Optimizing Plant Density and Row Spacing Enhances Growth, Yield and Quality of Waxy Maize on the Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling and Measurements
2.3.1. Agronomic Traits
2.3.2. Leaf Area Index and Leaf Area Duration
2.3.3. Dry Matter Accumulation, Translocation and Distribution
2.3.4. The Yield and Its Components
2.4. Statistical Analysis
3. Results
3.1. Agronomic Traits and Leaf Angle
3.2. Leaf Area Index and Leaf Area Duration
3.3. Dry Matter Accumulation
3.4. Yield and Its Components
3.5. Ear Traits
3.6. Kernel Nutritional Quality
4. Discussion
4.1. Density-Driven Canopy Architecture Modifications
4.2. The Density–Yield Paradox: Unveiling the Constraints
4.3. The Density Dilemma: Balancing Yield and Quality in Waxy Maize
4.4. Optimizing Row Spacing to Mitigate High-Density Risks in Waxy Maize
4.5. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, W.; Xue, W.; Zhao, Z.; Shi, Z.; Wang, W.; Chen, B.; Xue, J.; Sun, M. Nitrogen level impacts the dynamic changes in nitrogen metabolism, and carbohydrate and anthocyanin biosynthesis improves the kernel nutritional quality of purple waxy maize. Plants 2024, 13, 2882. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Li, W.; Wen, T.; Li, T.; Guo, X.; Liu, R.H. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. J. Sci. Food Agric. 2020, 100, 5230–5238. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Y.; Li, X.; Gong, K.; Liu, K. Phenolics and related in vitro functional activities of different varieties of fresh waxy corn: A whole grain. BMC Chem. 2021, 15, 14. [Google Scholar] [CrossRef]
- Kim, J.T.; Chung, I.M.; Kim, M.J.; Lee, J.S.; Son, B.Y.; Bae, H.H.; Go, Y.S.; Kim, S.L.; Baek, S.B.; Kim, S.H.; et al. Comparison of antioxidant activity assays in fresh purple waxy corn (Zea mays L.) during grain filling. Appl. Biol. Chem. 2022, 65, 1. [Google Scholar] [CrossRef]
- Zhao, J.; Geng, W.; Xue, Y.; Alam, S.; Liu, P.; Zhao, B.; Ren, B.; Zhang, J. Optimizing plant morphology to enhance canopy light distribution improves lodging resistance and grain yield in densely planted maize. J. Integr. Agric. 2025. [Google Scholar] [CrossRef]
- Xu, X.; Fan, J.; Lai, Z.; Yang, R. Effects of irrigation amount, planting density and row spacingon grain yield of spring maize in Hexi region. J. Drain. Irrig. Mach. Eng. 2023, 41, 305–312, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Piao, L.; Zhang, S.; Yan, J.; Xiang, T.; Chen, Y.; Li, M.; Gu, W. Contribution of Fertilizer, Density and Row Spacing Practices for Maize Yield and Efficiency Enhancement in Northeast China. Plants 2022, 11, 2985. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Wang, X.; Wu, Z.; Hu, Y.; Wang, X.; Zhang, J.; Cai, T. Effects of planting density and row spacing configuration on sugar accumulation and lodging performance of wheat stem under rainfall harvesting planting mode. Sci. Agric. Sin. 2024, 57, 65–79, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Xue, J.; Wang, K.; Li, S.; Hou, P. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha−1. Field Crops Res. 2022, 283, 108544. [Google Scholar] [CrossRef]
- Liu, S.; Jian, S.; Li, X.; Wang, Y. Wide–narrow row planting pattern increases root lodging resistance by adjusting root architecture and root physiological activity in maize (Zea mays L.) in Northeast China. Agriculture 2021, 11, 517. [Google Scholar] [CrossRef]
- Piao, L.; Qi, H.; Li, C.; Zhao, M. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Res. 2016, 198, 258–268. [Google Scholar] [CrossRef]
- Piao, L.; Li, B.; Chen, X.C.; Ding, Z.S.; Zhang, Y.; Zhao, M.; Li, C.F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci. Agric. Sin. 2020, 53, 3048–3058, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ge, X.L.; Chen, Y.B.; Wang, Y.; Wang, B.C.; Chao, Q.; Yu, Y.; Gong, X.J.; Hao, Y.B.; Li, L.; Jiang, Y.B.; et al. Photosynthetic mechanism of high yield under an improved wide–narrow row planting pattern in maize. Photosynthetica 2022, 60, 465–475. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Cai, G.R.; Khalid, M.H.B.; Iqbal, N.; Hassan, M.J.; Meraj, T.A.; Naeem, M.; Khan, I.; et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 2019, 8, e170. [Google Scholar] [CrossRef]
- Gao, J.; Lei, M.; Yang, L.; Wang, P.; Tao, H.; Huang, S. Reduced row spacing improved yield by optimizing root distribution in maize. Eur. J. Agron. 2021, 127, 126291. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Lu, W.; Lu, D. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. Crop J. 2020, 8, 1081–1092. [Google Scholar] [CrossRef]
- Konuskan, Ö.; Konuskan, D.B.; Barutçular, C.; Turan, N.; ElSabagh, A. Planting densities impart variance impact on kernel properties and some quality parameters in some maize (Zea mays L.) hybrids. Pak. J. Bot. 2022, 54, 601–608. [Google Scholar] [CrossRef]
- Park, W.; Kim, T.H.; Lee, H.U.; Lee, I.B.; Kim, S.J.; Roh, J.H.; Chung, M.N. Yield of Tuber Roots and Functional Substances According to the Planting Interval and Cultivation Period in Sweetpotato (Ipomoea batatas L.). Korean J. Crop Sci. 2021, 66, 383–391. [Google Scholar] [CrossRef]
- Huang, G.; Guo, Y.; Tan, W.; Zhang, M.; Li, Z.; Zhou, Y.; Duan, L. Enhancing maize radiation use efficiency under high planting density by shaping canopy architecture with a plant growth regulator. Crop Environ. 2024, 3, 51–63. [Google Scholar] [CrossRef]
- Kang, M.; Xu, M.; Guo, Y.; Qiao, L.; He, X.; Lan, X. Strategies to narrow down rainfed maize yield gap by decomposing gap sources across the East Loess Plateau of China. Field Crops Res. 2025, 331, 109997. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Song, S.; Zhang, L.; Zhang, Z.; Jia, X. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agric. Water Manag. 2021, 245, 106600. [Google Scholar] [CrossRef]
- Elliott, K.H.; Elliott, J.E. Lipid extraction techniques for stable isotope analysis of bird eggs: Chloroform–methanol leads to more enriched 13C values than extraction via petroleum ether. J. Exp. Mar. Biol. Ecol. 2016, 474, 54–57. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, Q.; Wu, S.; Wang, Y.; Zhang, M.; Hong, Y.; Nong, H.; Huang, C. Comparison of 3,5-dinitrosalicylic acid method and enzymatic method in the determination of sugar and sucrose content in sweet corn. J. Agric. Sci. Technol. 2017, 19, 125–131, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Nounjan, N.; Theerakulpisut, P. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ. 2012, 58, 309–315. [Google Scholar] [CrossRef]
- Buckan, D.S. Estimation of glycemic carbohydrates from commonly consumed foods using modified anthrone method. Indian J. Appl. Res. 2015, 5, 45–47. [Google Scholar] [CrossRef]
- Zhang, X.; Akebota, M.; Yang, J.; Abulaiti, A.; Liang, X.L.; Lyu, Y.P.; Han, D.X.; Li, M.D.; Dong, Y.; Qin, T.Y.; et al. Evaluation of density tolerance of the main maize varieties in Xinjiang China at 97,500 plants/hm2 and 120,000 plants/hm2 densities. J. Maize Sci. 2025, 1, 1–13. Available online: https://link.cnki.net/urlid/22.1201.s.20250422.1819.002 (accessed on 22 August 2025). (In Chinese with English Abstract).
- He, N.; Wei, G.; Feng, Y.; Meng, Y.; Wei, A. Effects of planting densities on main agronomic traits and yield ofnew super-sweet corn varieties. Southwest China J. Agric. Sci. 2019, 32, 2521–2529, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ruberti, I.; Sessa, G.; Ciolfi, A.; Possenti, M.; Carabelli, M.; Morelli, G. Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnol. Adv. 2012, 30, 1047–1058. [Google Scholar] [CrossRef]
- Fan, X.; Chen, S.; Wu, W.; Song, M.; Sun, G.; Yao, S.; Zhan, W.; Yan, L.; Li, H.; Zhang, Y.; et al. Maize cryptochromes 1a1 and 1a2 promote seedling photomorphogenesis and shade resistance in Zea mays and Arabidopsis. Crop J. 2023, 11, 1192–1203. [Google Scholar] [CrossRef]
- Cao, Y.; Zhong, Z.; Wang, H.; Shen, R. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 2022, 20, 426–436. [Google Scholar] [CrossRef]
- Jin, R.; Li, Z.; Yang, Y.; Zhou, F.; Du, L.; Li, X.; Kong, F.; Yuan, J. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agron. Sin. 2020, 46, 614–630, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, L.; Ke, M.; Gao, Z.; Tu, T.; Huang, L.; Chen, J.; Guan, Y.; Huang, X.; Chen, X. GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. J. Integr. Plant Biol. 2022, 64, 1325–1338. [Google Scholar] [CrossRef]
- Tao, Y.; Zheng, J.; Xu, Z.; Zhang, X.; Zhang, K.; Wang, G. Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene. Plant Sci. 2004, 167, 743–751. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xue, J.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; Li, S. Leaf removal affects maize morphology and grain yield. Agronomy 2020, 10, 269. [Google Scholar] [CrossRef]
- Yang, S.; Tong, L.; Wu, X.; Chen, Y. Changes in radiation in canopy and the yield of maize in response to planting density and irrigation amount. J. Irrig. Drain. 2021, 40, 19–26, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Li, J.; Wang, R. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Front. Plant Sci. 2021, 12, 752606. [Google Scholar] [CrossRef] [PubMed]
- Antonietta, M.; Fanello, D.D.; Acciaresi, H.; Guiamet, J.J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res. 2014, 155, 111–119. [Google Scholar] [CrossRef]
- Luo, N.; Meng, Q.; Feng, P.; Qu, Z.; Yu, Y.; Liu, D.L.; Müller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Q.; Xu, T.; Liu, Z.; Wang, R.; Zhao, J.; Lu, D.; Li, C. Effects of plant type lmprovement on root-canopy characteristics and grain yield of spring maize under high density condition. Sci. Agric. Sin. 2025, 58, 1296–1310, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, Q.; Liang, Y.; Zeng, J.; Wu, R.; Wu, Y.; Guo, J.; Li, G.; Lu, D. Effects of planting density on population yield and benefit of fresh soybean-fresh waxy maize strip intercropping. China Veg. 2025, 121–128, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, W.; Fan, Y.; Zhang, S.; Lu, B.; Duan, L.; Li, Z.; Tan, W. Waxy maize yield in response to a novel plant growth regulator and plant density. Int. J. Agric. Biol. 2019, 22, 304–312. [Google Scholar]
- Ye, D.; Chen, J.; Yu, Z.; Sun, Y.; Gao, W.; Wang, X.; Zhang, R.; Zaib-Un-Nisa; Su, D.; Muneer, M.A. Optimal plant density improves sweet maize fresh ear yield without compromising grain carbohydrate concentration. Agronomy 2023, 13, 2830. [Google Scholar] [CrossRef]
- Shen, S.; Ma, S.; Wu, L.; Zhou, S.L.; Ruan, Y.L. Winners take all: Competition for carbon resource determines grain fate. Trends Plant Sci. 2023, 28, 893–901. [Google Scholar] [CrossRef]
- Feng, G.; Li, Y.Y.; Jing, X.Q.; Wang, L.; Huang, C.L. Effects on agronomic characteristics and yield of maize planting density. J. Maize Sci. 2011, 19, 109–111, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fromme, D.D.; Spivey, T.A.; Grichar, W.J. Agronomic response of corn (Zea mays L.) hybrids to plant populations. Int. J. Agron. 2019, 2019, 3589768. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xie, R.; Ming, B.; Xue, J.; Zhang, G.; Li, R.; Wang, K.; et al. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur. 2022, 11, e375. [Google Scholar] [CrossRef]
- Wu, Y.; Gong, Z.; Chang, X.; Sun, J.; Li, Y.; Liu, H.; Song, Y. Effects of increasing plant density on photosynthetic characteristics of canopy and establishment of grain sink at anthesis in maize. Acta Agric. Boreali-Sin. 2022, 37, 96–102, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 2018, 219, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sun, Z.; Feng, L.; Bai, W.; Yang, N.; Zhang, Z.; Du, G.; Feng, C.; Cai, Q.; Wang, Q.; et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res. 2020, 257, 107926. [Google Scholar] [CrossRef]
- Lyu, L.H.; Tao, H.B.; Xia, L.K.; Zhang, Y.J.; Zhao, M.; Zhao, J.; Wang, P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron. Sin. 2008, 34, 447–455, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, R.; Bosco, J.S.; Guo, S.; Hai, J.; Dong, Y.; Guo, Y.; Xi, L. Effects of planting density, zinc and selenium on ear charactersand fresh kernel yield of waxy corn. Acta Agric. Boreali-Occident. Sin. 2023, 32, 697–705, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, B.; Wei, Y.; Li, B.; Xue, Y.; Liu, J. Influences of planting density on growth and yield of fresh waxy corn. Jiangsu Agric. Sci. 2020, 48, 91–95, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Abhishek, N.; Basavanneppa, M. Effect of plant densities and nitrogen levels on cob yield and quality parameters of sweet corn (Zea mays L. Saccharata) in irrigated ecosystem. Int. J. Chem. Stud. 2020, 8, 2918–2921. [Google Scholar] [CrossRef]
- Cazetta, J.O.; Revoredo, M.D. Non-structural carbohydrate metabolism, growth, and productivity of maize by increasing plant density. Agronomy 2018, 8, 243. [Google Scholar] [CrossRef]
- Lu, B.; Dong, H.; Liu, H.; Xu, L.; Fan, Y.; Shi, Y.; Zhao, J. Correlation analysis between sugar content and taste of fresh-eaten waxy corn grains. Crops 2024, 80–85, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Dong, W.; Han, L.; Zhang, Y. Effect of different densities and row spacings on growth characteristics, yield and grain nutrients of maize (Zea mays L.). J. Northeast Agric. Univ. 2020, 51, 26–34, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, D.; Liang, J.; Hou, J.; Yang, H.; Ding, B.; Zhao, G.; Hu, B.; Zhu, M.; Li, J.; et al. Influences of plant and row spacing configuration on canopy structure and yield of sorghum hybrid Jizha 159. Jiangsu Agric. Sci. 2025, 53, 64–74, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, J.S.; Gao, H.Y.; Liu, P.; Li, G.; Dong, S.T.; Zhang, J.W.; Wang, J.F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron. Sin. 2010, 36, 1226–1233, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, J.; Man, Y.; Li, F.; Zhu, M.; Zhong, X.; Wang, H. Effects of different planting patterns on canopy regulation and yield in maize. Acta Agric. Boreali-Occident. Sin. 2023, 32, 33–43, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
ANOVA | PH | SD | EH | EHC | UL | EL | LL | LAIR1 | LAIFH | LADER | LADFH |
---|---|---|---|---|---|---|---|---|---|---|---|
PD | ns | ns | * | ** | ** | ** | ns | ** | ** | ** | ** |
RS | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Y | ** | ns | – | – | – | – | – | ns | ** | ** | ** |
PD × RS | ns | ns | ** | ** | ** | ** | ns | ns | ns | ns | ns |
PD × Y | ns | ** | – | – | – | – | – | ns | ns | ns | ns |
RS × Y | ns | ns | – | – | – | – | – | ns | ns | ns | ns |
PD × RS × Y | ns | ns | – | – | – | – | – | * | ns | * | ns |
Plant Density | Row Spacing | The Silking Stage | Fresh-Market Maturity | DMT
(t ha−1) | DMTE(%) | CDMG(%) | HI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DMAvos (t ha−1) | DMAes (t ha−1) | DMAts (t ha−1) | DMAvom (t ha−1) | DMAbcm (t ha−1) | DMAgm (t ha−1) | DMAtm (t ha−1) | ||||||
PD5.25 | RS6-6 | 6.78 ± 0.73 a | 2.99 ± 0.08 a | 9.77 ± 0.66 ab | 4.90 ± 0.38 c | 1.64 ± 0.24 ab | 2.49 ± 0.48 ab | 9.03 ± 0.69 b | 3.24 ± 1.40 a | 32.58 ± 11.70 a | 130.19 ± 43.50 a | 0.28 ± 0.06 a |
RS8-4 | 7.01 ± 0.37 a | 3.15 ± 0.97 a | 10.16 ± 1.02 ab | 5.94 ± 1.17 bc | 1.99 ± 0.35 ab | 2.17 ± 0.77 ab | 10.10 ± 1.34 b | 2.22 ± 2.60 a | 20.23 ± 22.30 a | 166.79 ± 243.90 a | 0.21 ± 0.05 ab | |
RS10-2 | 7.10 ± 0.77 a | 2.21 ± 0.90 a | 9.31 ± 1.58 ab | 6.64 ± 0.52 ab | 1.66 ± 0.18 ab | 1.09 ± 0.26 b | 9.39 ± 0.40 b | 1.00 ± 1.50 a | 8.89 ± 13.90 a | 68.26 ± 125.10 a | 0.11 ± 0.02 b | |
PD6.75 | RS6-6 | 8.05 ± 0.18 a | 3.17 ± 0.37 a | 11.22 ± 0.51 a | 5.48 ± 0.27 bc | 2.18 ± 0.48 ab | 2.77 ± 0.63 a | 10.43 ± 1.68 b | 3.55 ± 1.50 a | 31.23 ± 11.70 a | 137.80 ± 66.70 a | 0.26 ± 0.05 a |
RS8-4 | 7.28 ± 0.83 a | 2.56 ± 0.65 a | 9.84 ± 1.05 ab | 7.62 ± 0.39 a | 2.44 ± 0.37 a | 3.50 ± 1.02 a | 13.56 ± 2.25 a | 0.74 ± 0.20 a | 7.15 ± 2.20 a | 23.82 ± 15.70 a | 0.25 ± 0.05 a | |
RS10-2 | 6.87 ± 0.48 a | 1.86 ± 0.43 a | 8.73 ± 0.74 b | 5.58 ± 0.10 bc | 1.55 ± 0.15 b | 2.60 ± 0.31 a | 9.73 ± 0.15 b | 1.62 ± 1.00 a | 17.85 ± 9.80 a | 60.08 ± 31.30 a | 0.27 ± 0.02 a | |
ANOVA | ||||||||||||
PD | ns | ns | ns | ns | ns | * | * | ns | ns | ns | * | |
RS | ns | ns | ns | ** | ns | ns | * | ns | ns | ns | ns | |
PD × RS | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns |
Year | Plant Density | Row Spacing | NEE (104 Ears ha−1) | KNE | HKW (g) | ThY (t ha−1) | FEY (t ha−1) |
---|---|---|---|---|---|---|---|
2021 | PD5.25 | RS6-6 | 4.67 ± 0.37 c | 698.67 ± 68.17 a | 27.90 ± 3.41 a | 9.03 ± 1.01 a | 12.16 ± 0.58 a |
RS8-4 | 4.22 ± 1.00 d | 689.73 ± 68.91 ab | 26.30 ± 3.78 ab | 7.66 ± 2.24 b | 11.17 ± 3.19 a | ||
RS10-2 | 4.61 ± 0.21 c | 702.80 ± 94.03 a | 26.60 ± 2.95 a | 8.61 ± 1.41 ab | 11.39 ± 0.19 a | ||
PD6.75 | RS6-6 | 5.61 ± 0.49 a | 615.40 ± 50.65 d | 24.81 ± 3.35 bc | 8.52 ± 1.22 ab | 10.67 ± 1.64 a | |
RS8-4 | 5.22 ± 0.56 b | 657.07 ± 79.58 bc | 23.21 ± 8.15 c | 7.91 ± 2.89 ab | 11.06 ± 2.24 a | ||
RS10-2 | 5.28 ± 0.44 b | 646.00 ± 72.05 cd | 23.40 ± 5.17 c | 8.05 ± 2.33 ab | 11.33 ± 1.69 a | ||
2022 | PD5.25 | RS6-6 | 3.78 ± 0.44 b | 702.53 ± 80.89 a | 28.19 ± 3.83 a | 7.56 ± 1.90 a | 10.06 ± 0.59 a |
RS8-4 | 3.00 ± 1.00 c | 661.60 ± 67.44 b | 25.47 ± 4.81 b | 5.30 ± 2.43 de | 8.00 ± 3.68 a | ||
RS10-2 | 2.67 ± 0.14 c | 673.47 ± 60.01 ab | 25.69 ± 2.68 b | 4.61 ± 0.67 e | 6.72 ± 0.69 a | ||
PD6.75 | RS6-6 | 3.89 ± 0.76 b | 644.07 ± 75.37 b | 25.21 ± 2.51 b | 6.32 ± 1.61 bc | 9.06 ± 1.83 a | |
RS8-4 | 4.28 ± 0.98 a | 665.87 ± 63.37 ab | 25.02 ± 2.89 b | 7.19 ± 2.15 ab | 9.94 ± 2.50 a | ||
RS10-2 | 4.11 ± 0.08 ab | 601.53 ± 78.94 c | 24.14 ± 4.30 b | 6.00 ± 1.51 cd | 8.89 ± 0.92 a | ||
ANOVA | |||||||
PD | ** | ** | ** | ns | ns | ||
RS | ns | ns | ns | ns | ns | ||
Y | ** | ns | ns | ns | ** | ||
PD × RS | ns | * | ns | ns | ns | ||
PD × Y | ns | * | ns | ns | ns | ||
RS × Y | ns | * | ns | ns | ns | ||
PD × RS × Y | ns | ns | ns | ns | ns |
Year | Planting Density | Row Spacing | Ear Length (cm) | Ear Weight (g) | Ear Diameter (mm) |
---|---|---|---|---|---|
2021 | PD5.25 | RS6-6 | 19.5 ± 2.1 a | 260.1 ± 27.4 a | 46.9 ± 2.0 ab |
RS8-4 | 18.2 ± 2.0 b | 248.6 ± 29.6 a | 46.9 ± 2.3 ab | ||
RS10-2 | 18.8 ± 1.4 ab | 249.4 ± 26.8 a | 48.1 ± 2.0 a | ||
PD6.75 | RS6-6 | 16.3 ± 1.8 e | 206.4 ± 32.7 c | 45.9 ± 2.0 b | |
RS8-4 | 17.2 ± 1.7 c | 228.3 ± 28.0 b | 45.9 ± 5.8 b | ||
RS10-2 | 16.8 ± 1.4 cd | 208.7 ± 25.5 c | 45.7 ± 1.8 b | ||
2022 | PD5.25 | RS6-6 | 20.3 ± 2.2 a | 285.1 ± 34.4 a | 47.7 ± 2.0 a |
RS8-4 | 19.7 + 1.2 ab | 265.7 ± 30.9 b | 45.1 ± 2.4 bc | ||
RS10-2 | 19.2 ± 1.0 bc | 263.1 ± 23.0 bc | 46.0 ± 1.8 b | ||
PD6.75 | RS6-6 | 18.8 ± 1.2 c | 248.2 ± 24.6 c | 45.7 ± 1.6 bc | |
RS8-4 | 18.8 ± 1.4 c | 250.2 ± 20.0 bc | 45.7 ± 1.8 bc | ||
RS10-2 | 17.0 ± 1.7 d | 221.4 ± 40.4 d | 44.8 ± 2.1 c | ||
ANOVA | |||||
PD | ** | ** | ** | ||
RS | ** | * | ** | ||
Y | ** | ns | ** | ||
PD × RS | ** | ** | ns | ||
PD × Y | ns | * | ns | ||
RS × Y | ** | ns | ** | ||
PD × RS × Y | * | ns | ns |
Fat Content | Reducing Sugar Content | Soluble Content | Sucrose Content | Vitamin C Content | |
---|---|---|---|---|---|
PD | ** | ** | ns | ns | ** |
RS | ** | ns | ns | ns | ** |
Y | ** | ** | ** | ** | ** |
PD × RS | ** | ns | * | ** | ** |
PD × Y | ns | ** | ns | ns | ** |
RS × Y | ns | * | ns | * | ** |
PD × RS × Y | ** | ns | ns | * | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Su, B.-J.; Zhang, Y.-N.; Zhang, D.-S.; Han, J.-J.; Li, H.-M.; Feng, W.-J.; Du, T.-Q.; Cui, F.-Z.; Xue, J.-F. Optimizing Plant Density and Row Spacing Enhances Growth, Yield and Quality of Waxy Maize on the Loess Plateau. Plants 2025, 14, 2902. https://doi.org/10.3390/plants14182902
Xie L, Su B-J, Zhang Y-N, Zhang D-S, Han J-J, Li H-M, Feng W-J, Du T-Q, Cui F-Z, Xue J-F. Optimizing Plant Density and Row Spacing Enhances Growth, Yield and Quality of Waxy Maize on the Loess Plateau. Plants. 2025; 14(18):2902. https://doi.org/10.3390/plants14182902
Chicago/Turabian StyleXie, Lin, Bao-Jie Su, Ya-Nan Zhang, Dong-Sheng Zhang, Jing-Jing Han, Hui-Ming Li, Wan-Jun Feng, Tian-Qing Du, Fu-Zhu Cui, and Jian-Fu Xue. 2025. "Optimizing Plant Density and Row Spacing Enhances Growth, Yield and Quality of Waxy Maize on the Loess Plateau" Plants 14, no. 18: 2902. https://doi.org/10.3390/plants14182902
APA StyleXie, L., Su, B.-J., Zhang, Y.-N., Zhang, D.-S., Han, J.-J., Li, H.-M., Feng, W.-J., Du, T.-Q., Cui, F.-Z., & Xue, J.-F. (2025). Optimizing Plant Density and Row Spacing Enhances Growth, Yield and Quality of Waxy Maize on the Loess Plateau. Plants, 14(18), 2902. https://doi.org/10.3390/plants14182902