting in Nitrogen Use Efficiency. Exp. Agric. 2022, 58, e32. [Google Scholar] [CrossRef]
- Leal Junior, G.A.; Romano, T.; Pereira, G.S.; Lavres Junior, J.; Figueira, A.; Bespalhok Filho, J.C. Nitrogen Uptake and Physiological Use Efficiency in Brazilian Sugarcane (Saccharum × spp.) Cultivars: A Gist of Current Understanding. S. Afr. J. Bot. 2025, 178, 101–112. [Google Scholar] [CrossRef]
- Zhu, J.-T.; Gao, J.-Q.; Xue, W.; Li, Q.-W.; Yu, F.-H. Genotypic Richness Affects Inorganic N Uptake and N Form Preference of a Clonal Plant via Altering Soil N Pools. Biol. Fertil Soils 2024, 60, 863–873. [Google Scholar] [CrossRef]
- Zhou, Y.; Kishchenko, O.; Stepanenko, A.; Chen, G.; Wang, W.; Zhou, J.; Pan, C.; Borisjuk, N. The Dynamics of NO3− and NH4+ Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes. Plants 2021, 11, 11. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, J.; Jiang, W.; Wei, M.; Zhao, L.; Li, G. Different Nitrogen Concentrations Affect Strawberry Seedlings Nitrogen Form Preferences through Nitrogen Assimilation and Metabolic Pathways. Sci. Hortic. 2024, 332, 113236. [Google Scholar] [CrossRef]
- Yahbi, M.; Nabloussi, A.; El Alami, N.; Zouahri, A.; Maataoui, A.; Daoui, K. Nitrogen Use Efficiency for Seed and Oil Yield in Some Moroccan Rapeseed (Brassica napus L.) Varieties under Contrasting Nitrogen Supply. J. Plant Nutr. 2025, 48, 1114–1133. [Google Scholar] [CrossRef]
- Hao, D.-L.; Zhou, J.-Y.; Yang, S.-Y.; Qi, W.; Yang, K.-J.; Su, Y.-H. Function and Regulation of Ammonium Transporters in Plants. Int. J. Mol. Sci. 2020, 21, 3557. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Sun, Y.; Liu, P.; Lee, I. Evolutionary Analysis of AMT (Ammonium Transporters) Family in Arabidopsis thaliana and Oryza sativa. Mol. Soil Biol. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Khan, Z.; Yang, X.; Fan, X.; Duan, S.; Yang, C.; Fu, Y.; Khan, M.N.; Iqbal, A.; Shen, H. Integrated Ammonium and Nitrate Nitrogen Supply Alters the Composition and Functionalities of Rice Rhizosphere Bacterial Communities and Enhances Nitrogen Use Efficiency. Pedosphere 2024, 35, 914–930. [Google Scholar] [CrossRef]
- Gao, Y.; Quan, S.; Lyu, B.; Tian, T.; Liu, Z.; Nie, Z.; Qi, S.; Jia, J.; Shu, J.; Groot, E.; et al. Barley Transcription Factor HvNLP2 Mediates Nitrate Signaling and Affects Nitrogen Use Efficiency. J. Exp. Bot. 2022, 73, 770–783. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Song, Y.; Bai, Y.; Wan, G.; Wang, J.; Xia, J.; Zhang, Z.; Zhang, Z.; Zhao, Z.; et al. The OsNLP3/4-OsRFL Module Regulates Nitrogen-promoted Panicle Architecture in Rice. New Phytol. 2023, 240, 2404–2418. [Google Scholar] [CrossRef]
- Bharati, A.; Tehlan, G.; Nagar, C.K.; Sinha, S.K.; Venkatesh, K.; Mandal, P.K. Nitrogen Stress-Induced TaDof1 Expression in Diverse Wheat Genotypes and Its Relation with Nitrogen Use Efficiency. Cereal Res. Commun. 2022, 50, 637–645. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Ji, Z.; Fang, Y.; Tian, Y.; Shen, C.; Qin, Y.; Huang, M.; Kang, S.; Li, S.; et al. Discovery of SOD5 as a Novel Regulator of Nitrogen-use Efficiency and Grain Yield via Altering Auxin Level. New Phytol. 2025, 246, 1084–1095. [Google Scholar] [CrossRef]
- Zhen, X.; Li, X.; Yu, J.; Xu, F. OsATG8c-Mediated Increased Autophagy Regulates the Yield and Nitrogen Use Efficiency in Rice. Int. J. Mol. Sci. 2019, 20, 4956. [Google Scholar] [CrossRef]
- Fan, S.-C.; Lin, C.-S.; Hsu, P.-K.; Lin, S.-H.; Tsay, Y.-F. The Arabidopsis Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate. Plant Cell 2009, 21, 2750–2761. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Li, J.; Huang, D. Overexpression of Apple MdNRT1.7 Enhances Low Nitrogen Tolerance via the Regulation of ROS Scavenging. Int. J. Biol. Macromol. 2025, 293, 139358. [Google Scholar] [CrossRef]
- Chattha, M.S.; Ali, Q.; Haroon, M.; Afzal, M.J.; Javed, T.; Hussain, S.; Mahmood, T.; Solanki, M.K.; Umar, A.; Abbas, W.; et al. Enhancement of Nitrogen Use Efficiency through Agronomic and Molecular Based Approaches in Cotton. Front. Plant Sci. 2022, 13, 994306. [Google Scholar] [CrossRef]
- Goel, P.; Singh, A.K. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L. PLoS ONE 2015, 10, e0143645. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, M.; Huang, J.; Jiang, S.; Xu, S.; Zhang, Z.; He, W.; Huang, W. Genome-Wide Comprehensive Analysis of the Nitrogen Metabolism Toolbox Reveals Its Evolution and Abiotic Stress Responsiveness in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2022, 24, 288. [Google Scholar] [CrossRef] [PubMed]
- Von Wittgenstein, N.J.; Le, C.H.; Hawkins, B.J.; Ehlting, J. Evolutionary Classification of Ammonium, Nitrate, and Peptide Transporters in Land Plants. BMC Evol. Biol. 2014, 14, 11. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Cheng, Y.-H.; Chen, K.-E.; Tsay, Y.-F. Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Wei, Q.; Xiao, C.; Ye, Y.; Li, Z.; Marivingt-Mounir, C.; Chollet, J.-F.; Liu, W.; Wu, H. Genomic Survey of NPF and NRT2 Transporter Gene Families in Five Inbred Maize Lines and Their Responses to Pathogens Infection. Genomics 2023, 115, 110555. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xu, J.; Zhao, Y.; Wang, Y.; Zhou, L.; Ning, L.; Shabala, S.; Zhao, H. Transcription Factor ZmEREB97 Regulates Nitrate Uptake in Maize (Zea mays) Roots. Plant Physiol. 2024, 196, 535–550. [Google Scholar] [CrossRef]
- Jia, L.; Hu, D.; Wang, J.; Liang, Y.; Li, F.; Wang, Y.; Han, Y. Genome-Wide Identification and Functional Analysis of Nitrate Transporter Genes (NPF, NRT2 and NRT3) in Maize. Int. J. Mol. Sci. 2023, 24, 12941. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wong, J.; Su, T.; Beatty, P.H.; Good, A.G. Identification of Nitrogen Use Efficiency Genes in Barley: Searching for QTLs Controlling Complex Physiological Traits. Front. Plant Sci. 2016, 7, 1587. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Zhu, F.; Ming, R.; Chen, L.-Q. Genome-Wide Analysis of Nitrate Transporter (NRT/NPF) Family in Sugarcane Saccharum spontaneum L. Trop. Plant Biol. 2019, 12, 133–149. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, X.; Zhang, N.; Feng, X.; Huang, Y.; Zeng, Q.; Wu, J.; Zhang, J.; Qi, Y. Genome-Wide Identification and Transcriptional Analysis of Ammonium Transporters in Saccharum. Genomics 2021, 113, 1671–1680. [Google Scholar] [CrossRef]
- Gao, S.; Yang, Y.; Guo, J.; Zhang, X.; Feng, M.; Su, Y.; Que, Y.; Xu, L. Ectopic Expression of Sugarcane ScAMT1.1 Has the Potential to Improve Ammonium Assimilation and Grain Yield in Transgenic Rice under Low Nitrogen Stress. Int. J. Mol. Sci. 2023, 24, 1595. [Google Scholar] [CrossRef]
- Bajgain, P.; Russell, B.; Mohammadi, M. Phylogenetic Analyses and In-Seedling Expression of Ammonium and Nitrate Transporters in Wheat. Sci. Rep. 2018, 8, 7082. [Google Scholar] [CrossRef]
- Xu, N.; Cheng, L.; Kong, Y.; Chen, G.; Zhao, L.; Liu, F. Functional Analyses of the NRT2 Family of Nitrate Transporters in Arabidopsis. Front. Plant Sci. 2024, 15, 1351998. [Google Scholar] [CrossRef]
- You, H.; Liu, Y.; Minh, T.N.; Lu, H.; Zhang, P.; Li, W.; Xiao, J.; Ding, X.; Li, Q. Genome-Wide Identification and Expression Analyses of Nitrate Transporter Family Genes in Wild Soybean (Glycine soja). J. Appl. Genet. 2020, 61, 489–501. [Google Scholar] [CrossRef]
- Yang, W.; Dong, X.; Yuan, Z.; Zhang, Y.; Li, X.; Wang, Y. Genome-Wide Identification and Expression Analysis of the Ammonium Transporter Family Genes in Soybean. Int. J. Mol. Sci. 2023, 24, 3991. [Google Scholar] [CrossRef]
- Lv, B.; Li, Y.; Wu, X.; Zhu, C.; Cao, Y.; Duan, Q.; Huang, J. Brassica rapa Nitrate Transporter 2 (BrNRT2) Family Genes, Identification, and Their Potential Functions in Abiotic Stress Tolerance. Genes 2023, 14, 1564. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Han, P.; Walk, T.C.; Yang, L.; Chen, L.; Li, Y.; Gu, C.; Liao, X.; Qin, L. Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.). Genes 2023, 14, 658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, S.; Shi, M.; Wang, S.; Shi, L.; Xu, F.; Ding, G. Genome-Wide Systematic Characterization of the NPF Family Genes and Their Transcriptional Responses to Multiple Nutrient Stresses in Allotetraploid Rapeseed. Int. J. Mol. Sci. 2020, 21, 5947. [Google Scholar] [CrossRef]
- Tong, J.; Walk, T.C.; Han, P.; Chen, L.; Shen, X.; Li, Y.; Gu, C.; Xie, L.; Hu, X.; Liao, X.; et al. Genome-Wide Identification and Analysis of High-Affinity Nitrate Transporter 2 (NRT2) Family Genes in Rapeseed (Brassica napus L.) and Their Responses to Various Stresses. BMC Plant Biol. 2020, 20, 464. [Google Scholar] [CrossRef]
- Liu, L.-H.; Fan, T.-F.; Shi, D.-X.; Li, C.-J.; He, M.-J.; Chen, Y.-Y.; Zhang, L.; Yang, C.; Cheng, X.-Y.; Chen, X.; et al. Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod. Front. Plant Sci. 2018, 9, 210. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Xu, G.; Bai, G.; Zhang, P.; Zhai, N.; Zheng, Q.; Chen, Q.; Liu, P.; Jin, L.; et al. Genome-Wide Identification and Characterization of NPF Family Reveals NtNPF6.13 Involving in Salt Stress in Nicotiana tabacum. Front. Plant Sci. 2022, 13, 999403. [Google Scholar] [CrossRef]
- Miao, C.; Hu, Z.; Ye, H.; Liu, X.; Wang, Y.; Tan, J.; Jiang, H.; Chen, J. Overexpression of a High Affinity Nitrate Transporter NtNRT2.1 Significantly Improves the Nicotine Content in Nicotiana tabacum. Ind. Crops Prod. 2025, 224, 120326. [Google Scholar] [CrossRef]
- Akbudak, M.A.; Filiz, E.; Çetin, D. Genome-Wide Identification and Characterization of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family in Tomato (Solanum lycopersicum) and Their Transcriptional Responses to Drought and Salinity Stresses. J. Plant Physiol. 2022, 272, 153684. [Google Scholar] [CrossRef]
- Cetin, D.; Akbudak, M.A. Cold Stress Impairs Nitrogen Uptake and Enhances Translocation through AMT1 and NRT2 Gene Regulation in Tomato. Mediterr. Agric. Sci. 2024, 37, 137–142. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Y.; Li, K.; Yin, Y.; Liu, J.; Zhu, Y. Complex Phylogeny and Expression Patterns of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER Family Genes in Tomato. Russ. J. Plant Physiol. 2022, 69, 47. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.; Qu, C.; Xu, Z.; Li, W.; Hao, B.; Yang, C.; Sun, G.; Liu, G. Sequence and Expression Analysis of the AMT Gene Family in Poplar. Front. Plant Sci. 2015, 6, 337. [Google Scholar] [CrossRef]
- Tahir, M.M.; Wang, H.; Ahmad, B.; Liu, Y.; Fan, S.; Li, K.; Lei, C.; Shah, K.; Li, S.; Zhang, D. Identification and Characterization of NRT Gene Family Reveals Their Critical Response to Nitrate Regulation during Adventitious Root Formation and Development in Apple Rootstock. Sci. Hortic. 2021, 275, 109642. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.; Zhang, B.; Hao, Y.; Ma, F. Genome-Wide Identification and Expression Analysis of AMT Gene Family in Apple (Malus domestica Borkh.). Horticulturae 2022, 8, 457. [Google Scholar] [CrossRef]
- Wang, X.; Cai, X.; Xu, C.; Wang, Q. Identification and Characterization of the NPF, NRT2 and NRT3 in Spinach. Plant Physiol. Biochem. 2021, 158, 297–307. [Google Scholar] [CrossRef]
- Zhang, J.; Han, Z.; Lu, Y.; Zhao, Y.; Wang, Y.; Zhang, J.; Ma, H.; Han, Y.Z. Genome-Wide Identification, Structural and Gene Expression Analysis of the Nitrate Transporters (NRTs) Family in Potato (Solanum tuberosum L.). PLoS ONE 2021, 16, e0257383. [Google Scholar] [CrossRef]
- He, Z.; Wang, J.; Zhou, W.; Guo, H.; Na, T. Genome-Wide Identification, Evolution, and Expression Analysis of StNRT (Nitrate and Peptide Transporter) Gene Family in Potato (Solanum tuberosum L.). BMC Plant Biol. 2025, 25, 906. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Pastor, A.; González-Paleo, L.; Vilela, A.; Ravetta, D. Age-Related Changes in Nitrogen Resorption and Use Efficiency in the Perennial New Crop Physaria mendocina (Brassicaceae). Ind. Crops Prod. 2015, 65, 227–232. [Google Scholar] [CrossRef]
- Lei, Z.-Y.; Wang, H.; Wright, I.J.; Zhu, X.-G.; Niinemets, Ü.; Li, Z.-L.; Sun, D.-S.; Dong, N.; Zhang, W.-F.; Zhou, Z.-L.; et al. Enhanced Photosynthetic Nitrogen Use Efficiency and Increased Nitrogen Allocation to Photosynthetic Machinery under Cotton Domestication. Photosynth. Res. 2021, 150, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Rogo, U.; Simoni, S.; Fambrini, M.; Giordani, T.; Pugliesi, C.; Mascagni, F. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. Int. J. Mol. Sci. 2024, 25, 2374. [Google Scholar] [CrossRef]
- Xu, G.; Takahashi, H. Improving Nitrogen Use Efficiency: From Cells to Plant Systems. J. Exp. Bot. 2020, 71, 4359–4364. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, Y.; Kou, T.; Bo, Y.; Zhao, M.; Zhu, F. Domestication Affects Nitrogen Use Efficiency in Foxtail Millet. Euphytica 2024, 220, 93. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Chen, J.; Liu, Y.; Chu, C. Genetic Improvement toward Nitrogen-Use Efficiency in Rice: Lessons and Perspectives. Mol. Plant 2023, 16, 64–74. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Popova, A.A.; Shestibratov, K.A. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021, 10, 3303. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Yanagisawa, S. Transcription Factor-Based Genetic Engineering to Increase Nitrogen Use Efficiency. In Engineering Nitrogen Utilization in Crop Plants; Shrawat, A., Zayed, A., Lightfoot, D.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–55. ISBN 978-3-319-92957-6. [Google Scholar]
- Quemada, M.; Lassaletta, L. Fertilizer Dependency: A New Indicator for Assessing the Sustainability of Agrosystems beyond Nitrogen Use Efficiency. Agron. Sustain. Dev. 2024, 44, 44. [Google Scholar] [CrossRef]
- Gonzalez-Paleo, L.; Ravetta, D.A.; Vilela, A.E.; Van Tassel, D. Domestication Effects on Nitrogen Allocation, Internal Recycling and Nitrogen Use Efficiency in the Perennial New Crop Silphium integrifolium (Asteraceae). Ann. Appl. Biol. 2023, 182, 397–411. [Google Scholar] [CrossRef]
- Mamidi, S.; Healey, A.; Huang, P.; Grimwood, J.; Jenkins, J.; Barry, K.; Sreedasyam, A.; Shu, S.; Lovell, J.T.; Feldman, M.; et al. A Genome Resource for Green Millet Setaria viridis Enables Discovery of Agronomically Valuable Loci. Nat. Biotechnol. 2020, 38, 1203–1210. [Google Scholar] [CrossRef]
- Tartaglia, F.D.L.; Souza, A.R.E.D.; Santos, A.P.D.; Barros Júnior, A.P.; Silveira, L.M.D.; Santos, M.G.D. Nitrogen Utilization Efficiency by Naturally Colored Cotton Cultivars in Semi-Arid Region. Revista Ciência Agronômica 2020, 51, e20196642. [Google Scholar] [CrossRef]
- Soyk, S.; Benoit, M.; Lippman, Z.B. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu. Rev. Genet. 2020, 54, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Dharbaranyam, B.; Sakthivel, K.; Venkataraman, G. De Novo Domestication of Wild and Halophilic Plants for Designing Salt-Tolerant Crops: Acceleration through CRISPR. In Genetics of Salt Tolerance in Plants; Ganie, S.A., Wani, S.H., Eds.; CABI: Oxfordshire, UK, 2024; pp. 144–168. ISBN 978-1-80062-301-9. [Google Scholar]
- Renau-Morata, B.; Cebolla-Cornejo, J.; Carrillo, L.; Gil-Villar, D.; Martí, R.; Jiménez-Gómez, J.M.; Granell, A.; Monforte, A.J.; Medina, J.; Molina, R.V.; et al. Identification of Solanum pimpinellifolium Genome Regions for Increased Resilience to Nitrogen Deficiency in Cultivated Tomato. Sci. Hortic. 2024, 323, 112497. [Google Scholar] [CrossRef]
- Takagi, H.; Uemura, A.; Yaegashi, H.; Tamiru, M.; Abe, A.; Mitsuoka, C.; Utsushi, H.; Natsume, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap-Gap: Whole-genome Resequencing of Mutant F 2 Progeny Bulk Combined with de Novo Assembly of Gap Regions Identifies the Rice Blast Resistance Gene Pii. New Phytol. 2013, 200, 276–283. [Google Scholar] [CrossRef]
- Kumar, R.; Janila, P.; Vishwakarma, M.K.; Khan, A.W.; Manohar, S.S.; Gangurde, S.S.; Variath, M.T.; Shasidhar, Y.; Pandey, M.K.; Varshney, R.K. Whole-genome Resequencing-based QTL-seq Identified Candidate Genes and Molecular Markers for Fresh Seed Dormancy in Groundnut. Plant Biotechnol. J. 2020, 18, 992–1003. [Google Scholar] [CrossRef]
- Li, K.; Wen, W.; Alseekh, S.; Yang, X.; Guo, H.; Li, W.; Wang, L.; Pan, Q.; Zhan, W.; Liu, J.; et al. Large-scale Metabolite Quantitative Trait Locus Analysis Provides New Insights for High-quality Maize Improvement. Plant J. 2019, 99, 216–230. [Google Scholar] [CrossRef]
- Yu, H.; Lin, T.; Meng, X.; Du, H.; Zhang, J.; Liu, G.; Chen, M.; Jing, Y.; Kou, L.; Li, X.; et al. A Route to de Novo Domestication of Wild Allotetraploid Rice. Cell 2021, 184, 1156–1170.e14. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Butterly, C.R.; Moody, D.; Pourkheirandish, M. Mini Review: Targeting below-Ground Plant Performance to Improve Nitrogen Use Efficiency (NUE) in Barley. Front. Genet. 2023, 13, 1060304. [Google Scholar] [CrossRef]
- Kumar, V.; Rithesh, L.; Raghuvanshi, N.; Kumar, A.; Parmar, K. Advancing Nitrogen Use Efficiency in Cereal Crops: A Comprehensive Exploration of Genetic Manipulation, Nitrogen Dynamics, and Plant Nitrogen Assimilation. S. Afr. J. Bot. 2024, 169, 486–498. [Google Scholar] [CrossRef]
- Yu, H.; Li, J. Breeding Future Crops to Feed the World through de Novo Domestication. Nat. Commun. 2022, 13, 1171. [Google Scholar] [CrossRef] [PubMed]
- Fiaz, S.; Wang, X.; Khan, S.A.; Ahmar, S.; Noor, M.A.; Riaz, A.; Ali, K.; Abbas, F.; Mora-Poblete, F.; Figueroa, C.R.; et al. Novel Plant Breeding Techniques to Advance Nitrogen Use Efficiency in Rice: A Review. GM Crops Food 2021, 12, 627–646. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Griffiths, S. Exploiting Genetic Variation in Nitrogen Use Efficiency for Cereal Crop Improvement. Curr. Opin. Plant Biol. 2019, 49, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Prakash Raigar, O.; Mondal, K.; Sethi, M.; Prabha Singh, M.; Singh, J.; Kumari, A.; Priyanka; Singh Sekhon, B. Nitrogen Use Efficiency in Wheat: Genome to Field. In Wheat; Ansari, M.-R., Ed.; IntechOpen: Egham, UK, 2022; ISBN 978-1-80355-522-5. [Google Scholar]
- Liang, G.; Hua, Y.; Chen, H.; Luo, J.; Xiang, H.; Song, H.; Zhang, Z. Increased Nitrogen Use Efficiency via Amino Acid Remobilization from Source to Sink Organs in Brassica napus. Crop J. 2023, 11, 119–131. [Google Scholar] [CrossRef]
- Jian, L.; Yan, J.; Liu, J. De Novo Domestication in the Multi-Omics Era. Plant Cell Physiol. 2022, 63, 1592–1606. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, H.; Tariq, A.; Bhat, B.A.; Bhat, K.A.; Nehvi, I.B.; Raza, A.; Djalovic, I.; Prasad, P.V.; Mir, R.A. Integrating Genomics and Genome Editing for Orphan Crop Improvement: A Bridge between Orphan Crops and Modern Agriculture System. GM Crops Food 2023, 14, 1–20. [Google Scholar] [CrossRef]
- Fernie, A.R.; Alseekh, S.; Liu, J.; Yan, J. Using Precision Phenotyping to Inform de Novo Domestication. Plant Physiol. 2021, 186, 1397–1411. [Google Scholar] [CrossRef]
- Krug, A.S.; Drummond, E.B.M.; Van Tassel, D.L.; Warschefsky, E.J. The next Era of Crop Domestication Starts Now. Proc. Natl. Acad. Sci. USA 2023, 120, e2205769120. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; De Vries, W. Long-Term Impacts of Mineral and Organic Fertilizer Inputs on Nitrogen Use Efficiency for Different Cropping Systems and Site Conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Pepó, P. Effect of Climate Change and Some Agrotechnical Factors on the Yield and Nitrogen- and Water-Use Efficiency in Winter Wheat (Triticumaestivum L.) Production. Int. J. Environ. Agric. Biotechnol. 2018, 3, 686–690. [Google Scholar] [CrossRef]
- Illes, A.; Bojtor, C.; Szeles, A.; Mousavi, S.M.N.; Toth, B.; Nagy, J. Analyzing the Effect of Intensive and Low-Input Agrotechnical Support for the Physiological, Phenometric, and Yield Parameters of Different Maize Hybrids Using Multivariate Statistical Methods. Int. J. Agron. 2021, 2021, 6682573. [Google Scholar] [CrossRef]
- Hameed, H.; Nagaraju, V.; Marimuthu, S.; Balakrishnan, M.; Raviraj, A.; Ambrose, K. A Review on Nano Enabled Controlled Release Fertilizers and Their Nutrient Release Mechanisms. J. Agric. Eng. 2024, 61, 722–733. [Google Scholar] [CrossRef]
- Ransom, C.J.; Jolley, V.D.; Blair, T.A.; Sutton, L.E.; Hopkins, B.G. Nitrogen Release Rates from Slow- and Controlled-Release Fertilizers Influenced by Placement and Temperature. PLoS ONE 2020, 15, e0234544. [Google Scholar] [CrossRef]
- Helal, M.I.D.; Tong, Z.; Khater, H.A.; Fathy, M.A.; Ibrahim, F.E.; Li, Y.; Abdelkader, N.H. Modification of Fabrication Process for Prolonged Nitrogen Release of Lignin–Montmorillonite Biocomposite Encapsulated Urea. Nanomaterials 2023, 13, 1889. [Google Scholar] [CrossRef] [PubMed]
- Kubavat, D.; Trivedi, K.; Vaghela, P.; Prasad, K.; Vijay Anand, G.K.; Trivedi, H.; Patidar, R.; Chaudhari, J.; Andhariya, B.; Ghosh, A. Characterization of a Chitosan-based Sustained Release Nanofertilizer Formulation Used as a Soil Conditioner While Simultaneously Improving Biomass Production of Zea mays L. Land Degrad. Dev. 2020, 31, 2734–2746. [Google Scholar] [CrossRef]
- Jadon, P.; Selladurai, R.; Yadav, S.S.; Coumar, M.V.; Dotaniya, M.L.; Singh, A.K.; Bhadouriya, J.; Kundu, S. Volatilization and Leaching Losses of Nitrogen from Different Coated Urea Fertilizers. J. Soil Sci. Plant Nutr. 2018, 18, 1036–1047. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Z.; Xiong, S.; Guo, X.; Han, Y.; Wang, G.; Feng, L.; Lei, Y.; Li, X.; Yang, B.; et al. Mitigating Greenhouse Gas Emissions and Ammonia Volatilization from Cotton Fields by Integrating Cover Crops with Reduced Use of Nitrogen Fertilizer. Agric. Ecosyst. Environ. 2022, 332, 107946. [Google Scholar] [CrossRef]
- Kaur, H.; Hussain, S.J.; Mir, R.A.; Chandra Verma, V.; Naik, B.; Kumar, P.; Dubey, R.C. Nanofertilizers—Emerging Smart Fertilizers for Modern and Sustainable Agriculture. Biocatal. Agric. Biotechnol. 2023, 54, 102921. [Google Scholar] [CrossRef]
- Umar, W.; Czinkota, I.; Gulyás, M.; Aziz, T.; Hameed, M.K. Development and Characterization of Slow Release N and Zn Fertilizer by Coating Urea with Zn Fortified Nano-Bentonite and ZnO NPs Using Various Binders. Environ. Technol. Innov. 2022, 26, 102250. [Google Scholar] [CrossRef]
- Nayak, P.; Nandipamu, T.M.K.; Chaturvedi, S.; Dhyani, V.C.; Chandra, S. Synthesis, Properties, and Mechanistic Release-Kinetics Modeling of Biochar-Based Slow-Release Nitrogen Fertilizers and Their Field Efficacy. J. Soil Sci. Plant Nutr. 2024, 24, 7460–7479. [Google Scholar] [CrossRef]
- Salem, T.S.A.; Elskhariy, E.M.; Zayed, A.M.; Mohamed, A.I.; Mahgoub, N.A. Nano-Chitosan Loaded N Application for Improving Wheat Plants Yield: Impacts on Soil Nutrient Availability. J. Agric. Chem. Environ. 2024, 13, 384–395. [Google Scholar] [CrossRef]
- Adil, M.; Bashir, S.; Bashir, S.; Aslam, Z.; Ahmad, N.; Younas, T.; Asghar, R.M.A.; Alkahtani, J.; Dwiningsih, Y.; Elshikh, M.S. Zinc Oxide Nanoparticles Improved Chlorophyll Contents, Physical Parameters, and Wheat Yield under Salt Stress. Front. Plant Sci. 2022, 13, 932861. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Geng, H.; Zhou, B.; Chen, H.; Yuan, R.; Ma, C.; Liu, R.; Xing, B.; Wang, F. The Behavior, Transport, and Positive Regulation Mechanism of ZnO Nanoparticles in a Plant-Soil-Microbe Environment. Environ. Pollut. 2022, 315, 120368. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Song, Y.; Wang, Y.; Wang, H.; Ding, Z.; Fan, K. Zno Nanoparticles: Improving Photosynthesis, Shoot Development, and Phyllosphere Microbiome Composition in Tea Plants. J. Nanobiotechnol. 2024, 22, 389. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Soltani, S.M.; Rashid, S.A.; Mahdavi, F.; Yusop, M.K. Enhancement of Nitrogen Release Properties of Urea–Kaolinite Fertilizer with Chitosan Binder. Chem. Speciat. Bioavailab. 2015, 27, 44–51. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for Agricultural and Environmental Sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Easwaran, C.; Christopher, S.R.; Moorthy, G.; Mohan, P.; Marimuthu, R.; Koothan, V.; Nallusamy, S. Nano Hybrid Fertilizers: A Review on the State of the Art in Sustainable Agriculture. Sci. Total Environ. 2024, 929, 172533. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Zhong, S.; Meng, Q.; Li, Y.; Wang, J.; Gao, Y.; Cui, X. Advances in Controlled-Release Fertilizer Encapsulated by Organic-Inorganic Composite Membranes. Particuology 2024, 84, 236–248. [Google Scholar] [CrossRef]
- Sarlaki, E.; Kianmehr, M.H.; Kermani, A.; Ghorbani, M.; Ghorbani Javid, M.; Rezaei, M.; Peng, W.; Lam, S.S.; Tabatabaei, M.; Aghbashlo, M.; et al. Valorizing Lignite Waste into Engineered Nitro-Humic Fertilizer: Advancing Resource Efficiency in the Era of a Circular Economy. Sustain. Chem. Pharm. 2023, 36, 101283. [Google Scholar] [CrossRef]
- Faizan, M.; Karabulut, F.; Khan, I.; Akhtar, M.S.; Alam, P. Emergence of Nanotechnology in Efficient Fertilizer Management in Soil. S. Afr. J. Bot. 2024, 164, 242–249. [Google Scholar] [CrossRef]
- Kale, S.S.; Chauhan, R.; Nigam, B.; Gosavi, S.; Chaudhary, I.J. Effectiveness of Nanoparticles in Improving Soil Fertility and Eco-Friendly Crop Resistance: A Comprehensive Review. Biocatal. Agric. Biotechnol. 2024, 56, 103066. [Google Scholar] [CrossRef]
- Melara, F.; Da Silva, L.K.; Martins Sanderi, D.; Dal Castel Krein, D.; Strieder Machado, T.; Dettmer, A.; Steffanello Piccin, J. Enhanced Efficiency Fertilizer: A Review on Technologies, Perspectives, and Research Strategies. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
Species | Total NRT * | Total AMT | Reference |
---|---|---|---|
Monocots | |||
Oryza sativa (rice) | 97 | 8 | [193,194,195] |
Zea mays (maize) | 85 | 12 | [196,197,198] |
Hordeum vulgare (barley) | 41 | 7 | [199] |
Saccharum spp. (sugarcane) | 198 | 7 | [147,200,201,202] |
Triticum aestivum (wheat) | 77 | 8 | [203] |
Mean | 99.6 | 8.4 | |
Dicots | |||
Arabidopsis thaliana (thale cress) | 60 | 6 | [182,204] |
Glycine max (soybean) | 125 | 16 | [205,206] |
Brassica rapa (Chinese cabbage) | 107 | 20 | [207,208,209] |
Brassica napus (rapeseed) | 210 | 26 | [208,209,210] |
Nicotiana tabacum (tobacco) | 148 | 9 | [211,212,213] |
Solanum lycopersicum (tomato) | 89 | 5 | [214,215,216] |
Populus trichocarpa (poplar) | 74 | 16 | [123,217] |
Malus domestica (apple) | 82 | 15 | [218,219] |
Spinacia oleracea (spinach) ** | 66 | - | [220] |
Solanum tuberosum (potato) ** | 81 | - | [221,222] |
Poncirus trifoliata (trifoliate orange) ** | 62 | - | [141] |
Mean | 100.4 | 14.1 | |
Mean Monocots:Dicots NRT/AMT Number of Genes Ratio | 0.99 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, B.B.; Machado, M.J.; Figueira, A. Nitrogen Use Efficiency in Agriculture: Integrating Biotechnology, Microbiology, and Novel Delivery Systems for Sustainable Agriculture. Plants 2025, 14, 2974. https://doi.org/10.3390/plants14192974
Navarro BB, Machado MJ, Figueira A. Nitrogen Use Efficiency in Agriculture: Integrating Biotechnology, Microbiology, and Novel Delivery Systems for Sustainable Agriculture. Plants. 2025; 14(19):2974. https://doi.org/10.3390/plants14192974
Chicago/Turabian StyleNavarro, Bruno B., Mauricio J. Machado, and Antonio Figueira. 2025. "Nitrogen Use Efficiency in Agriculture: Integrating Biotechnology, Microbiology, and Novel Delivery Systems for Sustainable Agriculture" Plants 14, no. 19: 2974. https://doi.org/10.3390/plants14192974
APA StyleNavarro, B. B., Machado, M. J., & Figueira, A. (2025). Nitrogen Use Efficiency in Agriculture: Integrating Biotechnology, Microbiology, and Novel Delivery Systems for Sustainable Agriculture. Plants, 14(19), 2974. https://doi.org/10.3390/plants14192974