Bioinformatics Analysis Reveals PPR Genes Modulation by Ahyp-miR0005 Under Abiotic Stress Across Diverse Plant Species
Abstract
1. Introduction
2. Results
2.1. Identification of miRNA Ahyp-miR0005 Target Transcripts
2.2. Prediction of Cleavage Inhibition and Multi-Site Regulation Analysis of miRNA Ahyp-miR0005
2.3. Functional Analysis of Ahyp-miR0005 Target Genes
2.4. Distribution and Phylogenetic Analysis of Ahyp-miR0005 Target Genes
2.5. Gene Expression of Ahyp-miR0005 Targets in Arabidopsis Thaliana Under Abiotic Stress
2.6. Gene Expression Analysis of Ahyp-miR0005 Targets Under Abiotic Stress in Amaranth
3. Discussion
3.1. Ahyp-miR0005 Targets PPR Genes Across Different Plant Species
3.2. Ahyp-miR0005-PPR Interactions with Multiple Binding Sites as Combinatorial MECHANISMS of Gene Regulation
3.3. Ahyp-miR0005 Could Regulate Conserved PPR Genes Between Species
3.4. Modulation of PPRs and Its Implications in the Abiotic Stress Response
3.5. Functional Implications of Ahyp-miR0005-PPR Genes and Their Significance in Organelle Biogenesis
4. Materials and Methods
4.1. Prediction of Ahyp-miR0005 Target Genes and Their Action Mechanisms
4.2. Analysis of Conserved Domains in High-Multiplicity Target Genes
4.3. Gene Ontology (GO) Enrichment Analysis and Interaction of Target Genes
4.4. Co-Expression and Functional Interaction Analysis of Homologous Target Genes in Arabidopsis Thaliana
4.5. Gene Expression Analysis Under Abiotic Stress Conditions Using Arabidopsis eFP Browser
4.6. Phylogenetic Analysis of Ahyp-miR0005 Target Genes in Four Species
4.7. Plant Growth Conditions
4.8. Total RNA Extraction
4.9. Quantification of Target Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
miRNAs | MicroRNAs |
PPR | Pentatricopeptide repeat |
RSBPN | Retrograde signaling between the plastid and nucleus |
PPR/TPR | Pentatricopeptide/tetratricopeptide repeat |
ROS | Reactive oxygen species |
GUN 1 | GENOMES UNCOUPLED 1 |
ABO5 | ABA overly-sensitive 5 |
MORF1 | Multiple organellar RNA editing factor |
BASS | Bile acid sodium symporter |
GO | Gene ontology |
ceRNAs | Competitive endogenous RNAs |
CDS | Coding sequences |
CDD | Conserved Domain Database |
PSSMs | Position-specific scoring matrices |
MPK6 | Mitogen-Activated Protein Kinase 6 |
ABA | Abscisic acid |
SEA | Singular Enrichment Analysis |
References
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A Review of Plants Strategies to Resist Biotic and Abiotic Environmental Stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Retrograde Signaling between Plastid and Nucleus: A Review. J. Plant Physiol. 2015, 181, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, M.; Liu, S.; Teng, Q.; Li, S.; Jiang, Y. Functions of PPR Proteins in Plant Growth and Development. Int. J. Mol. Sci. 2021, 22, 11274. [Google Scholar] [CrossRef] [PubMed]
- Jonietz, C.; Forner, J.; Hölzle, A.; Thuss, S.; Binder, S. RNA PROCESSING FACTOR2 Is Required for 5′ End Processing of Nad9 and Cox3 MRNAs in Mitochondria of Arabidopsis thaliana. Plant Cell 2010, 22, 443–453. [Google Scholar] [CrossRef]
- Rovira, A.G.; Smith, A.G. PPR Proteins—Orchestrators of Organelle RNA Metabolism. Physiol. Plant 2019, 166, 451–459. [Google Scholar] [CrossRef]
- Li, K.; Liu, Z.; Xing, L.; Wei, Y.; Mao, J.; Meng, Y.; Bao, L.; Han, M.; Zhao, C.; Zhang, D. MiRNAs Associated with Auxin Signaling, Stress Response, and Cellular Activities Mediate Adventitious Root Formation in Apple Rootstocks. Plant Physiol. Biochem. 2019, 139, 66–81. [Google Scholar] [CrossRef]
- Yagi, Y.; Tachikawa, M.; Noguchi, H.; Satoh, S.; Obokata, J.; Nakamura, T. Pentatricopeptide Repeat Proteins Involved in Plant Organellar RNA Editing. RNA Biol. 2013, 10, 1419–1425. [Google Scholar] [CrossRef]
- Lurin, C.; Andrés, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyère, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A Complete Reannotation of the Arabidopsis thaliana Reference Genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef]
- Lightfoot, D.J.; Jarvis, D.E.; Ramaraj, T.; Lee, R.; Jellen, E.N.; Maughan, P.J. Single-Molecule Sequencing and Hi-C-Based Proximity-Guided Assembly of Amaranth (Amaranthus hypochondriacus) Chromosomes Provide Insights into Genome Evolution. BMC Biol. 2017, 15, 74. [Google Scholar] [CrossRef]
- Jain, R.; Jenkins, J.; Shu, S.; Chern, M.; Martin, J.A.; Copetti, D.; Duong, P.Q.; Pham, N.T.; Kudrna, D.A.; Talag, J.; et al. Genome Sequence of the Model Rice Variety KitaakeX. BMC Genom. 2019, 20, 905. [Google Scholar] [CrossRef]
- Hosmani, P.S.; Flores-Gonzalez, M.; van de Geest, H.; Maumus, F.; Bakker, L.V.; Schijlen, E.; van Haarst, J.; Cordewener, J.; Sanchez-Perez, G.; Peters, S.; et al. An Improved de Novo Assembly and Annotation of the Tomato Reference Genome Using Single-Molecule Sequencing, Hi-C Proximity Ligation and Optical Maps. bioRxiv 2019. [Google Scholar] [CrossRef]
- Laluk, K.; Abuqamar, S.; Mengiste, T. The Arabidopsis Mitochondria-Localized Pentatricopeptide Repeat Protein PGN Functions in Defense against Necrotrophic Fungi and Abiotic Stress Tolerance. Plant Physiol. 2011, 156, 2053–2068. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Chen, Z.; Ren, X.; Hong, X.; Gong, Z. ABA Overly-Sensitive 5 (ABO5), Encoding a Pentatricopeptide Repeat Protein Required for Cis-Splicing of Mitochondrial Nad2 Intron 3, Is Involved in the Abscisic Acid Response in Arabidopsis. Plant J. 2010, 63, 749–765. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, S.; Bi, C.; Mei, C.; Jiang, S.C.; Wang, X.F.; Lu, Z.J.; Zhang, D.P. Arabidopsis Exoribonuclease USB1 Interacts with the PPR-Domain Protein SOAR1 to Negatively Regulate Abscisic Acid Signaling. J. Exp. Bot. 2020, 71, 5837–5851. [Google Scholar] [CrossRef] [PubMed]
- Mousa, N.A.; Siaguro, P.; Wiryowidagdo, S.; Wagih, M.E. Evaluation and Selection of Elite Clonal Genotypes of the Sweet Crop Licorice (Glycyrrhiza glabra) in a New Environment. Sugar Tech 2007, 9, 83–94. [Google Scholar] [CrossRef]
- Murayama, M.; Hayashi, S.; Nishimura, N.; Ishide, M.; Kobayashi, K.; Yagi, Y.; Asami, T.; Nakamura, T.; Shinozaki, K.; Hirayama, T. Isolation of Arabidopsis Ahg11, a Weak ABA Hypersensitive Mutant Defective in Nad4 RNA Editing. J. Exp. Bot. 2012, 63, 5301–5310. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, D. Functional Disruption of the Pentatricopeptide Protein SLG1 Affects Mitochondrial RNA Editing, Plant Development, and Responses to Abiotic Stresses in Arabidopsis. Plant J. 2012, 70, 432–444. [Google Scholar] [CrossRef]
- Zsigmond, L.; Rigó, G.; Szarka, A.; Székely, G.; Ötvös, K.; Darula, Z.; Medzihradszky, K.F.; Koncz, C.; Koncz, Z.; Szabados, L. Arabidopsis PPR40 Connects Abiotic Stress Responses to Mitochondrial Electron Transport. Plant Physiol. 2008, 146, 1721–1737. [Google Scholar] [CrossRef]
- Zhu, Q.; Dugardeyn, J.; Zhang, C.; Takenaka, M.; Kühn, K.; Craddock, C.; Smalle, J.; Karampelias, M.; Denecke, J.; Peters, J.; et al. SLO2, a Mitochondrial Pentatricopeptide Repeat Protein Affecting Several RNA Editing Sites, Is Required for Energy Metabolism. Plant J. 2012, 71, 836–849. [Google Scholar] [CrossRef]
- Kobayashi, K.; Suzuki, M.; Tang, J.; Nagata, N.; Ohyama, K.; Seki, H.; Kiuchi, R.; Kaneko, Y.; Nakazawa, M.; Matsui, M.; et al. Lovastatin Insensitive 1, a Novel Pentatricopeptide Repeat Protein, Is a Potential Regulatory Factor of Isoprenoid Biosynthesis in Arabidopsis. Plant Cell Physiol. 2007, 48, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, X.; Hu, Z.; Wu, C.; Shen, Z. The Pentatricopeptide Repeat Protein GEND1 Is Required for Root Development and High Temperature Tolerance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2021, 578, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Lasorella, C.; Fortunato, S.; Dipierro, N.; Jeran, N.; Tadini, L.; Vita, F.; Pesaresi, P.; de Pinto, M.C. Chloroplast-Localized GUN1 Contributes to the Acquisition of Basal Thermotolerance in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 1058831. [Google Scholar] [CrossRef] [PubMed]
- Sechet, J.; Roux, C.; Plessis, A.; Effroy, D.; Frey, A.; Perreau, F.; Biniek, C.; Krieger-Liszkay, A.; Macherel, D.; North, H.M.; et al. The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing. Mol. Plant 2015, 8, 644–656. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhao, J.Y.; Lu, P.P.; Chen, M.; Guo, C.H.; Xu, Z.S.; Ma, Y.Z. The E-Subgroup Pentatricopeptide Repeat Protein Family in Arabidopsis thaliana and Confirmation of the Responsiveness PPR96 to Abiotic Stresses. Front. Plant Sci. 2016, 7, 1825. [Google Scholar] [CrossRef]
- Xie, T.; Chen, D.; Wu, J.; Huang, X.; Wang, Y.; Tang, K.; Li, J.; Sun, M.; Peng, X. Growing Slowly 1 Locus Encodes a PLS-Type PPR Protein Required for RNA Editing and Plant Development in Arabidopsis. J. Exp. Bot. 2016, 67, 5687–5698. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhu, X.; Ren, Y.; Dong, H.; Duan, E.; Teng, X.; Zhao, H.; Chen, R.; Chen, X.; et al. Tetrapyrrole Biosynthesis Pathway Regulates Plastid-to-Nucleus Signaling by Controlling Plastid Gene Expression in Plants. Plant Commun. 2023, 4, 100411. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Vaucheret, H.; Trejo, J.; Bartel, D.P. A Diverse and Evolutionarily Fluid Set of MicroRNAs in Arabidopsis thaliana. Genes. Dev. 2006, 20, 3407–3425. [Google Scholar] [CrossRef]
- Lu, S.; Sun, Y.H.; Chiang, V.L. Stress-Responsive MicroRNAs in Populus. Plant J. 2008, 55, 131–151. [Google Scholar] [CrossRef]
- Li, Y.F.; Zheng, Y.; Addo-Quaye, C.; Zhang, L.; Saini, A.; Jagadeeswaran, G.; Axtell, M.J.; Zhang, W.; Sunkar, R. Transcriptome-Wide Identification of MicroRNA Targets in Rice. Plant J. 2010, 62, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Jiang, J.; Hu, Z.; Lyu, T.; Yang, Y.; Jiang, J.; Cao, J. Over-Expression of MiR158 Causes Pollen Abortion in Brassica campestris Ssp. Chinensis. Plant Mol. Biol. 2017, 93, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Li, P.; Teng, C.; Meyers, B.C. Secondary SiRNAs from Medicago NB-LRRs Modulated via MiRNA-Target Interactions and Their Abundances. Plant J. 2015, 83, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liang, C.; Wang, S.; Hou, Y.; Gao, L.; Liu, L.; He, W.; Ma, W.; Mo, B.; Chen, X. The Disease Resistance Protein SNC1 Represses the Biogenesis of MicroRNAs and Phased SiRNAs. Nat. Commun. 2018, 9, 5080. [Google Scholar] [CrossRef]
- Lin, P.C.; Lu, C.W.; Shen, B.N.; Lee, G.Z.; Bowman, J.L.; Arteaga-Vazquez, M.A.; Daisy Liu, L.Y.; Hong, S.F.; Lo, C.F.; Su, G.M.; et al. Identification of MiRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. Plant Cell Physiol. 2016, 57, 339–358. [Google Scholar] [CrossRef]
- Martínez Núñez, M.; Ruíz Rivas, M.; Gregorio Jorge, J.; Hernández, P.F.V.; Luna Suárez, S.; de Folter, S.; Chávez Montes, R.A.; Rosas Cárdenas, F.d.F. Identification of Genuine and Novel MiRNAs in Amaranthus hypochondriacus from High-Throughput Sequencing Data. Genomics 2021, 113, 88–103. [Google Scholar] [CrossRef]
- Chen, G.; Zou, Y.; Hu, J.; Ding, Y. Genome-Wide Analysis of the Rice PPR Gene Family and Their Expression Profiles under Different Stress Treatments. BMC Genom. 2018, 19, 720. [Google Scholar] [CrossRef]
- Ding, X.; Guo, J.; Zhang, Q.; Yu, L.; Zhao, T.; Yang, S. Heat-Responsive Mirnas Participate in the Regulation of Male Fertility Stability in Soybean Cms-Based F1 under High Temperature Stress. Int. J. Mol. Sci. 2021, 22, 2446. [Google Scholar] [CrossRef]
- Téllez Valerio, C.E.; Gregorio Jorge, J.; Luna Suárez, S.; Maldonado Mendoza, I.E.; Rosas Cárdenas, F.d.F. MiR6024 Overexpression Increases the Susceptibility of Nicotiana tabacum to Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2023, 165, 97–113. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Ruwe, H.; Wang, G.; Gusewski, S.; Schmitz-Linneweber, C. Systematic Analysis of Plant Mitochondrial and Chloroplast Small RNAs Suggests Organelle-Specific MRNA Stabilization Mechanisms. Nucleic Acids Res. 2016, 44, 7406–7417. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Bhattacharya, A.; Bhardwaj, V.; Jha, V.; Mandal, A.K.; Mukerji, M. Alu-MiRNA Interactions Modulate Transcript Isoform Diversity in Stress Response and Reveal Signatures of Positive Selection. Sci. Rep. 2016, 6, 32348. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Keller, A.; Meese, E. The MiRNA–Target Interactions: An Underestimated Intricacy. Nucleic Acids Res. 2024, 52, 1544–1557. [Google Scholar] [CrossRef]
- Wilczynska, A.; Bushell, M. The Complexity of MiRNA-Mediated Repression. Cell Death Differ. 2015, 22, 22–33. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Pu, M.; Chen, J.; Tao, Z.; Miao, L.; Qi, X.; Wang, Y.; Ren, J. Regulatory Network of MiRNA on Its Target: Coordination between Transcriptional and Post-Transcriptional Regulation of Gene Expression. Cell. Mol. Life Sci. 2019, 76, 441–451. [Google Scholar] [CrossRef]
- Filipovska, A.; Rackham, O. Modular Recognition of Nucleic Acids by PUF, TALE and PPR Proteins. Mol. Biosyst. 2012, 8, 699–708. [Google Scholar] [CrossRef]
- Ebert, M.S.; Sharp, P.A. MicroRNA Sponges: Progress and Possibilities. RNA 2010, 16, 2043–2050. [Google Scholar] [CrossRef]
- Farberov, L.; Ionescu, A.; Zoabi, Y.; Shapira, G.; Ibraheem, A.; Azan, Y.; Perlson, E.; Shomron, N. Multiple Copies of MicroRNA Binding Sites in Long 3′UTR Variants Regulate Axonal Translation. Cells 2023, 12, 233. [Google Scholar] [CrossRef]
- Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The Intricate Balance between MicroRNA-Induced MRNA Decay and Translational Repression. FEBS J. 2023, 290, 2508–2524. [Google Scholar] [CrossRef]
- Kang, W.; Bang-Berthelsen, C.H.; Holm, A.; Houben, A.J.S.; Müller, A.H.; Thymann, T.; Pociot, F.; Estivill, X.; Friedländer, M.R. Survey of 800+ Data Sets from Human Tissue and Body Fluid Reveals XenomiRs Are Likely Artifacts. RNA 2017, 23, 433–445. [Google Scholar] [CrossRef]
- Tillich, M.; Beick, S.; Schmitz-Linneweber, C. Chloroplast RNA-Binding Proteins: Repair and Regulation of Chloroplast Transcripts. RNA Biol. 2010, 7, 172–178. [Google Scholar] [CrossRef]
- Arae, T.; Isai, S.; Sakai, A.; Mineta, K.; Yokota Hirai, M.; Suzuki, Y.; Kanaya, S.; Yamaguchi, J.; Naito, S.; Chiba, Y. Co-Ordinated Regulations of MRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells. Plant Cell Physiol. 2017, 58, 1090–1102. [Google Scholar] [CrossRef]
- Dinneny, J.R.; Long, T.A.; Wang, J.Y.; Jung, J.W.; Mace, D.; Pointer, S.; Barron, C.; Brady, S.M.; Schiefelbein, J.; Benfey, P.N. Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress. Science 2008, 320, 942–945. [Google Scholar] [CrossRef]
- Okuda, K.; Chateigner-Boutin, A.L.; Nakamura, T.; Delannoy, E.; Sugita, M.; Myouga, F.; Motohashi, R.; Shinozaki, K.; Small, I.; Shikanai, T. Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in Arabidopsis Chloroplasts. Plant Cell 2009, 21, 146–156. [Google Scholar] [CrossRef]
- Liu, X.; Yu, F.; Rodermel, S. An Arabidopsis Pentatricopeptide Repeat Protein, SUPPRESSOR OF VARIEGATION7, Is Required for FtsH-Mediated Chloroplast Biogenesis. Plant Physiol. 2010, 154, 1588–1601. [Google Scholar] [CrossRef]
- Chang, R.; Jang, C.J.H.; Branco-Price, C.; Nghiem, P.; Bailey-Serres, J. Transient MPK6 Activation in Response to Oxygen Deprivation and Reoxygenation Is Mediated by Mitochondria and Aids Seedling Survival in Arabidopsis. Plant Mol. Biol. 2012, 78, 109–122. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Pu, Q.; Tian, Y.; Zhu, F.; Liu, Y. ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. Int. J. Mol. Sci. 2022, 23, 3796. [Google Scholar] [CrossRef] [PubMed]
- Tadini, L.; Jeran, N.; Pesaresi, P. GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020, 9, 2307. [Google Scholar] [CrossRef] [PubMed]
- Kempken, F. (Ed.) Plant Mitochondria; Springer: New York, NY, USA, 2010; Volume 1, ISBN 978-0-387-89781-3. [Google Scholar]
- Dai, X.; Zhuang, Z.; Zhao, P.X. PsRNATarget: A Plant Small RNA Target Analysis Server (2017 Release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.D.; Fernandez-Pozo, N.; Drake-Stowe, K.; Humphry, M.; Evans, A.D.; Bombarely, A.; Allen, F.; Hurst, R.; White, B.; Kernodle, S.P.; et al. A Reference Genome for Nicotiana Tabacum Enables Map-Based Cloning of Homeologous Loci Implicated in Nitrogen Utilization Efficiency. BMC Genom. 2017, 18, 448. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pozo, N.; Menda, N.; Edwards, J.D.; Saha, S.; Tecle, I.Y.; Strickler, S.R.; Bombarely, A.; Fisher-York, T.; Pujar, A.; Foerster, H.; et al. The Sol Genomics Network (SGN)-from Genotype to Phenotype to Breeding. Nucleic Acids Res. 2015, 43, D1036–D1041. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. AgriGO v2.0: A GO Analysis Toolkit for the Agricultural Community, 2017 Update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [PubMed]
- Kilian, J.; Whitehead, D.; Horak, J.; Wanke, D.; Weinl, S.; Batistic, O.; D’Angelo, C.; Bornberg-Bauer, E.; Kudla, J.; Harter, K. The AtGenExpress Global Stress Expression Data Set: Protocols, Evaluation and Model Data Analysis of UV-B Light, Drought and Cold Stress Responses. Plant J. 2007, 50, 347–363. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Vennapusa, A.R.; Somayanda, I.M.; Doherty, C.J.; Jagadish, S.V.K. A Universal Method for High-Quality RNA Extraction from Plant Tissues Rich in Starch, Proteins and Fiber. Sci. Rep. 2020, 10, 16887. [Google Scholar] [CrossRef]
- Vera Hernández, F.P.; Martínez Núñez, M.; Ruiz Rivas, M.; Vázquez Portillo, R.E.; Bibbins Martínez, M.D.; Luna Suárez, S.; Rosas Cárdenas, F.d.F. Reference Genes for RT-QPCR Normalisation in Different Tissues, Developmental Stages and Stress Conditions of Amaranth. Plant Biol. 2018, 20, 713–721. [Google Scholar] [CrossRef]
Amaranth | Name | Ath_Name UniProt | Arabidopsis | Tomato | Tobacco | Function |
---|---|---|---|---|---|---|
AH001327 | - | F4I4T7_ARATH | AT1G30290 | Solyc08g023490 | Nitab4.5_0002071g0050.1 Nitab4.5_0000315g0050.1 | - |
AH001564 | ABO5 | PPR76_ARATH | AT1G51965 | Solyc03g121110 | Nitab4.5_0005085g0030.1 Nitab4.5_0004969g0060.1 | Embryogenesis, metabolism |
AH001900 | EMB2745 | PP407_ARATH | AT5G39710 | Solyc01g108410 | Nitab4.5_0004334g0100.1 Nitab4.5_0005583g0010.1 | Essential in embryo |
AH002709 | GUN1 | PP178_ARATH | AT2G31400 | Solyc06g009520.3.1 | Nitab4.5_0000363g0190.1 Nitab4.5_0007407g0040.1 | Stress response |
AH002755 | - | - | - | Solyc03g114000 Solyc06g071310 | Nitab4.5_0001422g0090.1 Nitab4.5_0009569g0010.1 Nitab4.5_0002314g0060.1 Nitab4.5_0004495g0010.1 | - |
AH002846 | - | PP440_ARATH | AT5G61400 | Solyc06g069700 | Nitab4.5_0003021g0070.1 Nitab4.5_0004286g0010.1 | RNA processing |
AH004914 | - | PP211_ARATH | AT3G04130 | Solyc05g014490 | Nitab4.5_0001898g0020.1 | RNA processing |
AH005647 | - | PP445_ARATH | AT5G65560 | Solyc10g081880 | Nitab4.5_0002165g0010.1 Nitab4.5_0005257g0020.1 Nitab4.5_0002364g0030.1 Nitab4.5_0000574g0030.1 | RNA processing |
AH008138 | TANG2 | PPR50_ARATH | AT1G19290 | Solyc04g079850.2.1 | Nitab4.5_0006518g0030.1 Nitab4.5_0000110g0140.1 | RNA processing |
AH008653 | - | PP388_ARATH | AT5G16420 | Solyc01g096210 | Nitab4.5_0002527g0080.1 Nitab4.5_0002667g0050.1 | RNA processing |
AH008927 | MEE40 | PP281_ARATH | AT1G09900 | - | Nitab4.5_0002667g0060.1 Nitab4.5_0002667g0050.1 | RNA processing |
AH010751 | - | PP213_ARATH | AT3G04760 | - | Nitab4.5_0003780g0130.1 | RNA processing |
AH011550 | ABO8 | PP306_ARATH | AT4G11690 | - | Nitab4.5_0007891g0010.1 Nitab4.5_0001714g0210.1 | Response to abscisic acid |
AH011924 | - | PP149_ARATH | AT2G06000 | Solyc01g104630 | Nitab4.5_0009570g0010.1 Nitab4.5_0000249g0340.1 | RNA processing |
AH012776 | - | PP180_ARATH | AT2G32630 | Solyc10g084080 | Nitab4.5_0005518g0020.1 Nitab4.5_0001297g0100.1 | RNA processing |
AH015741 | PDM3/EMB3140 | PP408_ARATH | AT5G39980 | Solyc02g087560.1 | Nitab4.5_0002265g0130.1 Nitab4.5_0000564g0400.1 | -Essential in Embryo -Chloroplast development |
AH016090 | - | PP338_ARATH | AT4G26680 | Solyc07g047620 | Nitab4.5_0001774g0100.1 Nitab4.5_0001701g0020.1 | RNA processing |
AH016354 | EMB1444 | PPR15_ARATH | AT1G06143 | - | Nitab4.5_0000128g0270.1 | Essential in embryo |
AH018525 | - | PP325_ARATH | AT4G19440 | Solyc11g005940 | Nitab4.5_0000856g0020.1 Nitab4.5_0002667g0100.1 | RNA processing |
AH018654 | RPF1 PPR3 - RFL9/RPF4 RPF6 RPF8 - RFL2 - - RPF2 - - PPR-AC RPF3 - | PPR38_ARATH PP247_ARATH PP100_ARATH PPR94_ARATH PPR99_ARATH PPR37_ARATH PPR98_ARATH PPR36_ARATH PP102_ARATH PPR97_ARATH PPR91_ARATH PPR39_ARATH PP101_ARATH PPR90_ARATH PPR96_ARATH PP103_ARATH | AT1G12700 AT3G22470 AT1G63150 AT1G62910 AT1G63130 AT1G12620 AT1G63080 AT1G12300 AT1G63400 AT1G63070 AT1G62670 AT1G12775 AT1G63330 AT1G62590 AT1G62930 AT1G64100 | Solyc06g007740.1 Solyc06g007850 Solyc04g080120.1 Solyc06g007300 Solyc05g009253.1 Solyc06g005220.2 | - | -RNA processing factor -mRNA modification |
AH019806 | OTP439 | PP270_ARATH | AT3G48810 | Solyc01g058205.1 | Nitab4.5_0000225g0060.1 Nitab4.5_0004303g0030.1 | RNA processing |
AH021870 | - | PP445_ARATH | AT5G65560 | Solyc07g047820 | Nitab4.5_0000441g0020.1 Nitab4.5_0011940g0010.1 | RNA processing |
AH022052 | EMB1025 | PP327_ARATH | AT4G20090 | Solyc02g081860 | Nitab4.5_0000844g0300.1 Nitab4.5_0010610g0010.1 | Essential in embryo |
AH023537 | - | PP156_ARATH | AT2G16880 | Solyc01g111470.3.1 | Nitab4.5_0000061g0180.1 | RNA processing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores Benavides, V.; Montes, R.A.C.; Rosas Cárdenas, F.d.F. Bioinformatics Analysis Reveals PPR Genes Modulation by Ahyp-miR0005 Under Abiotic Stress Across Diverse Plant Species. Plants 2025, 14, 2757. https://doi.org/10.3390/plants14172757
Flores Benavides V, Montes RAC, Rosas Cárdenas FdF. Bioinformatics Analysis Reveals PPR Genes Modulation by Ahyp-miR0005 Under Abiotic Stress Across Diverse Plant Species. Plants. 2025; 14(17):2757. https://doi.org/10.3390/plants14172757
Chicago/Turabian StyleFlores Benavides, Vladimir, Ricardo A. Chávez Montes, and Flor de Fátima Rosas Cárdenas. 2025. "Bioinformatics Analysis Reveals PPR Genes Modulation by Ahyp-miR0005 Under Abiotic Stress Across Diverse Plant Species" Plants 14, no. 17: 2757. https://doi.org/10.3390/plants14172757
APA StyleFlores Benavides, V., Montes, R. A. C., & Rosas Cárdenas, F. d. F. (2025). Bioinformatics Analysis Reveals PPR Genes Modulation by Ahyp-miR0005 Under Abiotic Stress Across Diverse Plant Species. Plants, 14(17), 2757. https://doi.org/10.3390/plants14172757