Multi-Environment QTL Mapping of Rust Resistance in Faba Bean (Vicia faba L.) to Uromyces viciae-fabae
Abstract
1. Introduction
2. Results
2.1. Construction of the Genetic Map
2.2. Alignment to Hedin Genome
2.3. QTL Detection
3. Discussion
3.1. Map Construction and Alignment to Hedin Genome
3.2. Functional Analyses
3.3. Comparative Analysis
4. Materials and Methods
4.1. Plant Material and Field Trials
4.2. Genetic Map Construction
4.3. Resistance Scoring
4.4. QTL Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUDPC | Are Under the Disease Progress Curve |
MON1 | Monensin Sensitivity1/Calcium Caffeine Zinc Sensitivity 1 |
PANTHER | Protein Analysis Through Evolutionary Relationships |
RIL | Reconbinant Inbred Lines |
SA | Salicylic acid |
References
- Cubero, J.I. Evolutionary trends in Vicia faba L. Theor. Appl. Genet. 1973, 43, 59–65. [Google Scholar] [CrossRef]
- Angus, J.F.; Kirkegaard, J.A.; Hunt, J.R.; Ryan, M.H.; Ohlander, L.; Peoples, M.B. Break crops and rotations for wheat. Crop Pasture Sci. 2015, 66, 523–552. [Google Scholar] [CrossRef]
- FAOSTAT. World Statistics on Faba Bean. Available online: https://www.fao.org/faostat/en/#data (accessed on 10 July 2025).
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Ijaz, U.; Sudheesh, S.; Kaur, S.; Sadeque, A.; Bariana, H.; Bansal, U.; Adhikari, K. Mapping of two new rust resistance genes uvf-2 and uvf-3 in faba bean. Agronomy 2021, 11, 1370. [Google Scholar] [CrossRef]
- Emeran, A.A.; Sillero, J.C.; Fernández-Aparicio, M.; Rubiales, D. Chemical control of faba bean rust (Uromyces viciae-fabae). Crop Prot. 2011, 30, 907–912. [Google Scholar] [CrossRef]
- Rashid, K.Y.; Bernier, C.C. The effect of rust on yield of faba bean cultivars and slow-rusting populations. Can. J. Plant Sci. 2011, 71, 967–972. [Google Scholar] [CrossRef]
- Stoddard, F.L.; Nicholas, A.H.; Rubiales, D.; Thomas, J.; Villegas-Fernández, A.M. Integrated pest management in faba bean. Field Crop. Res. 2010, 115, 308–318. [Google Scholar] [CrossRef]
- Voegele, R.T. Uromyces fabae: Development, metabolism, and interactions with its host Vicia faba. FEMS Microbiol. Lett. 2006, 259, 165–173. [Google Scholar] [CrossRef][Green Version]
- Sillero, J.C.; Rubiales, D. Response of Vicia species to ascochyta fabae and Uromyces viciae-fabae. Czech J. Genet. Plant Breed. 2014, 50, 109–115. [Google Scholar] [CrossRef]
- Osuna-Caballero, S.; Rispail, N.; Barilli, E.; Rubiales, D. Management and breeding for rust resistance in legumes. J. Plant Pathol. 2024. [Google Scholar] [CrossRef]
- Sillero, J.C.; Moreno, M.T.; Rubiales, D. Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathol. 2000, 49, 389–395. [Google Scholar] [CrossRef]
- Avila, C.M.; Sillero, J.C.; Rubiales, D.; Moreno, M.T.; Torres, A.M. Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor. Appl. Genet. 2003, 107, 353–358. [Google Scholar] [CrossRef]
- Adhikari, K.N.; Zhang, P.; Sadeque, A.; Hoxha, S.; Trethowan, R. Single independent genes confer resistance to faba bean rust (Uromyces viciae-fabae) in the current Australian cultivar Doza and a central European line Ac1655. Crop Pasture Sci. 2016, 67, 649. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Aguilar-Benitez, D.; Gutierrez, N.; Casimiro-Soriguer, I.; Torres, A.M. A high-density linkage map and fine QTL mapping of architecture, phenology, and yield-related traits in faba bean (Vicia faba L.). Front. Plant Sci. 2025, 16, 1457812. [Google Scholar] [CrossRef]
- Avila, C.M.; Mattera, M.G.; Rodríguez-Suárez, C.; Palomino, C.; Ramírez, M.C.; Martin, A.; Kilian, A.; Hornero-Méndez, D.; Atienza, S.G. Diversification of seed carotenoid content and profile in wild barley (Hordeum chilense Roem. et Schultz.) and Hordeum vulgare L.–H. chilense synteny as revealed by DArTSeq markers. Euphytica 2019, 215, 45. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, C.; Requena-Ramírez, M.D.; Hornero-Méndez, D.; Atienza, S.G. Towards carotenoid biofortification in wheat: Identification of XAT-7A1, a multicopy tandem gene responsible for carotenoid esterification in durum wheat. BMC Plant Biol. 2023, 23, 412. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Golicz, A.A.; Kreplak, J.; Fechete, L.I.; Angra, D.; Bednář, P.; Bornhofen, E.; Zhang, H.; Boussageon, R.; Kaur, S.; et al. The giant diploid faba genome unlocks variation in a global protein crop. Nature 2023, 615, 652–659. [Google Scholar] [CrossRef]
- Javed, T.; Gao, S.J. WRKY transcription factors in plant defense. Trends Genet. 2023, 39, 787–801. [Google Scholar] [CrossRef]
- Yao, M.; Liu, Z.; Qiao, Y.; Hou, Y.; Kang, Z.; Liu, J. The transcription factor TaWRKY27 confers enhanced stripe rust susceptibility by facilitating auxin accumulation in wheat. Plant Physiol. 2025, 198, 257. [Google Scholar] [CrossRef]
- Turchi, L.; Baima, S.; Morelli, G.; Ruberti, I. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. J. Exp. Bot. 2015, 66, 5043–5053. [Google Scholar] [CrossRef]
- Petrášek, J.; Friml, J. Auxin transport routes in plant development. Development 2009, 136, 2675–2688. [Google Scholar] [CrossRef] [PubMed]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef] [PubMed]
- Sillero, J.C.; Rojas-Molina, M.M.; Avila, C.M.; Rubiales, D. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot. 2012, 34, 65–69. [Google Scholar] [CrossRef]
- Robert-Seilaniantz, A.; MacLean, D.; Jikumaru, Y.; Hill, L.; Yamaguchi, S.; Kamiya, Y.; Jones, J.D.G. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 2011, 67, 218–231. [Google Scholar] [CrossRef]
- Liao, W.; Nielsen, M.E.; Pedersen, C.; Xie, W.; Thordal-Christensen, H. Barley endosomal MONENSIN SENSITIVITY1 is a target of the powdery mildew effector CSEP0162 and plays a role in plant immunity. J. Exp. Bot. 2023, 74, 118–129. [Google Scholar] [CrossRef]
- Prall, W.; Sheikh, A.H.; Bazin, J.; Bigeard, J.; Almeida-Trapp, M.; Crespi, M.; Hirt, H.; Gregory, B.D. Pathogen-induced m6A dynamics affect plant immunity. Plant Cell 2023, 35, 4155–4172. [Google Scholar] [CrossRef] [PubMed]
- Prall, W.; Ganguly, D.R.; Gregory, B.D. The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. Plant Cell 2023, 35, 1801–1816. [Google Scholar] [CrossRef]
- Wang, H.; Niu, R.; Zhou, Y.; Tang, Z.; Xu, G.; Zhou, G. ECT9 condensates with ECT1 and regulates plant immunity. Front. Plant Sci. 2023, 14, 1140840. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Bie, X.M.; Wang, N.; Zhang, X.S.; Gao, X.Q. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat. BMC Plant Biol. 2020, 20, 351. [Google Scholar] [CrossRef]
- Skovbjerg, C.K.; Angra, D.; Robertson-Shersby-Harvie, T.; Kreplak, J.; Keeble-Gagnère, G.; Kaur, S.; Ecke, W.; Windhorst, A.; Nielsen, L.K.; Schiemann, A.; et al. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. Theor. Appl. Genet. 2023, 136, 114. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef]
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Lander, E.S.; Botstein, S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121, 185–199. [Google Scholar] [CrossRef]
- van Ooijen, J.W. Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 1992, 84, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.C. Interval mapping of multiple quantitative trait loci. Genetics 1993, 135, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.C. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 1994, 138, 871–881. [Google Scholar] [CrossRef]
- Jansen, R.C.; Stam, P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994, 136, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- Voorrips, R.E. Mapchart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a World Beyond “p < 0.05”. Am. Stat. 2019, 73, 1–19. [Google Scholar] [CrossRef]
Chrom. | Number of Bin Markers | Total Distance (cM) | Average Distance (cM/Marker) | Maximum Gap (cM) |
---|---|---|---|---|
I | 86 | 418.4 | 4.9 | 19.1 |
II | 125 | 218.2 | 1.7 | 6.6 |
III | 108 | 197.4 | 1.8 | 8.5 |
IV | 104 | 94.2 | 0.9 | 5.8 |
V | 101 | 165.5 | 1.6 | 6.1 |
VI | 104 | 226.8 | 2.2 | 6.5 |
QTL | QTL_Name 1 | Chm | LOD | Position (cM) | Flanking Markers | p-Value 2 | R 2 (%) |
---|---|---|---|---|---|---|---|
1 | AUDPC_Cor21 | II | 5.47 | 34.6 | 13909843/13863183 | 0.001 | 28.5 |
1 | S_Cor21 | II | 6.63 | 34.4 | 13909843/13863183 | 0.001 | 31.0 |
2 | AUDPC_Kafr | II | 3.20 | 143.2 | 3527667/13913387 | 0.048 | 14.5 |
3 | S_Kafr | III | 3.37 | 137.9 | 13868837/13891645 | 0.0382 | 15.2 |
4 | AUDPC_Lat | IV | 4.59 | 54.4 | 13904768/13913479 | 0.0022 | 20.2 |
5 | S_Cor22 | V | 4.86 | 109.4 | 3518937/13908777 | 0.0024 | 24.3 |
5 | AUDPC_Lat | V | 3.65 | 110.5 | 3518937/13908777 | 0.0355 | 15.4 |
6 | S_Cor16 | V | 2.81 | 144.1 | 3526504/3524870 | 0.1563 | 14.2 |
6 | S_Lat | V | 3.22 | 143.8 | 3526504/13911090 | 0.0746 | 37.8 |
Marker | Position (cM) | Chrom | Gene | Annotation at PANTHER 1 |
---|---|---|---|---|
3521015 | 143.2 | II | Vfaba.Hedin2.R1.2g194840 | Class III homeodomain-leucine zipper family |
13913387 | 147.8 | II | Vfaba.Hedin2.R1.2g210080 | PTHR47932 |
3520124 | 54.4 | IV | Vfaba.Hedin2.R1.4g162080 | WRKY |
13913479 | 55.6 | IV | Vfaba.Hedin2.R1.4g212280.1 | Auxin Efflux Carrier |
13908777 | 111.0 | V | Vfaba.Hedin2.R1.5g088520.1 | YTH domain containing protein |
3526504 | 142.8 | V | Vfaba.Hedin2.R1.5g187960 | PTHR23346 |
3516136 | 149.0 | V | Vfaba.Hedin2.R1.5g114960 | Regulator of MON1-CCZ1 complex |
Gene | Flanking Marker 1 | Distance (cM) | Gene (Best Hit) 2 | Best Hit Position (Mb) 2 |
---|---|---|---|---|
Uvf-2 | KASP_C250539 | 2.5 | None | 1203.37 |
KASP_Vf_0703 | 10.1 | Vfaba.Hedin2.R1.3g174360.1 | 1319.54 | |
Uvf-3 | KASP_ACxF165 | 2.9 | Vfaba.Hedin2.R1.5g117640.1 | 816.40 |
KASP_Vf_1090 | 4.9 | Vfaba.Hedin2.R1.5g073360.1 | 468.97 | |
KASP_Vf_1090 | 4.9 | Vfaba.Hedin2.R1.5g072920.1 | 466.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atienza, S.G.; Emeran, A.A.; Arafa, R.A.; Maalouf, F.; Sillero, J.C.; Ávila, C.M. Multi-Environment QTL Mapping of Rust Resistance in Faba Bean (Vicia faba L.) to Uromyces viciae-fabae. Plants 2025, 14, 2860. https://doi.org/10.3390/plants14182860
Atienza SG, Emeran AA, Arafa RA, Maalouf F, Sillero JC, Ávila CM. Multi-Environment QTL Mapping of Rust Resistance in Faba Bean (Vicia faba L.) to Uromyces viciae-fabae. Plants. 2025; 14(18):2860. https://doi.org/10.3390/plants14182860
Chicago/Turabian StyleAtienza, Sergio G., Amero A. Emeran, Ramadan A. Arafa, Fouad Maalouf, Josefina C. Sillero, and Carmen M. Ávila. 2025. "Multi-Environment QTL Mapping of Rust Resistance in Faba Bean (Vicia faba L.) to Uromyces viciae-fabae" Plants 14, no. 18: 2860. https://doi.org/10.3390/plants14182860
APA StyleAtienza, S. G., Emeran, A. A., Arafa, R. A., Maalouf, F., Sillero, J. C., & Ávila, C. M. (2025). Multi-Environment QTL Mapping of Rust Resistance in Faba Bean (Vicia faba L.) to Uromyces viciae-fabae. Plants, 14(18), 2860. https://doi.org/10.3390/plants14182860