Construction of a Genome-Wide Copy Number Variation Map and Association Analysis of Black Spot in Jujube
Abstract
1. Introduction
2. Results
2.1. Results of Resequencing Data
2.2. Genome-Wide Detection of CNVs
2.3. Number of CNV Chromosomes
2.4. Disribution of CNVs on Chromosomes
2.5. CNV Analysis of Black Spot Disease Population
2.6. Gene Annotation and Enrichment Analysis in CNV Region of Black Spot Disease Population
3. Discussion
3.1. The Evolution of CNV Detection Methods and the Feasibility of CNV Research in Ziziphus Plants
3.2. Construction of a Genome-Wide CNV Map of Chinese Jujube
3.3. CNV Characteristics of Chinese Jujube Individuals Highly Susceptible to Black Spot Disease and Analysis of Related Disease-Resistant Genes
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. DNA Extraction
4.3. Whole Genome Resequencing
4.4. Sequencing Data Processing and Read Alignments
4.5. Mapping of CNVs
4.6. Definition and Association Analysis of Regions of Variation in Copy Number of Jujube Black Spot
4.7. Gene Annotation and Functional Enrichment Analysis of CNV in Black Spot Disease Groups
4.8. RT-qPCR Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.J.; Wang, J.R.; Wang, L.L.; Liu, P.; Zhao, J.; Zhao, Z.H.; Yao, S.R.; Stănică, F.; Liu, Z.G.; Wang, L.X.; et al. The historical and current research progress on jujube-a superfruit for the future. Hortic. Res. 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.X.; Li, L.; Zhang, G.G.; Jiang, N.; Ouyang, X.H.; Wang, M. Geographical and Varietal Traceability of Chinese Jujubes Based on Physical and Nutritional Characteristics. Foods 2021, 10, 2270. [Google Scholar] [CrossRef]
- Zhu, D.Q.; Jiang, N.; Wang, N.; Zhao, Y.F.; Liu, X.M. A Literature Review of the Pharmacological Effects of Jujube. Foods 2024, 13, 2. [Google Scholar] [CrossRef]
- Liu, M.J.; Wang, M. Germplasm Resources of Chinese Jujube; China Forestry Publishing House: Beijing, China, 2009; pp. 56–57. [Google Scholar]
- Ji, X.L.; Hou, C.Y.; Yan, Y.Z.; Shi, M.M.; Liu, Y.Q. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Z.P.; Huang, Y.; Wang, L.; Sun, J.; Liu, F.M.; Zhang, H.G.; Wang, L.N.; Wang, S.J.; Zhao, W.; et al. Analysis and comprehensive evaluation of fruit quality of Huizao in different regions of Southern Xinjiang. Non-Wood For. Res. 2022, 40, 143–152. [Google Scholar]
- Liu, X.L.; Liu, Y.; Ma, R.; Liang, Y.M.; Chen, B.J.; Yan, J. Identification and Biological Characteristics of the Pathogen Causing Jujube Black Spot in Xinjiang. J. Northwest For. Univ. 2015, 30, 132–138. [Google Scholar]
- Goodwin, S.; Mcpherson, J.D.; Mccombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Hijikata, A.; Suyama, M.; Kikugawa, S.; Matoba, R.; Naruto, T.; Enomoto, Y.; Kurosawa, K.; Harada, N.; Yanagi, K.; Kaname, T.; et al. Exome-wide benchmark of difficult-to-sequence regions using short-read next-generation DNA sequencing. Nucleic Acids Res. 2024, 52, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Masood, D.; Ren, L.; Nguyen, C.; Brundu, F.G.; Zheng, L.; Zhao, Y.; Jaeger, E.; Li, Y.; Cha, S.W.; Halpern, A.; et al. Evaluation of somatic copy number variation detection by NGS technologies and bioinformatics tools on a hyper-diploid cancer genome. Genome Biol. 2024, 25, 163. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.; McDonagh, E.M.; Zhang, X.; Fawcett, K.; Foreman, A.; Daneck, P.; Sergouniotis, P.I.; Parkinson, H.; Mazzarotto, F.; Inouye, M.; et al. Genome-wide association testing beyond SNPs. Nat. Rev. Genet. 2025, 26, 156–170. [Google Scholar] [CrossRef]
- Weischenfeldt, J.; Symmons, O.; Spitz, F.; Korbel, J.O. Phenotypic impact of genomic structural variation: Insights from and for human disease. Nat. Rev. Genet. 2013, 14, 125–138. [Google Scholar] [CrossRef]
- Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Lee, C. Detection of large-scale variation in the human genome. Nat. Genet. 2004, 36, 949–951. [Google Scholar] [CrossRef]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Maner, S.; Massa, H.F.; Walker, M.; Chi, M.Y.; et al. Large-scale copy number polymorphism in the human genome. Science 2004, 305, 525–528. [Google Scholar] [CrossRef]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Wang, C. Detection and analysis of genome-wide copy number variation in the pig genome using an 80K SNP Beadchip. J. Anim. Breed. Genet. 2020, 137, 2. [Google Scholar] [CrossRef] [PubMed]
- Nandolo, W.; Gábor, M.; Wurzinger, M.; Banda, L.J.; Slkner, J. Detection of copy number variants in African goats using whole genome sequence data. BMC Genom. 2021, 22, 398. [Google Scholar] [CrossRef] [PubMed]
- Springer, N.M.; Ying, K.; Fu, Y.; Ji, T.M.; Yeh, C.T.; Jia, Y.; Wu, W.W.; Richmond, T.; Kitzman, J.O.; Rosenbaum, H.D.; et al. Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content. PLoS Genet. 2009, 5, e1000734. [Google Scholar] [CrossRef] [PubMed]
- Zmienko, A.; Marszalek-Zenczak, M.; Wojciechowski, P.; Samelak-Czajka, A.; Luczak, M.; Kozlowski, P.; Karlowski, W.M.; Figlerowicz, M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. Plant Cell 2020, 32, 1797–1819. [Google Scholar] [CrossRef]
- Mareri, L.; Milc, J.; Laviano, L.; Buti, M.; Vautrin, S.; Cauet, S.; Mascagni, F.; Natali, L.; Cavallini, A.; Bergès, H.; et al. Influence of CNV on transcript levels of HvCBF genes at Fr-H2 locus revealed by resequencing in resistant barley cv. ‘Nure’ and expression analysis. Plant Sci. 2020, 290, 110305. [Google Scholar] [CrossRef]
- Niu, J.; Wang, W.; Wang, Z.; Chen, Z.; Zhang, X.; Qin, Z.; Miao, L.; Yang, Z.; Xie, C.; Xin, M.; et al. Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing. Genome Biol. 2024, 25, 171. [Google Scholar]
- Zheng, L.Y.; Guo, X.S.; He, B.; Sun, L.J.; Peng, Y.; Dong, S.S.; Liu, T.F.; Jiang, S.Y.; Ramachandran, S.; Liu, C.M.; et al. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol. 2011, 12, R114. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, A.; Tong, L.; Yan, G.; Lu, L.; Yin, Y.; Fu, X.; Yang, H.; Li, H.; Huang, W.; et al. Genome Resequencing for Autotetraploid Rice and Its Closest Relatives Reveals Abundant Variation and High Potential in Rice Breeding. Int. J. Mol. Sci. 2024, 25, 9012. [Google Scholar] [CrossRef] [PubMed]
- Patil, G.B.; Lakhssassi, N.; Wan, J.; Song, L.; Zhou, Z.; Klepadlo, M.; Vuong, T.D.; Stec, A.O.; Kahil, S.S.; Colantonio, V.; et al. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol. J. 2019, 17, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.W.; Wong, F.L.; Luk, C.Y.; Chung, C.Y.; Yung, W.S.; Wang, Z.; Xie, M.; Song, S.; Chung, G.; et al. Increased copy number of gibberellin 2-oxidase 8 genes reduced trailing growth and shoot length during soybean domestication. Plant J. 2021, 107, 1739–1755. [Google Scholar] [CrossRef]
- Li, Z.; Han, Y.; Niu, H.; Wang, Y.; Jiang, B.; Weng, Y. Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femalenes (F) locus. Hortic. Res. 2020, 7, 2. [Google Scholar]
- Zhang, Q.; Zhang, X.T.; Liu, J.; Mao, C.Y.; Chen, S.; Zhang, Y.J.; Leng, L. Identification of copy number variation and population analysis of the sacred lotus (Nelumbo nucifera). Biosci. Biotechnol. Biochem. 2020, 84, 2037–2044. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Zhang, X.X.; Zhang, S.C.; Lin, Z.C.; Zhang, X.T.; Ming, R. Structural variations in papaya genomes. BMC Genom. 2021, 22, 335. [Google Scholar] [CrossRef] [PubMed]
- Pinosio, S.; Giacomello, S.; Faivre-Rampant, P.; Taylor, G.; Jorge, V.; Paslier, M.C.L.; Zaina, G.; Bastien, C.; Cattonaro, F.; Marroni, F.; et al. Characterization of the Poplar Pan-Genome by Genome-Wide Identification of Structural Variation. Mol. Biol. Evol. 2016, 33, 2706–2719. [Google Scholar] [CrossRef]
- Gunaseelan, K.; McAtee, P.A.; Nardozza, S.; Pidakala, P.; Wang, R.L.; David, K.; Burdon, J.; Schaffer, R.J. Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)-like genes show divergence in fruit ripening associated cold and ethylene responses in C-REPEAT/DRE BINDING FACTOR-like genes. PLoS ONE 2019, 14, e0216120. [Google Scholar] [CrossRef]
- Fernandez, I.M.A.; Saski, C.A.; Manganaris, G.A.; Gasic, K.; Crisosto, C.H. Genomic Sequencing of Japanese Plum (Prunus salicina Lindl.) Mutants Provides a New Model for Rosaceae Fruit Ripening Studies. Front. Plant Sci. 2018, 9, 21. [Google Scholar] [CrossRef]
- Clop, A.; Vidal, O.; Amills, M. Copy number variation in the genomes of domestic animals. Anim. Genet. 2012, 43, 503–517. [Google Scholar] [CrossRef]
- Chiang, C.; Scott, A.J.; Davis, J.R.; Tsang, E.K.; Li, X.; Kim, Y.; Hadžić, T.; Damani, F.N.; Ganel, L.; Montgomery, S.B.; et al. The impact of structural variation on human gene expression. Nat. Genet. 2017, 49, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Zhang, L.X.; Zhang, Z.Y.; Wang, Y.X. A new disease of fruit trees in China-Preliminary study on black spot disease of jujube leaves. J. Yunnan Agric. Univ. 1988, 3, 1. [Google Scholar]
- Zhao, Z.J.; Lin, Z.M.; Zhao, X.J. Diseases and Control of Jujube in Shanxi Province. China Fruits 2000, 1, 1. [Google Scholar]
- Zhang, X.; Chen, O.; Wang, W.J.; Liu, Y.; Zeng, K.F. Identification of ZjERF098 and investigation of its enhancing effect on winter jujube resistance to black spot rot. Food Ferment. Ind. 2025, 51, 55–63. [Google Scholar]
- Zhao, W.H.; Li, Y.Q. Main Symptoms, Pathogens and Integrated Control of Jujube Blackspot Disease in Honghe, Yunnan Province. Chin. Soc. Plant Pathol. 2004, S1, 152–155. [Google Scholar]
- Xiang, Z.; Zhong, C.H.; Hu, J.; Zhang, Y.L.; Mao, J.C.; Gao, F. Identification of Jujube Black Spot Pathogens in Xinjiang, China. Xinjiang Agric. Sci. 2013, 50, 845–850. [Google Scholar]
- Liu, M.J.; Wang, J.R.; Liu, P.; Zhao, J.; Zhao, Z.H.; Dai, L.; Li, X.S.; Liu, Z.G. Historical Achievements and Frontier Advances in the Production and Research of Chinese Jujube (Ziziphus jujuba) in China. Acta Hortic. Sin. 2015, 42, 1683–1698. [Google Scholar]
- Liu, X.Q.; Zhang, R.L. Isolation and identification of pathogen of jujube black spot based on high-throughput sequencing technology. Agric. Sci. Jiangsu 2020, 48, 108–112. [Google Scholar]
- Yan, F.F.; Luo, Y.J.; Bao, J.K.; Pan, Y.L.; Wang, J.R.; Wu, C.Y.; Liu, M.J. Construction of a highly saturated genetic map and identification of quantitative trait loci for leaf traits in jujube. Front. Plant Sci. 2022, 13, 1001850. [Google Scholar] [CrossRef]
- Abyzov, A.; Alexander, E.U.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Marques-Bonet, T.; Kidd, J.M.; Ventura, M.; Graves, T.A.; Cheng, Z.; Hillier, L.W.; Jiang, Z.; Baker, C.; Malfavon-Borja, R.; Fulton, L.A.; et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 2009, 457, 877–881. [Google Scholar] [CrossRef]
- Paudel, Y.; Madsen, O.; Megens, H.J.; Frantz, L.A.F.; Bosse, M.; Bastiaansen, J.W.M.; Crooijmans, R.P.; Groenen, M.A. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genom. 2013, 14, 449. [Google Scholar] [CrossRef]
- Pinto, D.; Darvishi, K.; Shi, X.H.; Rajan, D.; Rigler, D.; Fitzgerald, T.; Lionel, A.C.; Thiruvahindrapuram, B.; MacDonald, J.R.; Mills, R.; et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 2011, 29, 512–520. [Google Scholar] [CrossRef]
- Zhang, X. Genome-Wide Patterns of Copy Number Variation in the Chinese Yak Genome. Master’s Thesis, Lanzhou University, Lanzhou, China, 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=J4uTGPHNJK0CLnIeA-8yH4zps983fcaloLyDSI4n-7rPkpnrgrYHO9ya_seRFqZ5-y5QCcJp3zpOIRKpNlcyLjEOYeDAftECKbzSzhAnKVSjw5Vb6q2IFxeMDC7kVe6sIAC8uas1ssbXPHSdJgQUcLk8pAvCg8AQiayxUV1ZmIBjJ9q-1WzPOg==&uniplatform=NZKPT&language=CHS (accessed on 1 May 2017).
- Munté, E.; Roca, C.; Del Valle, J.; Feliubadaló, L.; Pineda, M.; Gel, B.; Castellanos, E.; Rivera, B.; Cordero, D.; Moreno, V.; et al. Detection of germline CNVs from gene panel data: Benchmarking the state of the art. Brief. Bioinform. 2024, 26, bbae645. [Google Scholar] [CrossRef]
- Wang, Z. Study on the Genomic Copy Number Variation of Guizhou Local Pig Breeds Based on Resequencing Technology. Master’s Thesis, Guizhou University, Guizhou, China, 2019. Available online: https://kns.cnki.net/kcms2/article/abstract?v=J4uTGPHNJK0y4W6ycDSHBtqq19WX6kN97y5cejrshgIf7JkN-fJbq2KJ9LXDVhI7RMkC0o5iw74ZO_lZJBsaUooeHZlVEOa2lqYYL-xAyNW7HosN2yxlewo6UzfyLZQtJlufK-_Z7tQyKi27YNon0XfqZ-tv6sTgdX3345WGi4HW_btyhcYazQ==&uniplatform=NZKPT&language=CHS (accessed on 1 June 2019).
- Fumagalli, M. Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS ONE 2013, 8, e79667. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.S.; Zhang, W.H.; Zhang, P.; Sun, W.C.; Han, Y.P.; Li, L. A comprehensive analysis of copy number variations in diverse apple populations. BMC Genom. 2023, 24, 256. [Google Scholar] [CrossRef]
- Sakina, A.; Alkan, C.; Khan, A. Population-level gene copy number variations reveal distinct genetic properties of different Malus species. BMC Genom. 2025, 26, 687. [Google Scholar] [CrossRef]
- Cardone, M.F.; D’Addabbo, P.; Alkan, C.; Bergamini, C.; Catacchio, C.R.; Anaclerio, F.; Chiatante, G.; Marra, A.; Giannuzzi, G.; Perniola, R.; et al. Inter-varietal structural variation in grapevine genomes. Plant J. 2016, 88, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Shang, E.; Ma, M. Physiological, Biochemical, and Molecular Mechanisms of Resistance of Poacynum hendersonii to Melampsora apocyni. Plant 2025, 14, 2589. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, H.C.; Kim, K.E.; Jung, M.S.; Han, H.J.; Kim, S.H.; Kwon, Y.S.; Bahk, S.; An, J.; Bae, D.W.; et al. A NAC transcription factor and SNI1 cooperatively suppress basal pathogen resistance in Arabidopsis thaliana. Nucleic Acids Res. 2012, 40, 9182–9192. [Google Scholar] [CrossRef]
- Durrant, W.E.; Wang, S.; Dong, X.N. Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc. Natl. Acad. Sci. USA 2007, 104, 4223–4227. [Google Scholar] [CrossRef]
- Berthlot, K.; Peruch, F.; Lecomte, S. Highlights on Hevea brasiliensis (pro) hevein proteins. Biochimie 2016, 127, 258–270. [Google Scholar] [CrossRef]
- Parijs, V.J.; Broekaert, W.F.; Goldstein, I.J.; Perumans, W.J. Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 1991, 183, 258–264. [Google Scholar] [CrossRef]
- Bertini, L.; Proietti, S.; Aleandri, M.P.; Mondello, F.; Sandini, S.; Caporale, C.; Caruso, C. Modular structure of HEL protein from Arabidopsis reveals new potential functions for PR-4 proteins. Biol. Chem. 2012, 393, 1533–1546. [Google Scholar] [CrossRef]
- Drikvand, R.; Sohrabi, S.M.; Sohrabi, S.S.; Samiei, K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet. 2024, 62, 5092–5114. [Google Scholar] [CrossRef]
- Ding, P.T.; Rekhter, D.; Ding, Y.L.; Feussner, K.; Busta, L.; Haroth, S.; Xu, S.H.; Li, X.; Jetter, R.; Feußner, I.; et al. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell 2016, 28, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Kim, D.; Bernsdorff, F.; Rashidi, Z.A.; Scholten, N.; Schreiber, S.; Zeier, T.; Schuck, S.; Reichel-Deland, V.; Zeier, J. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. Plant Physiol. 2017, 174, 124–153. [Google Scholar] [CrossRef]
- Shan, L.B.; He, P. Pipecolic Acid Derivative Identified as SAR Regulator. Cell 2018, 173, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Maier, F.; Zwicker, S.; Hückelhoven, A.; Meissner, M.; Funk, J.; Pfitzner, A.J.; Pfitzner, U.M. NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol. Plant Pathol. 2011, 12, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.Y.; Qin, M.H.; Zhu, S.; Li, Y.B. Silencing of a Cotton Actin-Binding Protein GhWLIM1C Decreases Resistance against Verticillium dahliae Infection. Plants 2022, 11, 1828. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Chen, J. A high throughput DNA extraction method with high yield and quality. Plant Methods 2012, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.J.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
Cultivars | Number of CNVs | Deletion | Duplication | Range of Length/bp |
---|---|---|---|---|
Yuhong | 2646 | 1134 | 1512 | 1–42,213,900 |
Jiaocheng 5 | 2533 | 1045 | 1488 | 1–42,390,600 |
F1 | 16,570 | 3607 | 12,963 | 1–42,390,600 |
Average of F1 | 118.36 | 25.76 | 92.59 | 1–42,390,600 |
Chromosome | Length of Chromosome/bp | Number of CNVs | Average Length/bp |
---|---|---|---|
1 | 42,390,600 | 1435 | 29,540.49 |
2 | 27,987,000 | 1684 | 16,619.36 |
3 | 26,737,500 | 1465 | 18,250.85 |
4 | 30,445,800 | 1343 | 22,669.99 |
5 | 31,365,600 | 1574 | 19,927.32 |
6 | 25,260,000 | 1428 | 17,689.08 |
7 | 27,644,400 | 1342 | 20,599.40 |
8 | 23,351,100 | 1242 | 18,801.21 |
9 | 25,348,800 | 1416 | 17,901.69 |
10 | 20,983,500 | 1151 | 18,230.67 |
11 | 20,704,200 | 1228 | 16,860.10 |
12 | 19,346,100 | 1026 | 18,855.85 |
Chromosome | Deletion | Duplication | Deletion/ Duplication | Deletion/CNVs | Duplication/CNVs |
---|---|---|---|---|---|
1 | 225 | 1210 | 0.19 | 15.68% | 84.32% |
2 | 378 | 1306 | 0.29 | 22.45% | 77.55% |
3 | 337 | 1128 | 0.30 | 23.00% | 77.00% |
4 | 267 | 1076 | 0.25 | 19.88% | 80.12% |
5 | 319 | 1255 | 0.25 | 20.27% | 79.73% |
6 | 362 | 1066 | 0.34 | 25.35% | 74.65% |
7 | 231 | 1111 | 0.21 | 17.21% | 82.79% |
8 | 240 | 1002 | 0.24 | 19.32% | 80.68% |
9 | 315 | 1101 | 0.29 | 22.25% | 77.75% |
10 | 260 | 891 | 0.29 | 22.59% | 77.41% |
11 | 255 | 973 | 0.26 | 20.77% | 79.23% |
12 | 189 | 837 | 0.23 | 18.42% | 81.58% |
ID | Term |
---|---|
ko00071 | Fatty acid degradation |
ko00564 | Glycerophospholipid metabolism |
ko04146 | Peroxisome |
ko00600 | Sphingolipid metabolism |
ko04213 | Longevity regulating pathway—multiple species |
Gene ID | Function Annotation |
---|---|
LOC107411432 | negative regulator of systemic acquired resistance SNI1 |
LOC107412231 | pro-hevein |
LOC107414759 | protein SAR DEFICIENT 4 |
LOC107424132 | BTB/POZ domain and ankyrin repeat-containing protein NPR1 |
LOC107425380 | protein LIM1 |
LOC107426186 | protein NIM1-INTERACTING 1 |
LOC107429421 | protein NIM1-INTERACTING 2 |
LOC107429429 | protein NEGATIVE REGULATOR OF RESISTANCE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Luo, Z.; Wu, C.; Wang, L.; Yan, F. Construction of a Genome-Wide Copy Number Variation Map and Association Analysis of Black Spot in Jujube. Plants 2025, 14, 2782. https://doi.org/10.3390/plants14172782
Luo Y, Luo Z, Wu C, Wang L, Yan F. Construction of a Genome-Wide Copy Number Variation Map and Association Analysis of Black Spot in Jujube. Plants. 2025; 14(17):2782. https://doi.org/10.3390/plants14172782
Chicago/Turabian StyleLuo, Yujia, Zhi Luo, Cuiyu Wu, Lihu Wang, and Fenfen Yan. 2025. "Construction of a Genome-Wide Copy Number Variation Map and Association Analysis of Black Spot in Jujube" Plants 14, no. 17: 2782. https://doi.org/10.3390/plants14172782
APA StyleLuo, Y., Luo, Z., Wu, C., Wang, L., & Yan, F. (2025). Construction of a Genome-Wide Copy Number Variation Map and Association Analysis of Black Spot in Jujube. Plants, 14(17), 2782. https://doi.org/10.3390/plants14172782