Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards
Abstract
1. Introduction
2. Results
2.1. Dry Matter Production
2.2. Pasture Composition
2.3. Soil Mineral N
2.4. Pasture N Yield
2.5. Biological N Fixation Measurements by Nodule Number and 15N Natural Abundance Techniques
3. Discussion
3.1. Dry Matter Production and Pasture Composition
3.2. Soil Mineral N in Pasture Systems
3.3. Seasonal Changes in Pasture N Yield
3.4. Biological N Fixation
4. Materials and Methods
4.1. Experimental Site and Soil Characterization
4.2. Field Preparation and Experimental Design
4.3. Sampling and Measurements
4.3.1. Pasture Sampling and Analysis
4.3.2. Soil Mineral N Analysis
4.4. Biological N Fixation Measurements
4.4.1. Nodule Number
4.4.2. 15N Natural Abundance Method
4.4.3. N Difference Method
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Jaramillo, D.M.; Sheridan, H.; Soder, K.; Dubeux, J.C.B., Jr. Enhancing the sustainability of temperate pasture systems through more diverse swards. Agronomy 2021, 11, 1912. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Ministry for the Environment. New Zealand’s Greenhouse Gas Inventory 1990–2019; Ministry for the Environment: Wellington, New Zealand, 2021. Available online: https://environment.govt.nz/assets/publications/climate-change/New-Zealands-Greenhouse-Gas-Inventory-1990-2021-Chapters-1-15.pdf (accessed on 2 May 2025).
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. The challenge of the urine patch for managing nitrogen in grazed pasture systems. Adv. Agron. 2015, 129, 229–292. [Google Scholar] [CrossRef]
- Luo, J.C.A.M.; De Klein, C.A.M.; Ledgard, S.F.; Saggar, S. Management options to reduce nitrous oxide emissions from intensively grazed pastures: A review. Agric. Ecosyst. Environ. 2010, 136, 282–291. [Google Scholar] [CrossRef]
- Eckard, R.J.; Chen, D.; White, R.E.; Chapman, D.F. Gaseous nitrogen loss from temperate perennial grass and clover dairy pastures in south-eastern Australia. Aust. J. Agric. Res. 2003, 54, 561–570. [Google Scholar] [CrossRef]
- Beale, N.D.; Talbot, W.D.; Cameron, K.C.; Di, H.J.; Narbey, R. Measurement of nitrate leaching losses from lysimeters on a dairy farm following conversion from forestry. N. Z. J. Agric. Res. 2021, 66, 25–43. [Google Scholar] [CrossRef]
- Bishop, P.; Jeyakumar, P. A comparison of three nitrate leaching mitigation treatments with dicyandiamide using lysimeters. N. Z. J. Agric. Res. 2021, 65, 547–560. [Google Scholar] [CrossRef]
- De Klein, C.A.; Luo, J.; Woodward, K.B.; Styles, T.; Wise, B.; Lindsey, S.; Cox, N. The effect of nitrogen concentration in synthetic cattle urine on nitrous oxide emissions. Agric. Ecosyst. Environ. 2014, 188, 85–92. [Google Scholar] [CrossRef]
- Luo, J.; Ledgard, S.F.; Lindsey, S.B. Nitrous oxide emissions from application of urea on New Zealand pasture. N. Z. J. Agric. Res. 2007, 50, 1–11. [Google Scholar] [CrossRef]
- Gardiner, C.A.; Clough, T.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; De Klein, C.A.M. Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: A review. N. Z. J. Agric. Res. 2016, 59, 301–317. [Google Scholar] [CrossRef]
- Bolan, N.S.; Wong, L.; Adriano, D.C. Nutrient removal from farm effluents. Bioresour. Technol. 2004, 94, 251–260. [Google Scholar] [CrossRef]
- Cummins, S.; Finn, J.A.; Richards, K.G.; Lanigan, G.J.; Grange, G.; Brophy, C.; Cardenas, L.M.; Misselbrook, T.H.; Reynolds, C.K.; Krol, D.J. Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Sci. Total Environ. 2021, 792, 148163. [Google Scholar] [CrossRef] [PubMed]
- Gosnell, H. Regenerating soil, regenerating soul: An integral approach to understanding agricultural transformation. Sustain. Sci. 2022, 17, 603–620. [Google Scholar] [CrossRef]
- Rowarth, J.; Manning, M.; Roberts, A.; King, W. New-generative agriculture—Based on science, informed by research and honed by New Zealand farmers. J. N. Z. Grassl. 2021, 82, 221–229. [Google Scholar] [CrossRef]
- Jordan, S.E.; Palmquist, K.A.; Burke, I.C.; Lauenroth, W.K. Small effects of livestock grazing intensification on diversity, abundance, and composition in a dryland plant community. Ecol. Appl. 2022, 32, e2693. [Google Scholar] [CrossRef] [PubMed]
- Luján Soto, R.; Cuéllar Padilla, M.; de Vente, J. Participatory selection of soil quality indicators for monitoring the impacts of regenerative agriculture on ecosystem services. Ecosyst. Serv. 2020, 45, 101157. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Grelet, G.; Lang, S.; Merfield, C.; Calhoun, N.; Robson-Williams, M.; Horrocks, A.; Dewes, A.; Clifford, A.; Stevenson, B.; Saunders, C.M.; et al. Regenerative agriculture in Aotearoa New Zealand—Research pathways to build science-based evidence and national narratives. Our Land Water 2021, 55. Available online: https://researcharchive.lincoln.ac.nz/handle/10182/13899 (accessed on 3 April 2025).
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative agriculture—A literature review on the practices and mechanisms used to improve soil health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G. Nitrogen fixation in a legume-rhizobium symbiosis: The roots of a success story. Plant Microbe Symbiosis 2020, 1, 35–53. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Rasmussen, J.; Høgh-Jensen, H.; Eriksen, J.; Søegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 2012, 350, 71–84. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Milk production and urinary nitrogen excretion of dairy cows grazing plantain in early and late lactation. N. Z. J. Agric. Res. 2017, 60, 470–482. [Google Scholar] [CrossRef]
- Carlton, A.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Clough, T.J. Nitrate leaching losses are lower from ryegrass/white clover forages containing plantain than from ryegrass/white clover forages under different irrigation. N. Z. J. Agric. Res. 2019, 62, 150–172. [Google Scholar] [CrossRef]
- Black, A.; Anderson, S.; Dalgety, S. Identification of pasture mixtures that maximise dry matter yield. J. N. Z. Grassl. 2017, 79, 103–109. [Google Scholar] [CrossRef]
- Graham, S.L.; Pronger, J.; Laubach, J.; Hunt, J.E.; Rogers, G.N.; Carrick, S.; Whitehead, D.; McLeod, M.; Mitchell, G.; Mudge, P. Assessing the potential of diverse pastures for reducing nitrogen leaching. Front. Environ. Sci. 2024, 12, 1445212. [Google Scholar] [CrossRef]
- Schon, N.L.; Mackay, A.D.; Dodd, M.; Moss, R.A.; Laurenson, G.; Taylor, A.; Moorhead, A. Influence of diverse pasture species and reduced nitrogen fertiliser inputs on soil health on four irrigated Canterbury dairy pastures. J. N. Z. Grassl. 2024, 86, 87–95. [Google Scholar] [CrossRef]
- Churchill, A.C.; Zhang, H.; Fuller, K.J.; Amiji, B.; Anderson, I.C.; Barton, C.V.M.; Carrillo, Y.; Catunda, K.L.M.; Chandregowda, M.H.; Igwenagu, C.; et al. Pastures and climate extremes: Impacts of cool season warming and drought on the productivity of key pasture species in a field experiment. Front. Plant Sci. 2022, 13, 836968. [Google Scholar] [CrossRef]
- Caradus, J.; Roldan, M.; Voisey, C.; Woodfield, D. White Clover (Trifolium repens L.) Benefits in Grazed Pastures and Potential Improvements; IntechOpen: London, UK, 2023; Volume 13, in press. [Google Scholar] [CrossRef]
- Cartmill, A.D.; Donaghy, D.J. Pasture performance: Perspectives on plant persistence and renewal in New Zealand dairy systems. Agronomy 2024, 14, 1673. [Google Scholar] [CrossRef]
- Kristensen, R.K.; Rasmussen, J.; Eriksen, J. Biological N2-fixation in grass-clover ley in response to N application in cattle slurry vs. mineral fertilizer. Plant Soil 2022, 471, 629–641. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; Moir, J.L. The effect of four different pasture species compositions on nitrate leaching losses under high N loading. Soil Use Manag. 2014, 30, 58–68. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Czaban, W.; Rasmussen, J.; Laursen, B.; Vidkjær, N.; Sapkota, R.; Nicolaisen, M.; Fomsgaard, I. Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biol. Biochem. 2018, 123, 54–63. [Google Scholar] [CrossRef]
- Hearn, C.; Egan, M.; Lynch, M.B.; Fleming, C.; O’Donovan, M. Seasonal variations in nutritive and botanical composition properties of multispecies grazing swards over an entire dairy grazing season. Grassl. Res. 2022, 1, 221–233. [Google Scholar] [CrossRef]
- Luo, F.; Mi, W.; Liu, W. Legume–grass mixtures improve biological nitrogen fixation and nitrogen transfer by promoting nodulation and altering root conformation in different ecological regions of the Qinghai–Tibet Plateau. Front. Plant Sci. 2024, 15, 1375166. [Google Scholar] [CrossRef]
- Unkovich, M.; Herridge, D.A.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2008; 258p.
- Carranca, C.; de Varennes, A.; Rolston, D.E. Biological nitrogen fixation estimated by 15N dilution, natural 15N abundance, and N difference techniques in a subterranean clover-grass sward under Mediterranean conditions. Eur. J. Agron. 1999, 10, 81–89. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Sprosen, M.S.; Penno, J.W.; Rajendram, G.S. Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant Soil 2001, 229, 177–187. [Google Scholar] [CrossRef]
- Yeremko, L.; Czopek, K.; Staniak, M.; Marenych, M.; Hanhur, V. Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review. Biomolecules 2025, 15, 118. [Google Scholar] [CrossRef]
- Thurston, C.L.; Grossman, J.M.; Fudge, R.; Maul, J.E.; Mirsky, S.; Wiering, N. Cold stress reduces nodulation and symbiotic nitrogen fixation in winter annual legume cover crops. Plant Soil 2022, 481, 661–676. [Google Scholar] [CrossRef]
- Unkovich, M. Nitrogen fixation in Australian dairy systems: Review and prospect. Crop Pasture Sci. 2012, 63, 787–804. [Google Scholar] [CrossRef]
- Pankievicz, V.C.; Irving, T.B.; Maia, L.G.; Ané, J.M. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and nonleguminous crops. BMC Biol. 2019, 17, 99. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.M.; Bruce, G.E. Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass–white clover pasture with and without irrigation in Canterbury, New Zealand. Agric. Ecosyst. Environ. 2005, 110, 230–240. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K.; Torabian, S. A meta-analysis to estimate the potential of biochar in improving nitrogen fixation and plant biomass of legumes. Biomass Convers. Biorefin. 2022, 12, 3293–3303. [Google Scholar] [CrossRef]
- Teague, W.R.; Apfelbaum, S.; Lal, R.; Kreuter, U.P.; Rowntree, J.; Davies, C.A.; Byck, P. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef]
- Widdup, K.H.; Purves, R.G.; Black, A.; Jarvis, P.; Lucas, R.J. Nitrogen fixation by Caucasian clover and white clover in irrigated ryegrass pastures. Proc. New Zealand Grassl. Assoc. 2001, 63, 115–120. [Google Scholar] [CrossRef]
- NIWA. National Climate Database (CliFlo); NIWA: Wellington, New Zealand, 2025; Available online: https://cliflo.niwa.co.nz/ (accessed on 13 August 2025).
- Hewitt, A. New Zealand Soil Classification; Landcare Research Science Series No. 1; Manaaki Whenua Press: Lincoln, New Zealand, 2010; Volume 1, pp. 1–136. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; New Zealand Soil Bureau Scientific Report 80; DSIR: Lower Hutt, New Zealand, 1987. [CrossRef]
- Donaghy, D.J.; Bryant, R.H.; Cranston, L.M.; Egan, M.; Griffiths, W.M.; Kay, J.K.; Tozer, K.N. Will current rotational grazing management recommendations suit future intensive pastoral systems? Grassl. Res. Pract. Ser. 2021, 17, 225–242. [Google Scholar] [CrossRef]
- Hansen, J.; Vinther, F. Spatial variability of symbiotic N2 fixation in grass-white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method. Plant Soil 2001, 230, 257–266. Available online: https://www.jstor.org/stable/42951145 (accessed on 25 August 2025). [CrossRef]
Species | Establishment | Autumn | Winter | Spring | Summer | Cumulative N Yield | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Std | Div | Std | Div | Std | Div | Std | Div | Std | Div | Std | Div | |
Ryegrass | 20.6 ± 2.4 Ba | 17.8 ± 1.5 Aa | 29.11 ± 2.6 Ba | 19.7 ± 2.8 Ab | 24.2 ± 2.9 Ba | 15.9 ± 3.2 Aa | 44.8 ± 4.4 Aa | 16.7 ± 1.6 Ab | 28.3 ± 1.3 Ba | 9.4 ± 1.1 Ab | 147.1 | 79.5 |
Cocksfoot | * | 1.8 ± 0.9 A | 3.1 ± 0.5 A | 3.6 ± 0.8 A | 5.7 ± 1.2 A | 14.2 | ||||||
Red clover | 1.3 ± 0.7 C | * | 2.9 ± 1.4 Ca | 2.9 ± 0.9 Ba | 6.7 ± 2.3 Ca | 4.2 ± 0.5 Ba | 34.7 ± 4.4 Ba | 40.6 ± 4.0 Aa | 39.9 ± 5.4 Aa | 36.4 ± 2.2 Aa | 85.4 | 84.1 |
White clover | * | * | * | * | * | * | 9.47 ± 1.2 Aa | 7.1 ± 1.0 Aa | 16.03 ± 1.5 Aa | 8.17 ± 0.9 Aa | 25.5 | 15.3 |
Chicory | 2.3 ± 1.2 B | 8.6 ± 4.0 A | 0.6 ± 0.2 B | 14.1 ± 0.4 A | 14.1 ± 0.8 A | 39.7 | ||||||
Plantain | 4.8 ± 0.4 C | 12.2 ± 1.8 A | 13.8 ± 1.5 A | 10.5 ± 1.1 AB | 7.9 ± 1.6 B | 44.4 | ||||||
Sheep burnet | * | 0.3 ± 0.07 A | 0.2 ± 0.06 A | 0.1 ± 0.02 A | * | 0.6 | ||||||
Total | 21.9 ± 2.5 Ca | 20.1 ± 2.3 Ca | 32.0 ± 3.1 Ba | 45.4 ± 3.1 Ba | 30.8 ± 4.2 Ba | 37.7 ± 3.7 Ba | 89.0 ± 8.9 Aa | 92.6 ± 4.3 Aa | 84.2 ± 6.3 Aa | 81.6 ± 2.5 Aa | 258.04 | 277.53 |
Season | Treatment | Nodule Number Root Dry Weight−1 | N Difference (kg N ha−1) | 15N Natural Abundance (kg N ha−1) |
---|---|---|---|---|
Autumn | Std | 33 ± 5 aB | 0.8 ± 0.4 aC | 1.8 ± 0.8 aC |
Div | 41 ± 7 aB | 0.6 ± 0.3 aC | 1.6 ± 0.7 aB | |
Winter | Std | 26 ± 6 aC | 3.0 ± 0.6 aB | 7 ± 1.7 aB |
Div | 25 ± 4 aC | 1.5 ± 0.4 aC | 3.5 ± 1 aB | |
Spring | Std | 108 ± 50 aA | 7.8 ± 0.9 aA | 13.1 ± 0.6 aA |
Div | 166 ± 32 aA | 7.3 ± 0.8 aA | 11.3 ± 2.1 aA | |
Summer | Std | 37 ± 18 aB | 3.1 ± 0.4 aB | 10.7 ± 1.6 aAB |
Div | 58 ± 11 aB | 3.1 ± 0.6 aB | 11.6 ± 0.7 aA |
Soil Parameters | Values |
---|---|
pH (H2O) | 5.93 ± 0.05 |
Fe (mg kg−1) | 3018 ± 256 |
Mn (mg kg−1) | 81.21 ± 6.3 |
Al (mg kg−1) | 773.1 ± 76 |
Total N (g kg−1) | 2.1 ± 0.1 |
Total Organic C (g kg−1) | 16.5 ± 01.2 |
Olsen P (mg kg−1) | 45.89 ± 4.47 |
CEC (cmol(+) kg−1) | 15.64 ± 0.52 |
NO3− (mg kg−1) | 11.82 ±0.55 |
NH4+ (mg kg−1) | 3.62 ± 0.78 |
Sward Type | Pasture Classification | Scientific Names | Cultivar | Species (Common Names) | Seeding Rate (kg ha−1) |
---|---|---|---|---|---|
Diverse | Grasses (Poaceae) | Lolium perenne | Platform AR37 | Diploid perennial ryegrass | 9 |
Lolium perenne | 4 Front | Tetraploid hybrid ryegrass | 13 | ||
Dactylis glomerata | Safin | Cocksfoot | 3 | ||
Legumes (Fabaceae) | Trifolium repens | Kotuku | White clover large-leaved | 2 | |
Trifolium repens | Weka | White clover medium/large leaves | 2 | ||
Trifolium pratense | Relish | Red clover | 4 | ||
Vicia sativa | Vetch | 2 | |||
Onobrychis viciifolia | Sainfoin | 1 | |||
Other herbaceous species (Asteraceae) | Cichorium intybus | Choice | Chicory | 1 | |
(Plantaginaceae) | Plantago lanceolata | Ecotain | Plantain | 2 | |
(Rosaceae) | Sanguisorba minor | Sheep’s Burnet | 2 | ||
Standard | Grasses (Poaceae) | Lolium perenne | Platform AR37 | Diploid perennial ryegrass | 10 |
Lolium perenne | 4 Front | Tetraploid hybrid ryegrass | 15 | ||
Legumes (Fabaceae) | Trifolium repens | Kotuku | White clover large-leaved | 2 | |
Trifolium repens | Weka | White clover medium/large leaves | 2 | ||
Trifolium pratense | Relish | Red clover | 4 |
Growing Years | Harvesting Dates |
---|---|
Year 1 (2024) | |
Summer | 20 February during establishment |
Autumn | 19 March |
Autumn | 23 April |
Winter | 21 June |
Winter | 29 August |
Spring | 30 September |
Spring | 31 October |
Spring | 9 December |
Year 2 (2025) | |
Summer | 9 January |
Summer | 11 February |
Summer | 12 March |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutharsan, R.; Jeyakumar, P.; Burkitt, L.; Matse, D.T.; Dhanuskodi, R.; Hanly, J.; Donaghy, D.J. Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards. Plants 2025, 14, 2727. https://doi.org/10.3390/plants14172727
Sutharsan R, Jeyakumar P, Burkitt L, Matse DT, Dhanuskodi R, Hanly J, Donaghy DJ. Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards. Plants. 2025; 14(17):2727. https://doi.org/10.3390/plants14172727
Chicago/Turabian StyleSutharsan, Rukshagini, Paramsothy Jeyakumar, Lucy Burkitt, Dumsane Themba Matse, Ramadoss Dhanuskodi, James Hanly, and Daniel J. Donaghy. 2025. "Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards" Plants 14, no. 17: 2727. https://doi.org/10.3390/plants14172727
APA StyleSutharsan, R., Jeyakumar, P., Burkitt, L., Matse, D. T., Dhanuskodi, R., Hanly, J., & Donaghy, D. J. (2025). Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards. Plants, 14(17), 2727. https://doi.org/10.3390/plants14172727