Are Furanocoumarins Present in the Cichorieae Tribe of Asteraceae? A Comparative Study of Cicerbita alpina (Asteraceae) and Peucedanum ostruthium (Apiaceae)
Abstract
1. Introduction
2. Results
2.1. Isolation and Identification
2.2. Comparative HPLC Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material, Reagents and Experimental Procedures
4.2. Extraction and Isolation
4.3. Sample Preparation for HPLC Analysis
4.4. HPLC Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruni, R.; Barreca, D.; Protti, M.; Brighenti, V.; Righetti, L.; Anceschi, L.; Mercolini, L.; Benvenuti, S.; Gattuso, G.; Pellati, F. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules 2019, 24, 2163. [Google Scholar] [CrossRef]
- Peroutka, R.; Schulzová, V.; Botek, P.; Hajšlová, J. Analysis of furanocoumarins in vegetables (Apiaceae) and citrus fruits (Rutaceae). J. Sci. Food Agric. 2007, 87, 2152–2163. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 2006, 5, 293–308. [Google Scholar] [CrossRef]
- Vogl, S.; Zehl, M.; Picker, P.; Urban, E.; Wawrosch, C.; Reznicek, G.; Saukel, J.; Kopp, B. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J. Agric. Food Chem. 2011, 59, 4371–4377. [Google Scholar] [CrossRef]
- Cisowski, W.; Sawicka, U.; Mardarowicz, M.; Asztemborska, M.; Luczkiewicz, M. Essential oil from herb and rhizome of Peucedanum ostruthium (L. Koch.) ex DC. Z. Naturforsch. C J. Biosci. 2001, 56, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Danna, C.; Bazzicalupo, M.; Ingegneri, M.; Smeriglio, A.; Trombetta, D.; Burlando, B.; Cornara, L. Anti-Inflammatory and wound healing properties of leaf and rhizome extracts from the medicinal plant Peucedanum ostruthium (L.) W. D. J. Koch. Molecules 2022, 27, 4271. [Google Scholar] [CrossRef] [PubMed]
- Hiermann, A.; Schantl, D. Antiphlogistic and antipyretic activity of Peucedanum ostruthium. Planta Med. 1998, 64, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef] [PubMed]
- Fusani, P.; Zidorn, C. Phenolics and a sesquiterpene lactone in the edible shoots of Cicerbita alpina (L.) Wallroth. J. Food Compos. Anal. 2010, 23, 658–663. [Google Scholar] [CrossRef]
- Shulha, O.; Zidorn, C. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: An update (2008–2017). Phytochemistry 2019, 163, 149–177. [Google Scholar] [CrossRef]
- Djordjević, I.; Tešević, V.; Janaćković, P.; Milosavljević, S.; Vajs, V. Sesquiterpene lactones from Cicerbita alpina. Biochem. Syst. Ecol. 2004, 32, 209–210. [Google Scholar] [CrossRef]
- Zidorn, C.; Schwaha, R.; Ellmerer, E.; Stuppner, H. On the occurrence of sonchuside A in Cicerbita alpina and its chemosystematic significance. J. Serb. Chem. Soc. 2005, 70, 171–175. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Petrova, A.; Zengin, G.; Sinan, K.I.; Balabanova, V.; Joubert, O.; Zidorn, C.; Voynikov, Y.; Simeonova, R.; Gevrenova, R. Metabolite profiling and bioactivity of Cicerbita alpina (L.) Wallr. (Asteraceae, Cichorieae). Plants 2023, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulou, I.; Horgan, M.J.; Siewert, B.; Siller, M.; Palmieri, L.; Martinidou, E.; Martens, S.; Fusani, P.; Temml, V.; Stuppner, H.; et al. In vitro evaluation of the effects of methanolic plant extracts on the embryonation rate of Ascaridia galli eggs. Vet. Res. Commun. 2023, 47, 409–419. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Petrova, A.; Savov, Y.; Gevrenova, R.; Balabanova, V.; Momekov, G.; Simeonova, R. Protective potential of Cicerbita alpina leaf extract on metabolic disorders and oxidative stress in model animals. Int. J. Mol. Sci. 2024, 25, 10851. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G.; Tettamanzi, P.; Gariboldi, P. Sesquiterpene lactones and furanocoumarins from Cicerbita alpina. Phytochemistry 1991, 30, 1319–1320. [Google Scholar] [CrossRef]
- Bauri, A.K.; Foro, S.; Nguyen Do, N.Q. Crystal structure of a photobiologically active furanocoumarin from Artemisia reticulata. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 463–466. [Google Scholar] [CrossRef]
- Vestena, A.S.; Meirelles, G.d.C.; Zuanazzi, J.A.; von Poser, G.L. Taxonomic significance of coumarins in species from the subfamily Mutisioideae, Asteraceae. Phytochem. Rev. 2023, 22, 85–112. [Google Scholar] [CrossRef]
- Okorie, D.A. Chromones and limonoids from Harrisonia abyssinica. Phytochemistry 1982, 21, 2424–2426. [Google Scholar] [CrossRef]
- Kerimli, E.H.; Kerimov, Y.B.; Mamedov, A.M. Constituents of the EtOH extract of Ferula persica roots. Chem. Nat. Compd. 2023, 59, 1171–1172. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Zhang, M.; Zhang, Z.; Zhang, B.; Wang, X.; Wang, J.; Tu, P.; Jiang, Y.; Shi, S.-P. Characterization of a coumarin C-/O-prenyltransferase and a quinolone C-prenyltransferase from Murraya exotica. Org. Biomol. Chem. 2022, 20, 5535–5542. [Google Scholar] [CrossRef]
- Khomenko, T.M.; Zarubaev, V.V.; Orshanskaya, I.R.; Kadyrova, R.A.; Sannikova, V.A.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg. Med. Chem. Lett. 2017, 27, 2920–2925. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Parmar, A.; Pandey, N.; Bhardwaj, N.; Chakrabarty, S.; Sarkar, R.; Kumar, H.; Jain, S.K. Isolation, cytotoxicity, and in-silico screening of coumarins from Psoralea corylifolia Linn. Chem. Biodivers. 2024, 21, e202301841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-T.; Yang, J.; Chen, Q.-F. A new coumarin glucoside from Angelica pubescens. Nat. Prod. Res. 2025, 39, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Juraev, K.S.; Komilov, B.J.; Eshbakova, K.A.; Turgunov, K.K.; Tashkhodzhaev, B. Furocoumarins from Ferula lehmannii. Chem. Nat. Compd. 2023, 59, 909–911. [Google Scholar] [CrossRef]
- Yang, S.-J.; Liu, M.-C.; Liang, N.; Xiang, H.-M.; Yang, S. Chemical constituents of Cyrtomium fortumei (J.) Smith. Nat. Prod. Res. 2013, 27, 2066–2068. [Google Scholar] [CrossRef]
- Furumi, K.; Fujioka, T.; Fujii, H.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M.; Mihashi, K. Novel antiproliferative falcarindiol furanocoumarin ethers from the root of Angelica japonica. Bioorg. Med. Chem. Lett. 1998, 8, 93–96. [Google Scholar] [CrossRef]
- Bergendorff, O.; Dekermendjian, K.; Nielsen, M.; Shan, R.; Witt, R.; Ai, J.; Sterner, O. Furanocoumarins with affinity to brain benzodiazepine receptors in vitro. Phytochemistry 1997, 44, 1121–1124. [Google Scholar] [CrossRef]
- Naseri, M.; Monsef-Esfehani, H.R.; Saeidnia, S.; Dastan, D.; Gohari, A.R. Antioxidative coumarins from the roots of Ferulago subvelutina. Asian J. Chem. 2013, 25, 1875–1878. [Google Scholar] [CrossRef]
- Tavakoli, S.; Delnavazi, M.-R.; Hadjiaghaee, R.; Jafari-Nodooshan, S.; Khalighi-Sigaroodi, F.; Akhbari, M.; Hadjiakhoondi, A.; Yassa, N. Bioactive coumarins from the roots and fruits of Ferulago trifida Boiss., an endemic species to Iran. Nat. Prod. Res. 2018, 32, 2724–2728. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA 2019, 116, 14083–14088. [Google Scholar] [CrossRef] [PubMed]
- Katinas, L.; Funk, V.A. An updated classification of the basal grade of Asteraceae (= Compositae): From Cabrera’s 1977 tribe Mutisieae to the present. N. Z. J. Bot. 2020, 58, 67–93. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Çiçek, S.S.; Mangoni, A.; Hanschen, F.S.; Agerbirk, N.; Zidorn, C. Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. Phytochemistry 2024, 220, 114004. [Google Scholar] [CrossRef]
- Zidorn, C. Guidelines for consistent characterisation and documentation of plant source materials for studies in phytochemistry and phytopharmacology. Phytochemistry 2017, 139, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Shtratnikova, V.Y. Furanocoumarins: History of research, diversity, synthesis, physiological role in the plant, and medical application. Russ. J. Plant Physiol. 2023, 70, 169. [Google Scholar] [CrossRef]
- Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef]
- Schulzová, V.; Hajšlová, J.; Botek, P.; Peroutka, R. Furanocoumarins in vegetables: Influence of farming system and other factors on levels of toxicants. J. Sci. Food Agric. 2007, 87, 2763–2767. [Google Scholar] [CrossRef]
- Stanjek, V.; Piel, J.; Boland, W. Biosynthesis of furanocoumarins: Mevalonate-independent prenylation of umbelliferone in Apium graveolens (Apiaceae). Phytochemistry 1999, 50, 1141–1146. [Google Scholar] [CrossRef]
- Huang, X.-C.; Tang, H.; Wei, X.; He, Y.; Hu, S.; Wu, J.-Y.; Xu, D.; Qiao, F.; Xue, J.-Y.; Zhao, Y. The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae. Nat. Commun. 2024, 15, 6864. [Google Scholar] [CrossRef]
- Campbell, W.E.; Mathee, S.; Wewers, F. Phytochemical studies on the Blister Bush, Peucedanum galbanum. Planta Med. 1994, 60, 586–587. [Google Scholar] [CrossRef]
- Chen, F.-Y.; Tu, L.-F.; Liu, D.-P.; Luo, Y.-M. A new coumarin derivative from the roots of Peucedanum praeruptorum Dunn. Biochem. Syst. Ecol. 2023, 108, 104624. [Google Scholar] [CrossRef]
- Chen, I.S.; Chang, C.T.; Sheen, W.S.; Teng, C.M.; Tsai, I.L.; Duh, C.Y.; Ko, F.N. Coumarins and antiplatelet aggregation constituents from Formosan Peucedanum japonicum. Phytochemistry 1996, 41, 525–530. [Google Scholar] [CrossRef]
- Ojala, T.; Vuorela, P.; Kiviranta, J.; Vuorela, H.; Hiltunen, R. A bioassay using Artemia salina for detecting phototoxicity of plant coumarins. Planta Med. 1999, 65, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Chinou, I.; Widelski, J.; Fokialakis, N.; Magiatis, P.; Glowniak, K. Coumarins from Peucedanum luxurians. Fitoterapia 2007, 78, 448–449. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, P.-Y.; Wu, C.-C.; Tsai, I.-L.; Chen, I.-S. Chemical constituents and anti-platelet aggregation activity from the root of Peucedanum formosanum. J. Food Drug Anal. 2008, 16, 10. [Google Scholar] [CrossRef]
- Aslam, M.; Ali, M.; Dayal, R.; Javed, K. Coumarins and a naphthyl labdanoate diarabinoside from the fruits of Peucedanum grande C. B. Clarke. Z. Naturforsch. C J. Biosci. 2012, 67, 580–586. [Google Scholar] [CrossRef]
- Huang, P.; Zheng, X.Z.; Lai, M.X.; Rao, W.Y.; Nishi, M.; Nakanishi, T. Studies on chemical constituents of Peucedanum medicum Dunn var. garcile Dunn ex Shan at Sheh. Zhongguo Zhong Yao Za Zhi 2000, 25, 222–224. [Google Scholar]
- Ngwendson, J.N.; Bedir, E.; Efange, S.M.N.; Okunji, C.O.; Iwu, M.M.; Schuster, B.G.; Khan, I.A. Constituents of Peucedanum zenkeri seeds and their antimicrobial effects. Pharmazie 2003, 58, 587–589. [Google Scholar]
Retention Time [min] | Peak | Nr. | Common Name | M | [M+H]+ (m/z) | Error (ppm) | Molecular Formula | Major HRMS2 Fragments (m/z) | UV Maxima |
---|---|---|---|---|---|---|---|---|---|
13.64 | E | 1 | Peucenin | 260 | 261.1109 | −6.83 | C15H16O4 | 205.0492, 165.0175, 123.0069 | 223, 251, 297 |
16.79 | J * | 2 | Osthole | 244 | 245.1154 | −9.67 | C15H16O3 | 131.0490, 103.0544, 159.0438 | 204, 256, 320 |
20.50 | K * | 3 | Ostruthin | 298 | 299.1614 | −11.10 | C19H22O3 | 147.0431, 176.0462, 187.0386 | 203, 331 |
20.50 | L * | 4 | Auraptene | 298 | 299.1621 | −8.76 | C19H22O3 | 119.0482, 163.0388, 81.0694 | 206, 321 |
6.78 | B | 5 | Xanthotoxin | 216 | 217.0490 | −4.99 | C12H8O4 | 174.0300, 202.0235, 161.0577 | 220, 245, 303 |
14.58 | G | 6 | Imperatorin | 270 | 271.0959 | −4.18 | C16H14O4 | 147.0434, 203.0338, 175.0383 | 218, 249, 304 |
16.79 | I * | 7 | Isoimperatorin | 270 | 271.0957 | −4.92 | C16H14O4 | 147.0433, 131.0490, 203.0337 | 221, 254, 312 |
15.99 | H | 8 | Phellopterin | 300 | 301.1057 | −6.31 | C17H16O5 | 218.0197, 217.0116, 162.0310 | 222, 270, 315 |
4.87 | A | 9 | Oxypeucedanin hydrate | 304 | 305.0995 | −9.88 | C16H16O6 | 203.0338, 147.0434, 131.0491 | 220, 249, 313 |
8.27 | C | 10 | Oxypeucedanin methanolate | 318 | 319.1159 | −7.09 | C17H18O6 | 203.0338, 147.0434, 73.0648 | 221, 253, 312 |
14.26 | F | 11 | Ostruthol | 386 | 387.1418 | −6.66 | C21H22O7 | 55.0450, 83.0490, 185.1174 | 221, 251, 313 |
10.27 | D | 12 | Oxypeucedanin | 286 | 287.0895 | −8.53 | C16H14O5 | 147.0430, 203.0333, 59.0488 | 219, 251, 310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Cardenas, C.; Grieco, G.M.F.; Zheleva-Dimitrova, D.; Appendino, G.; Zidorn, C. Are Furanocoumarins Present in the Cichorieae Tribe of Asteraceae? A Comparative Study of Cicerbita alpina (Asteraceae) and Peucedanum ostruthium (Apiaceae). Plants 2025, 14, 2815. https://doi.org/10.3390/plants14182815
Moreno Cardenas C, Grieco GMF, Zheleva-Dimitrova D, Appendino G, Zidorn C. Are Furanocoumarins Present in the Cichorieae Tribe of Asteraceae? A Comparative Study of Cicerbita alpina (Asteraceae) and Peucedanum ostruthium (Apiaceae). Plants. 2025; 14(18):2815. https://doi.org/10.3390/plants14182815
Chicago/Turabian StyleMoreno Cardenas, Calisto, Gaia Maria Francesca Grieco, Dimitrina Zheleva-Dimitrova, Giovanni Appendino, and Christian Zidorn. 2025. "Are Furanocoumarins Present in the Cichorieae Tribe of Asteraceae? A Comparative Study of Cicerbita alpina (Asteraceae) and Peucedanum ostruthium (Apiaceae)" Plants 14, no. 18: 2815. https://doi.org/10.3390/plants14182815
APA StyleMoreno Cardenas, C., Grieco, G. M. F., Zheleva-Dimitrova, D., Appendino, G., & Zidorn, C. (2025). Are Furanocoumarins Present in the Cichorieae Tribe of Asteraceae? A Comparative Study of Cicerbita alpina (Asteraceae) and Peucedanum ostruthium (Apiaceae). Plants, 14(18), 2815. https://doi.org/10.3390/plants14182815