Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions
Abstract
1. Introduction
2. Article Search Strategy
- Types and examples of ML used to predict crop yield;
- Types and examples of DL utilized to predict crop yields;
- Ensemble learning types and examples used to predict crop yields;
- Types and examples of XAIs used to predict crop yields;
- Imaging devices used for crop yield prediction;
- Environmental factors affecting crop yields;
- Other causes of crop yield reduction.
- EC 1—the publication is not written in English;
- EC 2—the publication is a duplicate or already searched for;
- EC 3—the full text of the publication is not available;
- EC 4—the publication is a survey;
- EC 5—if the publication was published before 2018.
3. AI Model Development for CYP
3.1. Imaging Techniques for CYP
3.2. ML Techniques for Open Field CYP
3.3. DL Techniques for CYP
3.4. Ensemble Learning Techniques for CYP
3.5. XAI Techniques for CYP
4. Environmental Factors Affecting Crop Yields
5. Other Factors of Crop Yield Decline
6. AI-Based CYP: Status, Challenges, and Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CYP | Crop yield prediction |
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
XAI | Explainable AI |
RF | Random Forest |
SVM | Support Vector Machine |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
HIS | Hyperspectral Imaging |
MSI | Multispectral Imaging |
GDP | Gross Domestic Product |
RMSE | Root-Mean-Square Error |
IoT | Internet of Thing |
SLR | Systematic literature Review |
EC | Exclusion Criteria |
TRI | Thermal Imaging |
KNN | K-Nearest Neighbors |
SVR | Support Vector Regression |
LR | Linear Regression |
DT | Decision Tree Regression |
DNN | Deep Neural Network |
RT | Regression Tree |
MLR | Multiple Linear Regression |
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
References
- Porter, J.R.; Semenov, M.A. Crop Responses to Climatic Variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Berhanu, A.A.; Ayele, Z.B.; Dagnew, D.C. Impact of Climate-Smart Agricultural Practices on Smallholder Farmers’ Resilience in Ethiopia. J. Agric. Food Res. 2024, 16, 101147. [Google Scholar] [CrossRef]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of Extreme Weather Conditions on European Crop Production in 2018: Random Forest—Yield Anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190510. [Google Scholar] [CrossRef] [PubMed]
- Guntukula, R. Assessing the Impact of Climate Change on Indian Agriculture: Evidence from Major Crop Yields. J. Public Aff. 2020, 20, e2040. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef]
- Abbas Ali, M.; Abdellah, I.M.; Eletmany, M.R. Towards Sustainable Management of Insect Pests: Protecting Food Security through Ecological Intensification. Int. J. Commer. Bus. Stud. 2023, 24, 386–394. [Google Scholar]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) Model for in-Season Prediction of Crop Yield across the Canadian Agricultural Landscape. Agric. For. Meteorol. 2015, 206, 137–150. [Google Scholar] [CrossRef]
- Ramesh, K.V.; Rakesh, V.; Prakasa Rao, E.V.S. Application of Big Data Analytics and Artificial Intelligence in Agronomic Research. Indian J. Agron. 2020, 65, 383–395. [Google Scholar] [CrossRef]
- Chitsiko, R.J.; Mutanga, O.; Dube, T.; Kutywayo, D. Review of Current Models and Approaches Used for Maize Crop Yield Forecasting in Sub-Saharan Africa and Their Potential Use in Early Warning Systems. Phys. Chem. Earth 2022, 127, 103199. [Google Scholar] [CrossRef]
- Swetha, D.N.; Balaji, S. Agriculture Cloud System Based Emphatic Data Analysis and Crop Yield Prediction Using Hybrid Artificial Intelligence. J. Phys. Conf. Ser. 2021, 2040, 012010. [Google Scholar] [CrossRef]
- Malhotra, K.; Khan, A.W. Application of Artificial Intelligence in IoT Security for Crop Yield Prediction. Res. Rev. Sci. Technol. 2022, 2, 136–157. [Google Scholar]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Johannes, I. Journal of Economics And. J. Econ. Soc. Res. 2020, 21, 65–75. [Google Scholar]
- Verdhan, V. Introduction to Supervised Learning. In Supervised Learning with Python; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–46. [Google Scholar] [CrossRef]
- Lemm, S.; Blankertz, B.; Dickhaus, T.; Müller, K.R. Introduction to Machine Learning for Brain Imaging. Neuroimage 2011, 56, 387–399. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling Machine Learning and Crop Modeling Improves Crop Yield Prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Adebiyi, M.O.; Ogundokun, R.O.; Abokhai, A.A. Machine Learning-Based Predictive Farmland Optimization and Crop Monitoring System. Scientifica 2020, 2020, 9428281. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Yao, F.; Shi, L.; Sharma, T.P.P.; Zhang, D.; Cao, D.; Zheng, M.; Ahmed, N.; Mohana, H.P. Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sens. 2021, 13, 1715. [Google Scholar] [CrossRef]
- Pratama, M.T.; Kim, S.; Ozawa, S.; Ohkawa, T.; Chona, Y.; Tsuji, H.; Murakami, N. Deep Learning-Based Object Detection for Crop Monitoring in Soybean Fields. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Crane-Droesch, A. Machine Learning Methods for Crop Yield Prediction and Climate Change Impact Assessment in Agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating Crop Yields with Deep Learning and Remotely Sensed Data. Int. Geosci. Remote Sens. Symp. 2015, 2015, 858–861. [Google Scholar] [CrossRef]
- Dosilovic, F.K.; Brcic, M.; Hlupic, N. Explainable Artificial Intelligence: A Survey. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 210–215. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; Xiao, Y.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.; Chen, R.; Ma, Y. UAV-Based Multi-Sensor Data Fusion and Machine Learning Algorithm for Yield Prediction in Wheat. Precis. Agric. 2023, 24, 187–212. [Google Scholar] [CrossRef]
- Sharma, A.; Bhargava, M.; Khanna, A.V. AI-Farm: A Crop Recommendation System. In Proceedings of the 2021 International Conference on Advances in Computing and Communications (ICACC), Kochi, India, 21–23 October 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Keerthana, M.; Meghana, K.J.M.; Pravallika, S.; Kavitha, M. An Ensemble Algorithm for Crop Yield Prediction. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 963–970. [Google Scholar] [CrossRef]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Phillips, P.J.; Hahn, C.A.; Fontana, P.C.; Broniatowski, D.A.; Przybocki, M.A. Four Principles of Explainable Artificial Intelligence: Draft NISTIR 8312; National Institute of Standards and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 2020. [Google Scholar] [CrossRef]
- Venugopal, A.; Farnaghi, M.; Zurita-Milla, R. Comparative Evaluation of XAI Methods for Transparent Crop Yield Estimation Using CNN. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 7478–7482. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, X.; Bohrer, G.; Liu, Y.; Zhou, Y.; Martin, J.; Li, Y.; Zhao, K. Crop Yield Prediction via Explainable AI and Interpretable Machine Learning: Dangers of Black Box Models for Evaluating Climate Change Impacts on Crop Yield. Agric. For. Meteorol. 2023, 336, 109458. [Google Scholar] [CrossRef]
- Shams, M.Y.; Gamel, S.A.; Talaat, F.M. Enhancing Crop Recommendation Systems with Explainable Artificial Intelligence: A Study on Agricultural Decision-Making. Neural Comput. Appl. 2024, 36, 5695–5714. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, T.; Tanaka, T.S.T.; Ookawa, T.; Katsura, K. A Study on Optimal Input Images for Rice Yield Prediction Models Using CNN with UAV Imagery and Its Reasoning Using Explainable AI. Eur. J. Agron. 2025, 164, 127512. [Google Scholar] [CrossRef]
- Wing, I.S.; De Cian, E.; Mistry, M.N. Global Vulnerability of Crop Yields to Climate Change. J. Environ. Econ. Manag. 2021, 109, 102462. [Google Scholar] [CrossRef]
- Agarwal, S.; Tarar, S. A Hybrid Approach for Crop Yield Prediction Using Machine Learning and Deep Learning Algorithms. J. Phys. Conf. Ser. 2021, 1714, 012012. [Google Scholar] [CrossRef]
- Gavahi, K.; Abbaszadeh, P.; Moradkhani, H. DeepYield: A Combined Convolutional Neural Network with Long Short-Term Memory for Crop Yield Forecasting. Expert Syst. Appl. 2021, 184, 115511. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Rui Mucova, S.A.; Nagy, G.J.; Balogun, A.L.; Luetz, J.M.; Ng, A.W.; Kovaleva, M.; Safiul Azam, F.M.; Alves, F.; et al. Deploying Artificial Intelligence for Climate Change Adaptation. Technol. Forecast. Soc. Change 2022, 180, 121662. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.T.; Jo, J. Monitoring Agriculture Areas with Satellite Images and Deep Learning. Appl. Soft Comput. J. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748. [Google Scholar] [CrossRef]
- Ahmad, U.; Nasirahmadi, A.; Hensel, O.; Marino, S. Technology and Data Fusion Methods to Enhance Site-Specific Crop Monitoring. Agronomy 2022, 12, 555. [Google Scholar] [CrossRef]
- Borah, S.K.; Padhiary, M.; Sethi, L.N.; Kumar, A.; Saikia, P. Precision Farming with Drone Sprayers: A Review of Auto Navigation and Vision-Based Optimization. J. Biosyst. Eng. 2025, 50, 255–273. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Szumny, A.; Figiel, A. The Application of Hyperspectral Imaging Technologies for the Prediction and Measurement of the Moisture Content of Various Agricultural Crops during the Drying Process. Molecules 2023, 28, 2930. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Soto-Valles, F.; Jiménez-Buendía, M.; Navarro-Hellín, H.; Torres-Sánchez, R. Intelligent Thermal Image-Based Sensor for Affordable Measurement of Crop Canopy Temperature. Comput. Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Wei, W.; Fan, J. Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding. ACM Comput. Surv. 2023, 55, 38. [Google Scholar] [CrossRef]
- Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [Google Scholar] [CrossRef]
- Osmani, S.A.; Jun, C.; Baik, J.; Lee, J.; Narimani, R. Wavelet-Based Precipitation Preprocessing for Improved Drought Forecasting: A Machine Learning Approach Using Tunable Q-Factor Wavelet Transform and Maximal Overlap Discrete Wavelet Transform. Expert Syst. Appl. 2024, 257, 124962. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Dias Paiao, G.; Fernández, F.G.; Mulla, D.; Yang, C. Estimation of Corn Yield Based on Hyperspectral Imagery and Convolutional Neural Network. Comput. Electron. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Poudyal, C.; Costa, L.F.; Sandhu, H.; Ampatzidis, Y.; Odero, D.C.; Arbelo, O.C.; Cherry, R.H. Sugarcane Yield Prediction and Genotype Selection Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging and Machine Learning. Agron. J. 2022, 114, 2320–2333. [Google Scholar] [CrossRef]
- Kurihara, J.; Nagata, T.; Tomiyama, H. Rice Yield Prediction in Different Growth Environments Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging. Remote Sens. 2023, 15, 2004. [Google Scholar] [CrossRef]
- Fei, S.; Xiao, S.; Zhu, J.; Xiao, Y.; Ma, Y. Dual Sampling Linear Regression Ensemble to Predict Wheat Yield across Growing Seasons with Hyperspectral Sensing. Comput. Electron. Agric. 2024, 216, 108514. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H. UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat. Agronomy 2022, 12, 202. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop Yield Prediction from Multi-Spectral, Multi-Temporal Remotely Sensed Imagery Using Recurrent 3D Convolutional Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102436. [Google Scholar] [CrossRef]
- Mia, M.S.; Tanabe, R.; Habibi, L.N.; Hashimoto, N.; Homma, K.; Maki, M.; Matsui, T.; Tanaka, T.S.T. Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data. Remote Sens. 2023, 15, 2511. [Google Scholar] [CrossRef]
- Shammi, S.A.; Huang, Y.; Feng, G.; Tewolde, H.; Zhang, X.; Jenkins, J.; Shankle, M. Application of UAV Multispectral Imaging to Monitor Soybean Growth with Yield Prediction through Machine Learning. Agronomy 2024, 14, 672. [Google Scholar] [CrossRef]
- Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [Google Scholar] [CrossRef]
- Singh, R.; Krishnan, P.; Singh, V.K.; Sah, S.; Das, B. Combining Biophysical Parameters with Thermal and RGB Indices Using Machine Learning Models for Predicting Yield in Yellow Rust Affected Wheat Crop. Sci. Rep. 2023, 13, 18814. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of Grain Yield in Wheat Using Source–Sink Datasets Derived from RGB and Thermal Infrared Imaging. Food Energy Secur. 2023, 12, e434. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat Biomass, Yield, and Straw-Grain Ratio Estimation from Multi-Temporal UAV-Based RGB and Multispectral Images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Pradawet, C.; Khongdee, N.; Pansak, W.; Spreer, W.; Hilger, T.; Cadisch, G. Thermal Imaging for Assessment of Maize Water Stress and Yield Prediction under Drought Conditions. J. Agron. Crop Sci. 2023, 209, 56–70. [Google Scholar] [CrossRef]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Bhagat, D.; Shah, S.; Gupta, R.K. Crop Yield Prediction Using Machine Learning Approaches. In Machine Learning, Image Processing, Network Security and Data Sciences; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2024; Volume 2128, pp. 63–74. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Weiser, B.; Genzling, J.; Burai-Patrascu, M.; Rostaing, O.; Moitessier, N. Machine Learning-Augmented Docking. 1. CYP Inhibition Prediction. Digit. Discov. 2023, 2, 1841–1849. [Google Scholar] [CrossRef]
- Dsouza, R.P.; Babu, G.N.K.S. Integrating Decision Tree and KNN Hybrid Algorithm Approach for Enhancing Agricultural Yield Prediction. Comput. Integr. Manuf. Syst. 2024, 30, 15–32. [Google Scholar] [CrossRef]
- Maya Gopal, P.S.; Bhargavi, R. A Novel Approach for Efficient Crop Yield Prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Jawad, J.; Hawari, A.H.; Javaid Zaidi, S. Artificial Neural Network Modeling of Wastewater Treatment and Desalination Using Membrane Processes: A Review. Chem. Eng. J. 2021, 419, 129540. [Google Scholar] [CrossRef]
- Qian-Chuan, L.; Shi-Wei, X.; Jia-Yu, Z.; Jia-Jia, L.; Yi, Z.; Ze-Xi, Z. Ensemble Learning Prediction of Soybean Yields in China Based on Meteorological Data. Sci. Agric. Sin. 2023, 22, 1909–1927. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating Wheat Yields in Australia Using Climate Records, Satellite Image Time Series and Machine Learning Methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An Approach to Forecast Grain Crop Yield Using Multi-Layered, Multi-Farm Data Sets and Machine Learning. Precis. Agric. 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture 2023, 13, 225. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-Based Soybean Yield Forecast: Integrating Machine Learning and Weather Data for Improving Crop Yield Prediction in Southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Gupta, S.; Geetha, A.; Sankaran, K.S.; Zamani, A.S.; Ritonga, M.; Raj, R.; Ray, S.; Mohammed, H.S. Machine Learning-and Feature Selection-Enabled Framework for Accurate Crop Yield Prediction. J. Food Qual. 2022, 2022, 6293985. [Google Scholar] [CrossRef]
- Pant, J.; Pant, R.P.; Kumar Singh, M.; Pratap Singh, D.; Pant, H. Analysis of Agricultural Crop Yield Prediction Using Statistical Techniques of Machine Learning. Mater. Today Proc. 2021, 46, 10922–10926. [Google Scholar] [CrossRef]
- Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy 2020, 10, 1046. [Google Scholar] [CrossRef]
- Maya Gopal, P.S.; Bhargavi, R. Performance Evaluation of Best Feature Subsets for Crop Yield Prediction Using Machine Learning Algorithms. Appl. Artif. Intell. 2019, 33, 621–642. [Google Scholar] [CrossRef]
- Cedric, L.S.; Adoni, W.Y.H.; Aworka, R.; Zoueu, J.T.; Mutombo, F.K.; Krichen, M.; Kimpolo, C.L.M. Crops Yield Prediction Based on Machine Learning Models: Case of West African Countries. Smart Agric. Technol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Morales, A.; Villalobos, F.J. Using Machine Learning for Crop Yield Prediction in the Past or the Future. Front. Plant Sci. 2023, 14, 1128388. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Miao, Y.; Gupta, S.K.; Rosen, C.J.; Yuan, F.; Wang, C.; Wang, L.; Huang, Y. Improving Potato Yield Prediction by Combining Cultivar Information and Uav Remote Sensing Data Using Machine Learning. Remote Sens. 2021, 13, 3322. [Google Scholar] [CrossRef]
- Sajja, G.S.; Jha, S.S.; Mhamdi, H.; Naved, M.; Ray, S.; Phasinam, K. An Investigation on Crop Yield Prediction Using Machine Learning. In Proceedings of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021; pp. 916–921. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.; Senthilnath, J. Integrated Phenology and Climate in Rice Yields Prediction Using Machine Learning Methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Iqbal, N.; Shahzad, M.U.; Sherif, E.S.M.; Tariq, M.U.; Rashid, J.; Le, T.V.; Ghani, A. Analysis of Wheat-Yield Prediction Using Machine Learning Models under Climate Change Scenarios. Sustainability 2024, 16, 6976. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Peng, Y.; Su, Y.; Hu, Y.; Zou, R. Integration of Multimodal Data for Large-Scale Rapid Agricultural Land Evaluation Using Machine Learning and Deep Learning Approaches. Geoderma 2023, 439, 116696. [Google Scholar] [CrossRef]
- Bhimavarapu, U.; Battineni, G.; Chintalapudi, N. Improved Optimization Algorithm in LSTM to Predict Crop Yield. Computers 2023, 12, 10. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, D.P.; Verma, J.K. Study on Machine-Learning Algorithms in Crop Yield Predictions Specific to Indian Agricultural Contexts. In Proceedings of the 2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 155–166. [Google Scholar] [CrossRef]
- Malashin, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A.; Tynchenko, Y. Predicting Sustainable Crop Yields: Deep Learning and Explainable AI Tools. Sustainability 2024, 16, 9437. [Google Scholar] [CrossRef]
- Naga Srinivasu, P.; Ijaz, M.F.; Woźniak, M. XAI-Driven Model for Crop Recommender System for Use in Precision Agriculture. Comput. Intell. 2024, 40, e12629. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, E.; Feng, X.; Hu, J.; Lou, Z.; Zhang, H.; Zhao, B.; Lv, Y.; Peng, H.; Zhang, B. A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data. Remote Sens. 2024, 16, 3613. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.M. Crop yield estimation using deep learning based on climate big data and irrigation scheduling. Energies 2021, 14, 3004. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop Yield Prediction with Deep Convolutional Neural Networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Imre, F.; Szell, K.; Ardabili, S.; Beszedes, B.; Mosavi, A. Hybrid Machine Learning Models for Crop Yield Prediction. arXiv 2020, arXiv:2005.04155. [Google Scholar] [CrossRef]
- Kale, S.S.; Patil, P.S. A Machine Learning Approach to Predict Crop Yield and Success Rate. In Proceedings of the 2019 IEEE Pune Section International Conference (PuneCon), Pune, India, 18–20 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Joshua, S.V.; Priyadharson, A.S.M.; Kannadasan, R.; Khan, A.A.; Lawanont, W.; Khan, F.A.; Rehman, A.U.; Ali, M.J. Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum. Comput. Mater. Contin. 2022, 72, 5663–5679. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. In Smart Service Systems, Operations Management, and Analytics; Springer Proceedings in Business and Economics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 139–147. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, H.; Zhong, R.; Xu, J.; Xu, J.; Huang, J.; Wang, S.; Ying, Y.; Lin, T. A Deep Learning Approach to Conflating Heterogeneous Geospatial Data for Corn Yield Estimation: A Case Study of the US Corn Belt at the County Level. Glob. Change Biol. 2020, 26, 1754–1766. [Google Scholar] [CrossRef]
- Dietterichl, T.G. The Handbook of Brain Theory and Neural Networks-Ensemble Learning; MIT Press: Cambridge, MA, USA, 2002; Volume 40. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Webb, G.I.; Zheng, Z. Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques. IEEE Trans. Knowl. Data Eng. 2004, 16, 980–991. [Google Scholar] [CrossRef]
- Vishwakarma, A. A Review: Machine Learning Algorithms. In Data Science: Practical Approach with Python & R; Iterative International Publishers (IIP): Novi, MI, USA, 2024; pp. 162–175. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Thomas Rincy, N.; Gupta, R. Ensemble Learning Techniques and Its Efficiency in Machine Learning: A Survey. In Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 28–29 February 2020. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Cui, S.; Yin, Y.; Wang, D.; Li, Z.; Wang, Y. A Stacking-Based Ensemble Learning Method for Earthquake Casualty Prediction. Appl. Soft Comput. 2021, 101, 107038. [Google Scholar] [CrossRef]
- Renju, K.; Brunda, V. Optimizing Crop Yield Prediction through Multiple Models: An Ensemble Stacking Approach. Int. J. Data Inform. Intell. Comput. 2024, 3, 52–58. [Google Scholar] [CrossRef]
- Brandt, P.; Beyer, F.; Borrmann, P.; Möller, M.; Gerighausen, H. Ensemble Learning-Based Crop Yield Estimation: A Scalable Approach for Supporting Agricultural Statistics. GIScience Remote Sens. 2024, 61, 2367808. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, X.; Feng, R.; Qi, W.; Wang, Y.; Shrestha, B. Retrieving Soil Moisture from Grape Growing Areas Using Multi-Feature and Stacking-Based Ensemble Learning Modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Archontoulis, S.V. Forecasting Corn Yield With Machine Learning Ensembles. Front. Plant Sci. 2020, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- Nti, I.K.; Zaman, A.; Nyarko-Boateng, O.; Adekoya, A.F.; Keyeremeh, F. A Predictive Analytics Model for Crop Suitability and Productivity with Tree-Based Ensemble Learning. Decis. Anal. J. 2023, 8, 100311. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 28. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Khaki, S.; Archontoulis, S.V. Corn Yield Prediction With Ensemble CNN-DNN. Front. Plant Sci. 2021, 12, 709008. [Google Scholar] [CrossRef]
- Tripathi, D.; Biswas, S.K. An Expert System Using Ensemble Learning for Crop Yield Prediction: EESCYP-I. In Proceedings of the 2022 International Conference on Advances in Computing, Communication and Materials (ICACCM), Dehradun, India, 10–11 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ramesh, V.; Kumaresan, P. Stacked Ensemble Model for Accurate Crop Yield Prediction Using Machine Learning Techniques. Environ. Res. Commun. 2025, 7, 035006. [Google Scholar] [CrossRef]
- Haider, S.T.; Ge, W.; Li, J.; Rehman, S.U.; Imran, A.; Sharaf, M.A.F.; Haider, S.M. An Ensemble Machine Learning Framework for Cotton Crop Yield Prediction Using Weather Parameters: A Case Study of Pakistan. IEEE Access 2024, 12, 124045–124061. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D.W. DARPA’s Explainable Artificial Intelligence Program. AI Mag. 2019, 40, 44–58. [Google Scholar] [CrossRef]
- Duval, A. Explainable Artificial Intelligence (XAI); MA4K9 Scholarly Report; Mathematics Institute, The University of Warwick: Coventry, UK, 2019; p. 58. [Google Scholar] [CrossRef]
- Hu, Z.F.; Kuflik, T.; Mocanu, I.G.; Najafian, S.; Shulner Tal, A. Recent Studies of XAI—Review. In Proceedings of the UMAP’21: Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, Utrecht, The Netherlands, 21–25 June 2021; pp. 421–431. [Google Scholar] [CrossRef]
- Speith, T.; Langer, M. A New Perspective on Evaluation Methods for Explainable Artificial Intelligence (XAI). In Proceedings of the 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW), Hannover, Germany, 4–5 September 2023; pp. 325–331. [Google Scholar] [CrossRef]
- John Martin, R.; Mittal, R.; Malik, V.; Jeribi, F.; Siddiqui, S.T.; Hossain, M.A.; Swapna, S.L. XAI-Powered Smart Agriculture Framework for Enhancing Food Productivity and Sustainability. IEEE Access 2024, 12, 168412–168427. [Google Scholar] [CrossRef]
- Mohan, R.N.V.J.; Rayanoothala, P.S.; Sree, R.P. Next-Gen Agriculture: Integrating AI and XAI for Precision Crop Yield Predictions. Front. Plant Sci. 2024, 15, 1451607. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M. Developing an XAI-Based Crop Recommendation Framework Using Soil Nutrient Profiles and Historical Crop Yields. In IEEE Transactions on Consumer Electronics; IEEE: New York, NY, USA, 2025; p. 1. [Google Scholar] [CrossRef]
- Yenkikar, A.; Mishra, V.P.; Bali, M.; Ara, T. An Explainable AI-Based Hybrid Machine Learning Model for Interpretability and Enhanced Crop Yield Prediction. MethodsX 2025, 15, 103442. [Google Scholar] [CrossRef]
- Kundathil, C.; Viswan, H.; Kumar, P. Crop Simulation Modeling: A Strategic Tool in Crop Management. J. Food Chem. Nanotechnol. 2023, 9, S342–S358. [Google Scholar] [CrossRef]
- Nikhitha Reddy, C. Explainable Artificial Intelligence (XAI) for Climate Hazard Assessment: Enhancing Predictive Accuracy and Transparency in Drought, Flood, and Landslide Modeling. Int. J. Sci. Technol. 2025, 16, 1–15. [Google Scholar] [CrossRef]
- Kalasampath, K.; Spoorthi, K.N.; Sajeev, S.; Kuppa, S.S.; Ajay, K.; Maruthamuthu, A. A Literature Review on Applications of Explainable Artificial Intelligence (XAI). IEEE Access 2025, 13, 41111–41140. [Google Scholar] [CrossRef]
- Suruliandi, A.; Mariammal, G.; Raja, S.P. Crop Prediction Based on Soil and Environmental Characteristics Using Feature Selection Techniques. Math. Comput. Model. Dyn. Syst. 2021, 27, 117–140. [Google Scholar] [CrossRef]
- Ansarifar, J.; Wang, L.; Archontoulis, S.V. An Interaction Regression Model for Crop Yield Prediction. Sci. Rep. 2021, 11, 17754. [Google Scholar] [CrossRef]
- Goyal, V. Predictive Analysis of Crop Yield Based on Environmental and Soil Conditions. Int. J. Comput. Model. Appl. 2024, 1, 50–63. [Google Scholar] [CrossRef]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The Effect of Increasing Temperature on Crop Photosynthesis: From Enzymes to Ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef]
- Fujii, A.; Nakamura, S.; Goto, Y. Relation between Stem Growth Processes and Internode Length Patterns in Sorghum Cultivar “Kazetachi”. Plant Prod. Sci. 2014, 17, 185–193. [Google Scholar] [CrossRef][Green Version]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of Temperature Stress by Nutrient Management in Crop Plants: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef]
- Lalić, B.; Fitzjarrald, D.R.; Firanj Sremac, A.; Marčić, M.; Petrić, M. Identifying Crop and Orchard Growing Stages Using Conventional Temperature and Humidity Reports. Atmosphere 2022, 13, 700. [Google Scholar] [CrossRef]
- Mao, Q.; Li, H.; Ji, C.; Peng, Y.; Li, T. Experimental Study of Ambient Temperature and Humidity Distribution in Large Multi-Span Greenhouse Based on Different Crop Heights and Ventilation Conditions. Appl. Therm. Eng. 2024, 248, 123176. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. Cropdeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Zandalinas, S.I.; Huck, C.; Fritschi, F.B.; Mittler, R. Meta-Analysis of Drought and Heat Stress Combination Impact on Crop Yield and Yield Components. Physiol. Plant. 2021, 171, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Canadell, J.G.; Yu, L.; Yu, L.; Zhang, W.; Smith, P.; Fischer, T.; Huang, Y. Climate Drives Global Soil Carbon Sequestration and Crop Yield Changes under Conservation Agriculture. Glob. Change Biol. 2020, 26, 3325–3335. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme Weather Events Risk to Crop-Production and the Adaptation of Innovative Management Strategies to Mitigate the Risk: A Retrospective Survey of Rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Llanto, G.M. The Impact of Infrastructure on Agricultural Productivity. Infrastruct. Agric. Product. 2012, 469–486. [Google Scholar]
- Dhankhar, N.; Kumar, J. Impact of Increasing Pesticides and Fertilizers on Human Health: A Review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Reuben, A.T.C. The Role of Intercropping in Insect Pest Management. Eurasian Exp. J. Sci. Appl. Res. 2023, 4, 4–7, ISSN 2992-4146. [Google Scholar]
- Shukla, A.K.; Kumar Behera, S. Fertilizer Use in Indian Agriculture and Its Impact on Human Health and Environment. Indian J. Fertil. 2022, 18, 218–237. [Google Scholar]
- Dobrodomova, L.; Dzhoraev, V.; Tutaeva, L.; Voroshilova, L.; Dmitrieva, E. The Problems of Developing Infrastructure That Ensures the Economic Security of Small Businesses in the Agricultural Sector (on the Example of the Orenburg Region). E3S Web Conf. 2020, 175, 9. [Google Scholar] [CrossRef]
- Mugejo, K.; Ncube, B.; Mutsvangwa, C. Infrastructure Performance and Irrigation Water Governance in Genadendal, Western Cape, South Africa. Sustain. 2022, 14, 2174. [Google Scholar] [CrossRef]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate Change Impacts on Water and Agriculture Sectors in Southern Africa: Threats and Opportunities for Sustainable Development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- de Janvry, A.; Sadoulet, E. Using Agriculture for Development: Supply- and Demand-Side Approaches. World Dev. 2020, 133, 105003. [Google Scholar] [CrossRef]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S.; Rastogi, R. Smart Agriculture—Urgent Need of the Day in Developing Countries. Sustain. Comput. Informatics Syst. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Boadu, E.F.; Wang, C.C.; Sunindijo, R.Y. Characteristics of the Construction Industry in Developing Countries and Its Implications for Health and Safety: An Exploratory Study in Ghana. Int. J. Environ. Res. Public Health 2020, 17, 4110. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Yu, Y.; Appiah, D.; Zulu, B.; Adu-Poku, K.A. Integrating Rural Development, Education, and Management: Challenges and Strategies. Sustain. 2024, 16, 1–22. [Google Scholar] [CrossRef]
- Giles, J.; Grosjean, G.; Le Coq, J.F.; Huber, B.; Bui, V.L.; Läderach, P. Barriers to Implementing Climate Policies in Agriculture: A Case Study From Viet Nam. Front. Sustain. Food Syst. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Saini, P.; Nagpal, B. Spatiotemporal Landsat-Sentinel-2 Satellite Imagery-Based Hybrid Deep Neural Network for Paddy Crop Prediction Using Google Earth Engine. Adv. Sp. Res. 2024, 73, 4988–5004. [Google Scholar] [CrossRef]
- Waltz, E. Digital Farming Attracts Cash to Agtech Startups. Nat. Biotechnol. 2017, 35, 397–398. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Roy, A.; Pal, J. Smart Irrigation System Using Internet of Things. Lect. Notes Netw. Syst. 2021, 137, 119–129. [Google Scholar] [CrossRef]
- Kadu, A.; Reddy, K.T.V.; Gawande, U. Innovative AgTech: A Predictive Machine Learning-Driven Precision Farming Solution for Enhancing Agricultural Productivity in Wardha. In Proceedings of the 2024 2nd DMIHER International Conference on Artificial Intelligence in Healthcare, Education and Industry (IDICAIEI), Wardha, India, 29–30 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- von Veltheim, F.R.; Heise, H. The Agtech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots. Sustainability 2020, 12, 10570. [Google Scholar] [CrossRef]
- Zabaleta, J.M.O.; Rodriguez, C.M.A. Engineering in Education, with an Impact on the Implementation of Agtech in the Agricultural Sector. In Proceedings of the 2023 IEEE Colombian Caribbean Conference (C3), Barranquilla, Colombia, 22–25 November 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Xia, F.; Lou, Z.; Sun, D.; Li, H.; Quan, L. Weed Resistance Assessment through Airborne Multimodal Data Fusion and Deep Learning: A Novel Approach towards Sustainable Agriculture. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103352. [Google Scholar] [CrossRef]
- Dolaptsis, K.; Pantazi, X.E.; Paraskevas, C.; Arslan, S.; Tekin, Y.; Bantchina, B.B.; Ulusoy, Y.; Gündoğdu, K.S.; Qaswar, M.; Bustan, D.; et al. A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop. Agriculture 2024, 14, 210. [Google Scholar] [CrossRef]
- Yewle, A.D.; Mirzayeva, L.; Karakuş, O. Multi-Modal Data Fusion and Deep Ensemble Learning for Accurate Crop Yield Prediction. arXiv 2025, arXiv:2502.06062. [Google Scholar] [CrossRef]
Database | Search Terms and Criteria | Language | No. of Paper Initially Retrieved | No. of Paper After Exclusion Criteria |
---|---|---|---|---|
Google scholar | Machine learning, Deep learning, Yield prediction, Crop, Artificial Intelligence, Abnormal climate | English | 90 | 26 |
Scopus | Machine learning, Deep learning, Yield prediction, Crop, Artificial Intelligence, Abnormal climate | English | 76 | 7 |
Web of Science | Machine learning, Deep learning, Yield prediction, Crop, Artificial Intelligence, Abnormal climate | English | 80 | 22 |
Science direct search | Machine learning, Deep learning, Yield prediction, Crop, Artificial Intelligence, Abnormal climate | English | 87 | 5 |
Target | Imaging Methods Used | Objective | Ref. | Publisher | Nation | Year |
---|---|---|---|---|---|---|
Corn | HSI | Training of a CNN classification model to estimate corn kernel yield using HSI | [54] | Comput. Electron. | China | 2021 |
Sugarcane | HSI | Yield prediction of various new genotypes in Florida sugarcane breeding using UAV-based aerial imagery and ground data collection | [55] | Agronomy | USA | 2022 |
Rice | HSI | Yield prediction accuracy of rice grown under diverse environments using UAV-based HSI | [56] | Remote Sensing | Japen | 2023 |
Wheat | HSI | Wheat yield prediction throughout the growing season using hyperspectral reflectance data | [57] | Comput. Electron. | China | 2024 |
Wheat | HSI | Winter wheat yield prediction using ML based on hyperspectral data collected during flowering and grain-filling stages via low-altitude UAV | [58] | Agronomy | China | 2022 |
Wheat, Corn | MSI | Simultaneous utilization of spatial, spectral, and temporal information from multi-spectral and multi-temporal remote sensing imagery | [59] | Int. J. Appl. Earth Obs. Geoinf. | China | 2021 |
Rice | MSI | Exploring the potential of multimodal deep learning for rice yield prediction using multispectral UAV imagery at early growth stages combined with weather data | [60] | Remote Sensing | Japen | 2023 |
Soybean | MSI | Monitoring soybean growth to predict yield using 14 vegetation indices, including CC, NDVI, GNDVI, and EVI2 | [61] | Agronomy | USA | 2024 |
Corn | MSI | Evaluating the effectiveness of UAV-based VIs for maize yield prediction during vegetative and reproductive stages using various ML models with limited training samples | [62] | Agronomy | USA | 2023 |
Wheat | RGB, TIR | Development of an ML model integrating thermal and RGB indices with key plant biophysical parameters to improve yield prediction accuracy | [63] | Scientific Report | India | 2023 |
Wheat | RGB, TIR | Exploring the potential of improving grain yield prediction by fusing source-sink level color, texture, and temperature features extracted from RGB imagery with thermal images from proximal sensing technologies | [64] | Food Energy Secur. | China | 2022 |
Wheat | RGB, MSI | Evaluating the effectiveness of multimodal data fusion using UAV-based time-series remote sensing data and RGB and multispectral sensors for estimating wheat yield, biomass, and straw–grain ratio | [65] | Biosystems Engineering | China | 2023 |
Corn | TIR | Improving the effectiveness of thermal imaging for assessing water stress and predicting yield in maize | [66] | J. Agron. Crop. SCI | Thailand | 2022 |
Wheat | TIR, MSI | Fusion of UAV-based multispectral and thermal infrared data for wheat yield prediction | [67] | Agriculture | China | 2022 |
Target | Best Model | Quantitative Performance Metrics | Methodologies | Objective | Ref. | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|---|
Wheat | SVR | R2: 0.77 RMSE: 0.55 t ha−1 | SVR | Model evaluation for wheat yield prediction | [68] | ISPRS J. | France | 2020 |
Barley Canola | RF | RMSE: 0.36 to 0.42 t ha−1 Lin’s concordance correlation coefficient: 0.89 to 0.92 | RF | Yield forecasting for wheat, barley and canola crops | [69] | Precis | Australia | 2019 |
Potato Corn | SVR | R2: 0.857 | RF SVR | Potato and maize yield prediction based on weather monitoring (precipitation, temperature) | [70] | Remote Sensing | Irish | 2023 |
Soy bean | RF | MAE: 0.42 Mg ha−1 | SVR SVM RF | Seasonal Soybean Yield Forecast | [71] | Meteorol. | Brazil | 2019 |
- | SVM | Accuracy: 0.88~0.90 | SVM KNN RF | Soil crop yield prediction study | [72] | Food Qual. | India | 2022 |
Maize Potatoes Rice (Paddy) and wheat | RF | R2: 0.96 | GBR RF SVM DT Regression | Crop yield prediction research | [73] | ICCES | India | 2021 |
Potato | SVR | RMSE: 5.97, 4.62, 6.60, 6.17 t/ha | RF SVR KNN | Potato tuber yield prediction from soil and crop characteristic data | [74]. | Agronomy | Canada | 2020 |
Rice | RF | RMSE: 0.085 R2: 0.93 | ANN SVR KNN RF | Evaluate the most necessary features for yield prediction | [75]. | Appl. | India | 2019 |
Rice Maize Cassava Seed Cotton Yams Banana | DT | R2: 0.95 | DT Regression SVR KNN | Yield predictions for six crops | [76] | Smart Agric. | Afirca | 2022 |
Ceres-Wheat OilcropSun | RF | RMSE: 0.35–0.38 | KNN RF ANN | Selection of a prediction algorithm and evaluation of data partitioning strategies on RF performance | [77] | Front. Plant Sci. | Netherlands | 2023 |
Potato | RF | R2: 0.75–0.79 | RF SVM SVR | Yield predictions for potato | [78] | Remote Sensing | USA | 2021 |
- | SVM | Accuracy: 0.97 Error Rate: 0.05 | SVM RF DT | Presenting a ML-based framework for crop yield prediction | [79] | ICIRCA | USA | 2021 |
Wheat | RF | R2: 0.75 | SVM RF ANN | Wheat yield forecast across Australia | [80] | Meteorol | USA | 2019 |
Rice | SVM | RMSE: 737 kg/ha R2: 0.33 | KNN SVM RF | Comparison of MLR and ML techniques | [81] | Ecol. Indic | China | 2021 |
Wheat | RF | R = 0.909, nRMSE = 18%, MAE = 0.182 | ANN RF | Wheat yield prediction based on temperature variation | [82] | Remote Sens. | Pakistan | 2024 |
Target | Best Model | Methodologies | Quantitative Performance Metrics | Objective | Ref. | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|---|
Wheat | RNN | RNN LSTM GNN | RMSE:0.496 t/ha | Wheat yield prediction by integrating remote sensing and weather forecast data | [90] | ProQuest | China | 2024 |
Tomato Potato | LSTM | RNN LSTM Cnn MLP RF | R2: 0.97–0.99 | Tomato and potato yield prediction using historical data including climate, irrigation schedule, and soil moisture | [91] | Remote Sens. | Portugal | 2021 |
Soybean | CNN | Decision Tree CNN LSTM | R2: 0.864 RMSE: 4.803 | CYP for soybean across the United States using ConvLSTM and 3D CNN | [92] | Expert Systems with Applications | USA | 2021 |
Wheat Barley | CNN | CNN | MAE: 3.19–5.65% | Wheat and Barley Yield Forecasts | [93] | Comput. Electron. | Finland | 2019 |
Coner | ANN | ANN | R2: 0.48 RMSE: 3.19 MAE: 26.65 | Crop Yield Forecast | [94] | Applied Artificial Intelligence | Netherlands | 2020 |
Rice | MIR | ANN MLR SVR KNN | RMSE: 0.051 R2:0.99 | Crop Yield Forecast | [87] | Comput. Electron. | India | 2019 |
Wheat Rice Jowar et | ANN | ANN | Accuracy: 0.95 MSE: 0.03 | Crop Yield Forecast | [95] | IEEE Pune Sect. | India | 2019 |
Wheat | RNN | RNN LSTM | Accuracy: 0.97 | Improve accuracy by applying deep learning technology to ML algorithms | [42] | Conf. Ser. | India | 2021 |
Rice | RNN | RNN | R2 = 0.97 RMSE: 0.03 | Predicting Crop Yield Using Nonlinear Parameters | [96] | Comput. Mater. | India | 2022 |
Coner | DNN | DNN | RMSE: 8.21 R2: 0.91 | Crop Yield Forecast | [43] | Springer Proc. | USA | 2019 |
Soybean | CNN | CNN LSTM | RMSE: 329.53 kg/ha | Soybean Yield Forecast | [97] | Sensors | China | 2019 |
Soybean | DNN | DNN | R2: 0.72 RMSE: 15.9% | Aperture grain yield prediction within a DNN framework | [98] | Remote Sens. | USA | 2019 |
Coner | LSTM | LSTM | RMSE: 1.47 mg/ha | County-Level Corn Yield Forecast | [99] | Glob. Chang. Biol. | China | 2019 |
Target | Main Category | Used Models | Quantitative Performance Metrics | Objective | Ref. | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|---|
Wheat Barley Rapeseed | Stacking | Stacking Regressor (SR) Voting Mean (VM) | R2: 0.79–0.89 RMSE: 7.2–8.1% | Yield estimates for three major winter crops | [112] | GIScience Remote Sens. | Germany | 2024 |
Grape | Stacking | CatBoost RF GBDT | R2: 0.7504 RMSE: 0.0245 m3/m3 | Grape yield prediction according to seasonal drought | [113] | Integrative Agriculture | China | 2022 |
Soybean | Stacking | KNN SVR RF | R2: 0.93 MAE: 117.89 RMSE: 155.59 | Soybean yield prediction and feasibility verification | [89] | Sci. Agric. Sin. | China | 2023 |
Coner | Stacking | Lnear regression LASSO regression Extreme Gradient Boosting | RMSE: 9.5% | Predicting corn yield by taking into account the weather within the season | [114] | Plant Sci. | USA | 2020 |
Coner | Stacking | Extreme Gradient Boosting LightGBM Adaboost CatBoost | Accuracy: 99.32% | Corn yield prediction based on TBEL stacking model | [115] | Decis. Anal. J. | USA | 2023 |
Alfalfa | Stacking | SVR KNN RF | R2: 0.874 | Alfalfa yield prediction by combining three basic learners | [116] | Remote Sens. | USA | 2020 |
Coner | - | CNN-DNN | RMSE: 8.5% | Corn Yield Forecast | [117] | Front. Plant Sci. | USA | 2021 |
23 crop types | Boosting | Extra Tree AdaBoost Gradient Boosting XGBoost | Accuracy: 85.79 | Yield prediction using EESCYP-I | [118] | Conf. Adv. Comput. | India | 2022 |
Rice Maiz Wheat Sugarcane | Stacking | RF Gradient Boosting Elastic Net Ada Boost LR KNR | R2: 0.98 RMSE: 124.78 t/ha MAE: 7.20 t/ha | Crop yield prediction using climate datasets (precipitation, temperature, solar radiation) across tropical to temperate zones | [119] | Mater. Today Proc. | India | 2025 |
Cotton | Boosting | RF + Extreme Gradient Boosting Extreme Gradient Boosting | RMSE: 0.22 MSE: 0.05 MAE: 1.23 | ML-based cotton yield prediction using meteorological and soil data | [120] | IEEE | China | 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.W.; Hidayat, M.S.; Cho, S.B.; Hwang, W.-H.; Lee, H.; Cho, B.-K.; Kim, M.S.; Baek, I.; Kim, G. Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions. Plants 2025, 14, 2841. https://doi.org/10.3390/plants14182841
Choi JW, Hidayat MS, Cho SB, Hwang W-H, Lee H, Cho B-K, Kim MS, Baek I, Kim G. Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions. Plants. 2025; 14(18):2841. https://doi.org/10.3390/plants14182841
Chicago/Turabian StyleChoi, Ji Won, Mohamad Soleh Hidayat, Soo Been Cho, Woon-Ha Hwang, Hoonsoo Lee, Byoung-Kwan Cho, Moon S. Kim, Insuck Baek, and Geonwoo Kim. 2025. "Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions" Plants 14, no. 18: 2841. https://doi.org/10.3390/plants14182841
APA StyleChoi, J. W., Hidayat, M. S., Cho, S. B., Hwang, W.-H., Lee, H., Cho, B.-K., Kim, M. S., Baek, I., & Kim, G. (2025). Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions. Plants, 14(18), 2841. https://doi.org/10.3390/plants14182841