Zeatin Regulates Somatic Embryogenesis in Liriodendron sino-americanum via CYCD3
Abstract
1. Introduction
2. Results
2.1. Significant Differences in SE Efficiency of Different Liriodendron sino-americanum Genotypes Under ZT Treatment
2.2. RNA-Seq and Transcript Annotation
2.3. Transcriptomic Analysis of Differential Gene Expression During Early SE Induced by ZT in Liriodendron sino-americanum Genotypes
2.4. Functional Enrichment Analysis of DEGs
2.5. Transcriptomic Changes in Phytohormone Signaling Pathways
2.6. Validation of DEGs via qRT-PCR
2.7. Additional Transcriptomic Support from Other Datasets
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Zeatin Treatment
4.2. RNA Extraction, Library Construction, and Sequencing
4.3. Data Processing and Analysis
4.4. qRT-PCR Analysis
4.5. Transcriptome Datasets Used for Expression Validation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SE | Somatic Embryogenesis |
ZT | Zeatin |
CKs | Cytokinins |
References
- Wang, P.; Dong, Y.; Zhu, L.; Zhang, S.; Chen, J. The Role of γ-Aminobutyric Acid in Aluminum Stress Tolerance in a Woody Plant, Liriodendron chinense × tulipifera. Hortic. Res. 2021, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W. Flora of Chinese Trees; China Forestry Publishing House: Beijing, China, 1983; Volume 1. [Google Scholar]
- Zimmerman, J.L. SE: A model for early development in higher plants. Plant Cell 1993, 5, 1411. [Google Scholar] [CrossRef] [PubMed]
- Garcês, H.; Sinha, N. The ‘mother of thousands’ (Kalanchoë daigremontiana): A plant model for asexual reproduction and CAM studies. Cold Spring Harb Protoc 2009, 2009, pdb.emo133. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Zhuge, Q.; Huang, M. Studies on the SE of Liriodendron hybrids (L. chinense × L. tulipifera). Sci. Silvae Sin. 2003, 39, 49–53. [Google Scholar]
- Li, M.; Wang, D.; Long, X.; Hao, Z.; Lu, Y.; Zhou, Y.; Peng, Y.; Cheng, T.; Shi, J.; Chen, J. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. Chinense × L. Tulipifera). Front. Plant Sci. 2022, 13, 802128. [Google Scholar] [CrossRef]
- Xi, Y.; Sun, Y.; Li, Y. Advances in Research on Somatic Embryogenesis in Forest Trees. J. Baoding Univ. 2020, 33, 122–130. [Google Scholar]
- Jiang, F.X.; Wei, P.W.; Kou, Y.P.; Gao, S.; Wang, Y.J.; Zhao, L.J.; Chen, Q.B. Exploration of Key Genes in Plant Somatic Embryogenesis. Mol. Plant Breed. 2017, 15, 1304–1311. [Google Scholar]
- Cui, Y.H. Study on Somatic Embryogenesis in Vegetative Organs of Liriodendron Hybrid. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2010. [Google Scholar]
- Li, Q.M.; Gao, F.; Han, J.; Sun, Y.; Zhao, J.S.; Chen, S.G. Research Progress on Somatic Embryogenesis of Picea Species. New Agric. 2019, 900, 39–41. [Google Scholar]
- Wang, C.Y.; Hu, Y.; Guo, E.H.; Hu, X.L.; Tian, C.Y. Advances in the Application of Molecular Markers in Gymnosperms. Mol. Plant Breed. 2008, 6, 971–980. [Google Scholar]
- Jones, N.; Van Staden, J. Plantlet production from somatic embryos of Pinus patula. J. Plant Physiol. 1995, 145, 519–525. [Google Scholar] [CrossRef]
- Merkle, S.; Battle, P. Enhancement of embryogenic culture initiation from tissues of mature sweetgum trees. Plant Cell Rep. 2000, 19, 268–273. [Google Scholar] [CrossRef]
- Tang, W.; Whetten, R.; Sederoff, R. Genotypic control of high-frequency adventitious shoot regeneration via somatic organogenesis in loblolly pine. Plant Sci. 2001, 161, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H. Study on Somatic Embryogenesis in Liriodendron Hybrid. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2003. [Google Scholar]
- Chen, J.H.; Zhang, Y.J.; Li, T.T.; Wang, P.K.; Wang, G.P.; Shi, J.S. Origin and Development Process of Somatic Embryogenesis in Liriodendron Hybrid. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2012, 36, 16–20. [Google Scholar]
- Jiménez, V.M. Involvement of plant hormones and plant growth regulators on in vitro SE. Plant Growth Regul. 2005, 47, 91–110. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [PubMed]
- Schaller, G.E.; Bishopp, A.; Kieber, J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell 2015, 27, 44–63. [Google Scholar] [CrossRef]
- Goebel-Tourand, I.; Mauro, M.-C.; Sossountzov, L.; Miginiac, E.; Deloire, A. Arrest of somatic embryo development in grapevine: Histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tissue Organ Cult. 1993, 33, 91–103. [Google Scholar] [CrossRef]
- Gu, J.L. Study on Long-Term Subculture Maintenance and Somatic Embryogenesis in Litchi, and Its Proteomics. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2010. [Google Scholar]
- Feng, D.; Meng, X.; Wang, Y.; Liu, X.; Li, M.; Zhao, J.; Bai, Z. Application of exogenous plant growth regulator in plant SE. J. Nucl. Agric. Sci. 2007, 21, 256–260. [Google Scholar]
- Sun, D.; Lang, W.-X.; Li, H.-B.; Guo, X.-W.; Lian, M.-L.; Piao, Z.-Y. An improve method for SE of Schisandra chinensis (Turcz.) Baillon. Pak. J. Biol. Sci. 2013, 16, 127–134. [Google Scholar] [CrossRef]
- Yuan, J.-L.; Yue, J.-J.; Wu, X.-L.; Gu, X.-P. Protocol for callus induction and SE in Moso bamboo. PLoS ONE 2013, 8, e81954. [Google Scholar] [CrossRef]
- Chen, T.; Wang, P.; Zhang, J.; Shi, J.S.; Cheng, T.; Chen, J. Effects of combined ABA and ZT treatment on SE and development of Liriodendron sino-americanum. Sci. Silvae Sin. 2019, 55, 64–71. [Google Scholar]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.-J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef]
- Deng, W.; Luo, K.; Li, Z.; Yang, Y. A novel method for induction of plant regeneration via SE. Plant Sci. 2009, 177, 43–48. [Google Scholar] [CrossRef]
- Dar, S.A.; Srivastava, P.P.; Rather, M.A.; Varghese, T.; Rasool, S.I.; Gupta, S. Molecular and computational analysis of Ghrelin, growth hormone Secretagogues receptor and mRNA expression of Growth-related genes after exogenous administered ghrelin peptide in Labeo rohita. Int. J. Biol. Macromol. 2020, 142, 756–768. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, Z.; Ruan, X.; Weng, Y.; Chen, X.; Zhu, J.; Lu, L.; Lu, Y.; Ma, Y.; Chen, J.; et al. Role of BABY BOOM Transcription Factor in Promoting Somatic Embryogenesis and Genetic Transformation in a Woody Magnoliid Liriodendron. Plant Cell Environ. 2025, 48, 4859–4872. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Wang, K.; Yin, H.; Yang, C.; Wang, M. Transcriptome and miRNA Reveal the Key Factor Regulating the SE of Camellia oleifera. Horticulturae 2024, 10, 1291. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Q.; Liu, F.; Wang, K.; Frazier, T.P. Highly Efficient Plant Regeneration through SE in 20 Elite Commercial Cotton (Gossypium hirsutum L.) Cultivars. Plant Omics 2009, 2, 259–268. [Google Scholar]
- Galaz-Ávalos, R.M.; Martínez-Sánchez, H.G.; Loyola-Vargas, V.M. Induction of SE in Jatropha curcas. Plant Cell Cult. Protoc. 2018, 1815, 207–214. [Google Scholar]
- Xing, D.H.; Zhao, Y.Y.; Huang, C.F. Somatic Embryogenesis and Changes in Endogenous Hormones During Somatic Embryogenesis in Echinodorus orisis L. J. Bioeng. 1999, 1, 100–105. [Google Scholar]
- Xu, Z.; Zhang, C.; Zhang, X.; Liu, C.; Wu, Z.; Yang, Z.; Zhou, K.; Yang, X.; Li, F. T ranscriptome Profiling Reveals Auxin and Cytokinin Regulating SE in Different Sister Lines of Cotton Cultivar CCRI24. J. Integr. Plant Biol. 2013, 55, 631–642. [Google Scholar] [CrossRef]
- Mahdavi-Darvari, F.; Noor, N.M. New insight into early SE of Mangosteen (Garcinia mangostana) through de novo and comparative Transcriptome analyses. Trop. Plant Biol. 2017, 10, 30–44. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.; Schmitz, G.; Müller, D.; Theres, K. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. Plant J. 2012, 71, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xu, H.; Guo, Y.; Zhang, Y.; Zhang, J.; Liu, T.; Liu, Y.; Tian, J.; Li, H.; Liu, Y.; et al. Transcriptomic and Epigenomic Remodeling Occurs during Vascular Cambium Periodicity in Populus tomentosa. Hortic. Res. 2021, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of CKs in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef]
- Wolters, H.; Jürgens, G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nat. Rev. Genet. 2009, 10, 305–317. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, C.; Song, Y.; Xu, X.; Wang, J.; Wang, J.; Zheng, T.; Lin, Y.; Lai, Z. Genome-wide identification, expression and functional analysis of the core cell cycle gene family during the early SE of Dimocarpus longan Lour. Gene 2022, 821, 146286. [Google Scholar] [CrossRef]
- To, J.P.C.; Haberer, G.; Ferreira, F.J.; Deruère, J.; Mason, M.G.; Schaller, G.E.; Alonso, J.M.; Ecker, J.R.; Kieber, J.J. Type-A Arabidopsis Response Regulators Are Partially Redundant Negative Regulators of Cytokinin Signaling. Plant Cell 2004, 16, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.H.; Zhao, X.Y.; Liu, Y.B.; Zhang, C.L.; O’Neill, S.D.; Zhang, X.S. Auxin-Induced WUS Expression is Essential for Embryonic Stem Cell Renewal during Somatic Embryogenesis in Arabidopsis. Plant Cell 2009, 21, 2090–2108. [Google Scholar] [CrossRef]
- Elhiti, M.; Tahir, M.; Gulden, R.H.; Khamiss, K.; Stasolla, C. Cytokinin-Induced Somatic Embryogenesis in Arabidopsis Requires the Transcription Factor WUSCHEL. Plant Physiol. 2010, 154, 121–132. [Google Scholar]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Chen, J.; Hao, Z.; Guang, X.; Zhao, C.; Wang, P.; Xue, L.; Zhu, Q.; Yang, L.; Sheng, Y.; Zhou, Y.; et al. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nat. Plants 2019, 5, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, S.; Zhu, L.; Wang, D.; Liu, Y.; Liu, S.; Zhang, J.; Hao, Z.; Lu, Y.; Cheng, T.; et al. Characterization of the Liriodendron Chinense MYB Gene Family and Its Role in Abiotic Stress Response. Front. Plant Sci. 2021, 12, 641280. [Google Scholar] [CrossRef] [PubMed]
- Brunner, A.M.; Yakovlev, I.A.; Strauss, S.H. Validating internal controls forquantitative plant gene expression studies. BMC Plant Biol. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed]
Maternal Parents | Paternal Parent | Designation |
---|---|---|
Tennessee | Longshan | TN-LoS |
Ontario | Longshan | ON-LoS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Chen, N.; Sun, X.; Zhu, L.; Chen, J.; Chen, Y. Zeatin Regulates Somatic Embryogenesis in Liriodendron sino-americanum via CYCD3. Plants 2025, 14, 2823. https://doi.org/10.3390/plants14182823
Tang Y, Chen N, Sun X, Zhu L, Chen J, Chen Y. Zeatin Regulates Somatic Embryogenesis in Liriodendron sino-americanum via CYCD3. Plants. 2025; 14(18):2823. https://doi.org/10.3390/plants14182823
Chicago/Turabian StyleTang, Yuanming, Nannan Chen, Xiao Sun, Liming Zhu, Jinhui Chen, and Ying Chen. 2025. "Zeatin Regulates Somatic Embryogenesis in Liriodendron sino-americanum via CYCD3" Plants 14, no. 18: 2823. https://doi.org/10.3390/plants14182823
APA StyleTang, Y., Chen, N., Sun, X., Zhu, L., Chen, J., & Chen, Y. (2025). Zeatin Regulates Somatic Embryogenesis in Liriodendron sino-americanum via CYCD3. Plants, 14(18), 2823. https://doi.org/10.3390/plants14182823