Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination
Abstract
1. Introduction
2. Results
2.1. Dry Matter Accumulation (DMA)
2.2. The Relative Leaf Chlorophyll Content (RLC)
2.3. Net Photosynthetic Rate (NPR)
2.4. Grain Weight Growth Dynamics
2.5. The Spatial Proportion of Root–Water–Nitrogen in Soil
2.6. Distribution of Nitrate Nitrogen in Soil at the Maturity Period
2.7. Population and Yield Characteristics at Maturity
2.8. The Pearson Correlation Analysis
2.9. Characteristics of Nitrogen Accumulation and Distribution
2.10. Nitrogen Use Efficiency (NUE)
3. Discussion
3.1. Increased Matter Productivity During Grain-Filling Stage Under MSF with Moderate Nitrogen Application
3.2. Optimized N Accumulation and Allocation, and Increased Grain Yield (GY) Under MSF with Moderate Nitrogen Application
3.3. Enhanced Nitrogen Use Efficiency Through High Root–Water–Nitrogen Coupling in Soil Under MSF
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Design
4.2.1. Field Experiment
4.2.2. Micro-Plot Experiment
4.3. Sampling and Measurements
4.3.1. Dry Matter Accumulation
4.3.2. Population Traits, Yield Characteristics, and Harvest Index at Maturity
4.3.3. Grain Weight Dynamics
4.3.4. The Relative Chlorophyll Content and Photosynthetic Rate
4.3.5. The Spatial Coordination of Root–Water–Nitrogen in Soil
4.3.6. Soil NO3−-N Content and Plant Nitrogen Accumulation and Distribution
4.3.7. Nitrogen Use Efficiency
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.Y.; Wang, Y.Z.; Sun, H.Y.; Chen, S.Y.; Shao, L.W. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig. Sci. 2013, 31, 1103–1112. [Google Scholar] [CrossRef]
- Kong, X.B.; Zhang, X.L.; Lai, R.; Zhang, F.R.; Chen, X.H.; Niu, Z.G.; Han, L.; Song, W. Groundwater depletion by agricultural intensification in China’s HHH Plains, since 1980s. Adv. Agron. 2016, 135, 59–106. [Google Scholar]
- Li, J.P.; Zhang, Z.; Liu, Y.; Yao, C.S.; Song, W.Y.; Xu, X.X.; Zhang, M.; Zhou, X.N.; Gao, Y.M.; Wang, Z.M.; et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Tan, Q. Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain. Food Secur. 2019, 11, 1231–1242. [Google Scholar] [CrossRef]
- Man, J.G.; Wang, D.; White, P.J.; Yu, Z.W. The length of micro-sprinkling hoses delivering supplemental irrigation affects photosynthesis and dry matter production of winter wheat. Field Crops Res. 2014, 168, 65–74. [Google Scholar] [CrossRef]
- Tang, J.W.; Lin, Z.A.; Li, J.; Yuan, L.; Xu, J.K.; Tian, C.Y.; Wen, Y.C.; Zhao, B.Q. Optimal nitrogen rate and the down movement of soil nitrate nitrogen in wheat-maize rotation system in fluvo-aquic soil. J. Plant Nutr. Fert. 2020, 12, 2246–2252. [Google Scholar]
- Li, L.; Wu, T.Y.; Li, Y.S.; Hu, X.; Wang, Z.X.; Liu, J.F.; Qin, W.; Ashraf, U. Deep fertilization improves rice productivity and reduces ammonia emissions from rice fields in China; a meta-analysis. Field Crops Res. 2022, 289, 108704. [Google Scholar] [CrossRef]
- Axinte, O.; Badescu, I.; Stroe, C.; Neacsu, V.; Bulgariu, L.; Bulgariu, D. Evolution of trophic parameters from amara lake. J. Environ. Manag. 2015, 14, 559–565. [Google Scholar]
- Yang, X.L.; Lu, Y.L.; Ding, Y.; Yin, X.F.; Raza, S.; Tong, Y.A. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Tedone, L.; Ali, S.A.; Verdini, L.; De Mastro, G. Nitrogen management strategy for optimizing agronomic and environmental performance of rainfed durum wheat under Mediterranean climate. J. Clean. Prod. 2018, 172, 2058–2074. [Google Scholar] [CrossRef]
- Man, J.G.; Yu, J.S.; White, P.J.; Gu, S.B.; Zhang, Y.L.; Guo, Q.F.; Shi, Y.; Wang, D. Effects of supplemental irrigation with micro-sprinkling hoses on water distribution in soil and grain yield of winter wheat. Field Crops Res. 2014, 161, 26–37. [Google Scholar] [CrossRef]
- Li, J.P.; Xu, X.X.; Lin, G.; Wang, Y.Q.; Liu, Y.; Zhang, M.; Zhou, J.Y.; Wang, Z.M.; Zhang, Y.H. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Si, Z.Y.; Zain, M.; Mehmood, F.; Wang, G.S.; Gao, Y.; Duan, A.W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Shang, Y.Q.; Lin, X.; Li, P.; Gu, S.B.; Lei, K.Y.; Wang, S.; Hu, X.H.; Zhao, P.P.; Wang, D. Effects of supplemental irrigation at the jointing stage on population dynamics, grain yield, and water-use efficiency of two different spike-type wheat cultivars. PLoS ONE 2020, 15, e0230484. [Google Scholar] [CrossRef]
- Liu, W.X.; Ma, G.; Wang, C.Y.; Wang, J.R.; Lu, H.F.; Li, S.S.; Feng, W.; Xie, Y.X.; Ma, D.Y.; Kang, G.Z. Irrigation and nitrogen regimes promote the use of soil water and nitrate nitrogen from deep soil layers by regulating root growth in wheat. Front. Plant Sci. 2018, 9, 32. [Google Scholar] [CrossRef]
- Liu, X.J.; Ju, X.T.; Zhang, F.S.; Pan, J.R.; Christie, P. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Res. 2003, 83, 111–124. [Google Scholar] [CrossRef]
- Gheysari, M.; Mirlatifi, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Guo, Z.J.; Zhang, Y.L.; Yu, Z.W. Water use and soil nitrate nitrogen changes under supplemental irrigation with nitrogen application rate in wheat field. Field Crops Res. 2015, 183, 117–125. [Google Scholar] [CrossRef]
- Tian, Z.W.; Liu, X.X.; Gu, S.L.; Yu, J.H.; Zhang, L.; Zhang, W.W.; Jiang, D.; Cao, W.X.; Dai, T.B. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J. Integr. Agric. 2018, 12, 2648–2661. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Liu, W.X.; Li, Q.X.; Ma, D.Y.; Lu, H.F.; Feng, W.; Xie, Y.X.; Zhu, Y.J.; Guo, T.C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Feng, S.W.; Gu, S.B.; Zhang, H.B.; Wang, D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res. 2017, 214, 131–141. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter wheat cultivars and nitrogen (N) fertilization-Effects on root growth, N uptake efficiency and N use efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Li, Q.Q.; Dong, B.D.; Qiao, Y.Z.; Liu, M.Y.; Zhang, J.W. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Xu, H.C.; Cai, T.; Wang, Z.L.; He, M.R. Physiological basis for the differences of productive capacity among tillers in winter wheat. J. Integr. Agric. 2015, 14, 1958–1970. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Ma, Z.M.; Lyu, X.D.; Liu, T.T.; Siddique, K. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Tritium aestivum L.) under permanent raised bed tillage in arid northwest China. Soil Till. Res. 2018, 181, 117–126. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Wang, E.; Xue, L.H.; Wu, Y.C.; Zang, H.C.; Qin, X.; Zhang, J.T.; Wang, Z.M. Accuracy of root modelling and its impact on simulated wheat yield and carbon cycling in soil. Field Crops Res. 2014, 165, 99–110. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.D.; Ai, Z.P.; Li, J.; Gu, C.K. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Sci. Total Environ. 2018, 618, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Wang, Z.M.; Liang, S.B.; Zhang, Y.H.; Zhou, S.L.; Lu, L.Q.; Wang, R.Z. Quantitative study on the fate of residual soil nitrate in winter wheat based on a 15N-labeling method. PLoS ONE 2017, 12, e0171014. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Hu, Y.X.; Dang, T.H.; Guo, S.L. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system. J. Integr. Agric. 2021, 20, 3003–3011. [Google Scholar] [CrossRef]
- Yang, T.R.; Zhao, J.H.; Hong, M.; Ma, M.J.; Ma, S.J.; Yuan, Y.Y. Optimizing water and nitrogen supply can regulate the dynamics of dry matter accumulation in maize, thereby promoting dry matter accumulation and increasing yield. Field Crops Res. 2025, 326, 109837. [Google Scholar] [CrossRef]
- Bhavsar, D.; Limbasia, B.; Mori, Y.; Aglodiya, M.; Shah, M. A comprehensive and systematic study in smart drip and sprinkler irrigation systems. Smart Agric. Technol. 2023, 5, 100303. [Google Scholar] [CrossRef]
- Spanu, A.; Langasco, I.; Mara, A.; Sanna, G. Sprinkler irrigation: An efficient and eco-friendly approach to produce safe rice. J. Agri. Food Res. 2024, 17, 101254. [Google Scholar] [CrossRef]
- Yao, C.S.; Li, J.P.; Zhang, Z.; Liu, Y.; Wang, Z.M.; Sun, Z.C.; Zhang, Y.H. Improving wheat yield, quality and resource utilization efficiency through nitrogen management based on micro-sprinkler irrigation. Agric. Water Manag. 2023, 282, 108277. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.Y.; Liu, X.C.; Gao, Y.; Ma, S.T.; Qin, A.Z.; Li, Y.; Zhang, Q.F.; Gao, Z.L.; Wu, G.H.; et al. Post-anthesis water use and biomass accumulation in winter wheat under subsoiling and microsprinkler irrigation. Soil Till. Res. 2025, 246, 106343. [Google Scholar] [CrossRef]
- Li, J.P.; Zhang, Z.; Yao, C.S.; Liu, Y.; Wang, Z.M.; Fang, B.T.; Zhang, Y.H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J. Integr. Agric. 2021, 20, 606–621. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, F.Y.; Shi, X.J.; Shi, F.; Li, N.N.; Li, J.H.; Chenu, K.; Luo, H.H.; Yang, G.Z. Late nitrogen fertilization improves cotton yield through optimizing dry matter accumulation and partitioning. Annals Agric. Sci. 2023, 68, 75–86. [Google Scholar] [CrossRef]
- Wen, M.; Gao, Y.H.; Guo, L.Z.; Yan, B.; Lu, P.; Wu, B.; Wang, Y.F.; Li, Y.; Cai, Z.J.; Xu, P.; et al. Nitrogen reduction and split application increased grain yield and agronomic nitrogen use efficiency of oilseed flax (Linum usitatissimum. L) by increasing nitrogen status. Field Crops Res. 2025, 328, 109910. [Google Scholar] [CrossRef]
- Gao, Y.M.; Wang, Q.; Liu, Y.; He, J.; Chen, W.W.; Xing, J.; Sun, M.; Gao, Z.Q.; Wang, Z.M.; Zhang, M.; et al. Optimal water, nitrogen, and density management increased wheat yield by improving population uniformity. Agric. Water Manag. 2025, 310, 109362. [Google Scholar] [CrossRef]
- Cai, T.; Xu, H.C.; Peng, D.L.; Yin, Y.P.; Yang, W.B.; Ni, Y.L.; Chen, X.G.; Xu, C.L.; Yang, D.Q.; Cui, Z.Y.; et al. Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. Field Crops Res. 2014, 155, 172–183. [Google Scholar] [CrossRef]
- Arduini, I.; Pellegrino, E.; Ercoli, L. Contribution of main culm and tillers to grain yield of durum wheat: Influence of sowing date and plant traits. Ital. J. Agron. 2018, 13, 1115. [Google Scholar] [CrossRef]
- Ding, Y.G.; Zhang, X.B.; Ma, Q.; Li, F.J.; Tao, R.R.; Zhu, M.; Li, C.Y.; Zhu, X.K.; Guo, W.S.; Ding, J.F. Tiller fertility is critical for improving grain yield, photosynthesis, and nitrogen efficiency in wheat. J. Integr. Agric. 2023, 22, 2054–2066. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, J.M.; Liu, L.; Zeleke, K.; Yi, R.; Zhang, X.P.; Gao, Y.; Liang, Y.P. Effects of irrigation and nitrogen topdressing on water and nitrogen use efficiency for winter wheat with micro-sprinkling hose irrigation in North China. Agric. Water Manag. 2024, 302, 109005. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.Z.; Yan, T.M.; Xue, F.; Zhao, D. Rice dry matter and nitrogen accumulation, soil mineral N around root and N leaching, with increasing application rates of fertilizer. Eur. J. Agron. 2013, 49, 90–103. [Google Scholar] [CrossRef]
- Yang, D.Q.; Luo, Y.L.; Kong, X.; Huang, C.; Wang, Z.L. Interactions between exogenous cytokinin and nitrogen application regulate tiller bud growth via sucrose and nitrogen allocation in winter wheat. J. Plant Growth Regul. 2021, 40, 329–341. [Google Scholar] [CrossRef]
- Lin, X.; Wang, D.; Gu, S.B.; White, P.J.; Han, K.; Zhou, J.; Jin, S.P. Effect of supplemental irrigation on the relationships between leaf ABA concentrations, tiller development and photosynthate accumulation and remobilization in winter wheat. Plant Growth Regul. 2016, 79, 331–343. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.F.; Li, H.; Wang, J.; Guo, X. Evaluating soil water and nitrogen transport, nitrate leaching and soil nitrogen concentration uniformity under sprinkler irrigation and fertigation using numerical simulation. J. Hydrol. 2025, 647, 132345. [Google Scholar] [CrossRef]
- Lv, G.H.; Song, J.Q.; Bai, W.B.; Wu, Y.F.; Liu, Y.; Kang, Y.H. Effects of different irrigation methods on micro-environments and root distribution in winter wheat fields. J. Integr. Agric. 2015, 14, 1658–1672. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Dry Matter and Nitrogen Accumulation, Partitioning, and Retranslocation in Safflower (Carthamus tinctorius L.) as Affected by Nitrogen Fertilization. Field Crops Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
Year | Irrigation Methods | Nitrogen Application Rates | ITN (×106 ha−1) | ITW (kg ha−1) | EN-10 (×106 ha−1) | EN (×106 ha−1) | GN | TGW (g) | GY (kg ha−1) | HI (%) |
---|---|---|---|---|---|---|---|---|---|---|
2020–2021 | CIF | N0 | 0.2 ± 0.1 d | 55.7 ± 24.8 e | 0.2 ± 0.0 e | 3.0 ± 0.2 d | 27.4 ± 1.6 d | 43.7 ± 1.4 e | 4915.5 ± 482.3 d | 0.41 ± 0.001 de |
N120 | 1.0 ± 0.3 b | 585.7 ± 61.0 cd | 0.4 ± 0.1 c | 4.5 ± 0.4 c | 36.2 ± 1.1 c | 47.9 ± 0.7 bc | 8530.3 ± 292.5 c | 0.44 ± 0.012 bc | ||
N180 | 1.1 ± 0.6 b | 996.1 ± 126.7 b | 0.5 ± 0.0 b | 5.4 ± 0.3 ab | 38.4 ± 1.9 bc | 46.4 ± 0.5 cd | 8992.4 ± 155.8 bc | 0.41 ± 0.009 de | ||
N240 | 2.6 ± 0.3 a | 1324.5 ± 154.2 a | 0.7 ± 0.1 a | 5.8 ± 0.3 a | 38.4 ± 1.1 bc | 43.9 ± 1.5 de | 8892.7 ± 80.8 c | 0.40 ± 0.008 e | ||
MSF | N0 | 0.3 ± 0.1 cd | 93.7 ± 86.9 e | 0.2 ± 0.0 e | 3.2 ± 0.3 d | 24.7 ± 3.1 d | 44.2 ± 1.9 de | 4582.3 ± 469.2 d | 0.43 ± 0.016 cd | |
N120 | 0.8 ± 0.3 bc | 501.4 ± 80.5 d | 0.2 ± 0.0 de | 4.3 ± 0.5 c | 37.2 ± 3.8 c | 51.0 ± 1.2 a | 8675.4 ± 328.6 c | 0.45 ± 0.014 ab | ||
N180 | 1.0 ± 0.4 b | 714.1 ± 78.0 c | 0.3 ± 0.1 cd | 5.1 ± 0.1 b | 43.0 ± 1.3 a | 48.5 ± 1.5 bc | 9695.4 ± 462.5 a | 0.46 ± 0.002 a | ||
N240 | 1.2 ± 0.4 b | 711.3 ± 50.1 c | 0.3 ± 0.1 cd | 5.2 ± 0.2 b | 41.2 ± 0.8 ab | 48.9 ± 0.9 ab | 9534.4 ± 150.7 ab | 0.44 ± 0.008 ab | ||
2021–2022 | CIF | N0 | 0.3 ± 0.2 e | 95.3 ± 9.7 e | 0.3 ± 0.1 de | 5.4 ± 0.7 d | 26.8 ± 1.5 e | 43.7 ± 1.2 d | 3462.3 ± 360.4 d | 0.44 ± 0.007 c |
N120 | 1.5 ± 0.2 cd | 684.3 ± 56.9 c | 0.3 ± 0.0 cde | 6.4 ± 0.3 c | 31.0 ± 1.6 d | 47.9 ± 1.4 bc | 8883.3 ± 346.1 c | 0.47 ± 0.013 b | ||
N180 | 2.4 ± 0.2 b | 974.0 ± 129.8 b | 0.6 ± 0.1 b | 7.5 ± 0.3 ab | 35.4 ± 2.1 c | 46.4 ± 2.3 cd | 9881.0 ± 278.7 b | 0.46 ± 0.01 b | ||
N240 | 3.3 ± 0.2 a | 1182.8 ± 104.1 a | 0.7 ± 0.1 a | 8.1 ± 0.2 a | 36.3 ± 0.5 bc | 43.9 ± 1.5 d | 9612.8 ± 194.5 b | 0.46 ± 0.013 b | ||
MSF | N0 | 0.3 ± 0.0 e | 100.3 ± 18.6 e | 0.3 ± 0.0 e | 5.4 ± 0.1 d | 25.7 ± 2.9 e | 44.2 ± 1.5 d | 3134.4 ± 536.8 d | 0.44 ± 0.005 c | |
N120 | 1.2 ± 0.3 d | 530.7 ± 128.3 d | 0.3 ± 0.0 cde | 6.1 ± 0.7 c | 40.0 ± 0.7 a | 51.0 ± 1.4 a | 9557.1 ± 266.2 b | 0.50 ± 0.011 a | ||
N180 | 1.4 ± 0.4 d | 734.0 ± 98.5 c | 0.4 ± 0.1 cd | 6.3 ± 0.2 c | 39.4 ± 0.9 a | 48.5 ± 1.7 bc | 10904.3 ± 267.7 a | 0.50 ± 0.009 a | ||
N240 | 1.7 ± 0.2 c | 824.9 ± 74.2 c | 0.4 ± 0.0 c | 7.2 ± 0.2 b | 38.6 ± 1.0 ab | 49.4 ± 1.3 ab | 10465.5 ± 235.6 a | 0.49 ± 0.005 a | ||
ANOVA (F-value) | Y | 38.1 *** | 1.0 ns | 19.3 *** | 434.8 *** | 10.5 ** | 97.4 *** | 9.1 ** | 228.7 *** | |
I | 48.9 *** | 76.2 *** | 115.2 *** | 25.2 *** | 21.6 *** | 47.7 *** | 23.0 *** | 102.4 *** | ||
N | 98.5*** | 301.6 *** | 80.4 *** | 114.8 *** | 134.2 *** | 39.7 *** | 924.2 *** | 35.2 *** | ||
Y × I | 3.7 ns | 1.6 ns | 1.6 ns | 5.4* | 3.8 ns | 0.0 ns | 2.7 ns | 1.2 ns | ||
Y × N | 3.8 * | 0.9 ns | 1.6 ns | 2.5 ns | 2.1 ns | 0.8 ns | 41.0 *** | 9.5 *** | ||
I × N | 16.3*** | 22.0 *** | 25.8 *** | 4.5 ** | 8.7 *** | 6.0 ** | 8.8 *** | 9.1 *** | ||
Y × I × N | 1.6 ns | 2.1 ns | 1.0 ns | 0.5 ns | 3.5 * | 0.3 ns | 0.5 ns | 1.6 ns |
Year | Irrigation Methods | Nitrogen Application Rates | NA (kg ha−1) | NITM (kg ha−1) | NSM (kg ha−1) | NGM (kg ha−1) | NTM (kg ha−1) | NPA (kg ha−1) | CRPATG (%) | NHI (%) |
---|---|---|---|---|---|---|---|---|---|---|
2020–2021 | CIF | N0 | 39.7 ± 2.4 e | 0.1 ± 0.1 f | 7.3 ± 1.1 f | 42.1 ± 4.5 d | 49.3 ± 5.4 d | 9.6 ± 3.8 f | 0.22 ± 0.07 c | 0.85 ± 0.01 a |
N120 | 159.7 ± 7.8 cd | 4.2 ± 0.9 d | 46.2 ± 3.7 e | 147.5 ± 11.1 c | 193.7 ± 9.1 c | 34.0 ± 9.5 e | 0.23 ± 0.06 c | 0.76 ± 0.03 c | ||
N180 | 188.4 ± 8.3 b | 8.2 ± 1.6 b | 78.4 ± 8.1 c | 169.7 ± 0.9 b | 248.0 ± 8.6 b | 59.6 ± 4.0 cd | 0.35 ± 0.02 b | 0.68 ± 0.02 e | ||
N240 | 210.7 ± 11.9 a | 11.1 ± 1.1 a | 99.4 ± 3.7 a | 173.8 ± 15.8 b | 273.2 ± 10.3 a | 62.5 ± 11.9 bc | 0.36 ± 0.05 b | 0.64 ± 0.01 f | ||
MSF | N0 | 35.4 ± 3.9 e | 0.2 ± 0.3 f | 7.3 ± 0.3 f | 36.3 ± 5.6 d | 43.6 ± 5.9 d | 8.2 ± 2.3 f | 0.22 ± 0.04 c | 0.83 ± 0.02 a | |
N120 | 150.0 ± 13.0 d | 2.7 ± 0.5 e | 40.7 ± 4.4 e | 153.2 ± 5.0 c | 194.0 ± 6.8 c | 44.0 ± 9.5 de | 0.29 ± 0.07 b | 0.79 ± 0.02 b | ||
N180 | 170.0 ± 12.7 c | 5.5 ± 0.9 cd | 69.9 ± 6.1 d | 179.5 ± 9.3 ab | 249.4 ± 10.9 b | 79.4 ± 8.2 ab | 0.44 ± 0.04 a | 0.72 ± 0.02 d | ||
N240 | 188.5 ± 11.8 b | 6.4 ± 0.6 c | 87.9 ± 5.0 b | 191.6 ± 12.9 a | 279.5 ± 16.4 a | 91.0 ± 12.5 a | 0.45 ± 0.04 a | 0.69 ± 0.01 e | ||
2021–2022 | CIF | N0 | 63.4 ± 7.9 d | 0.4 ± 0.1 f | 15.3 ± 1.4 e | 63.9 ± 5.5 d | 79.2 ± 6.9 d | 15.8 ± 1.0 d | 0.25 ± 0.04 c | 0.81 ± 0.00 a |
N120 | 165.8 ± 12.8 c | 6.5 ± 0.3 d | 53.9 ± 1.2 c | 155.8 ± 4.5 c | 209.6 ± 3.8 c | 43.8 ± 9.0 c | 0.28 ± 0.07 c | 0.74 ± 0.01 c | ||
N180 | 234.0 ± 18.5 a | 10.0 ± 0.5 b | 88.9 ± 1.6 b | 204.7 ± 6.3 b | 293.6 ± 7.6 b | 59.6 ± 15.5 b | 0.29 ± 0.08 c | 0.70 ± 0.00 e | ||
N240 | 246.5 ± 15.2 a | 13.0 ± 2.2 a | 103.2 ± 6.4 a | 211.3 ± 10.9 b | 314.5 ± 7.5 a | 68.0 ± 11.2 b | 0.32 ± 0.05 bc | 0.67 ± 0.02 f | ||
MSF | N0 | 64.7 ± 9.0 d | 0.5 ± 0.1 f | 15.7 ± 2.4 e | 67.0 ± 8.3 d | 82.8 ± 10.5 d | 18.1 ± 2.8 d | 0.27 ± 0.04 c | 0.81 ± 0.01 a | |
N120 | 145.9 ± 14.4 c | 3.8 ± 1.1 e | 47.3 ± 3.8 c | 158.0 ± 11.9 c | 205.3 ± 15.6 c | 59.4 ± 3.5 bc | 0.38 ± 0.03 ab | 0.77 ± 0.00 b | ||
N180 | 215.5 ± 11.1 b | 7.5 ± 1.1 cd | 84.2 ± 5.0 b | 218.4 ± 18.0 ab | 302.6 ± 19.1 ab | 87.1 ± 12.1 a | 0.40 ± 0.04 ab | 0.73 ± 0.02 cd | ||
N240 | 218.3 ± 9.5 b | 8.9 ± 1.6 bc | 88.3 ± 4.9 b | 223.5 ± 8.4 a | 311.8 ± 12.6 ab | 93.5 ± 13.7 a | 0.42 ± 0.05 a | 0.72 ± 0.01 de | ||
ANOVA (F-value) | Y | 72.1 *** | 34.0 *** | 32.7 *** | 99.1 *** | 120.2 *** | 5.8 * | 0.1 ns | 0.3 ns | |
I | 19.8 *** | 69.0 *** | 21.5 *** | 8.6 ** | 0.3 ns | 29.6 *** | 25.2 *** | 33.2 *** | ||
N | 554.6 *** | 250.0 *** | 783.8 *** | 660.3 *** | 1134.0 *** | 105.8 *** | 25.6 *** | 235.0 *** | ||
Y × I | 0.0 ns | 0.0 ns | 0.0 ns | 0.1 ns | 0.1 ns | 0.3 ns | 0.4 ns | 0.1 ns | ||
Y × N | 7.2 ** | 2.9 *** | 2.6 ns | 5.7 ** | 4.6 ** | 0.5 ns | 4.2 * | 12.6 *** | ||
I × N | 2.5 ns | 12.6 *** | 4.3 * | 1.8 ns | 0.2 ns | 4.3 * | 2.3 ns | 7.9 *** | ||
Y × I × N | 0.2 ns | 0.3 ns | 0.3 ns | 0.3 ns | 0.5 ns | 0.2 ns | 0.0 ns | 0.7 ns |
Year | Irrigation Methods | Nitrogen Application Rates | NPFP (kg/kg) | NAE (kg/kg) | NIUE (kg/kg) | NPE (kg/kg) |
---|---|---|---|---|---|---|
2020–2021 | CIF | N0 | — | — | 100.0 ± 9.1 a | — |
N120 | 71.1 ± 2.4 a | 30.1 ± 2.4 ab | 44.1 ± 2.6 bc | 25.8 ± 1.6 ab | ||
N180 | 50.0 ± 0.9 c | 22.6 ± 2.9 c | 36.3 ± 0.9 bc | 21.2 ± 1.6 c | ||
N240 | 37.1 ± 0.3 e | 16.6 ± 1.7 d | 32.7 ± 2.3 c | 17.4 ± 0.6 d | ||
MSF | N0 | — | — | 106.4 ± 16.1 a | — | |
N120 | 72.3 ± 2.7 a | 34.1 ± 2.5 a | 44.8 ± 1.8 b | 27.2 ± 1.4 a | ||
N180 | 53.9 ± 2.6 b | 28.4 ± 1.4 b | 38.9 ± 2.5 bc | 24.8 ± 0.3 b | ||
N240 | 40.2 ± 0.4 d | 20.6 ± 1.0 c | 34.2 ± 1.6 c | 21.0 ± 1.4 c | ||
2021–2022 | CIF | N0 | — | — | 44.0 ± 2.8 a | — |
N120 | 74.0 ± 2.9 b | 45.2 ± 1.3 b | 42.4 ± 1.4 ab | 41.8 ± 4.2 b | ||
N180 | 54.9 ± 1.5 d | 35.7 ± 0.7 c | 33.7 ± 1.7 cd | 29.9 ± 0.3 d | ||
N240 | 40.1 ± 0.8 f | 25.6 ± 0.7 e | 30.6 ± 1.3 d | 26.2 ± 1.2 d | ||
MSF | N0 | — | — | 37.8 ± 3.9 bc | — | |
N120 | 79.6 ± 2.2 a | 53.5 ± 3.1 a | 46.7 ± 2.4 a | 53.2 ± 2.0 a | ||
N180 | 60.6 ± 1.5 c | 43.2 ± 2.0 b | 36.1 ± 1.4 c | 35.4 ± 3.1 c | ||
N240 | 43.6 ± 1.0 e | 30.5 ± 0.5 d | 33.6 ± 1.3 cd | 32.0 ± 1.1 c | ||
ANOVA (F-value) | Y | 63.3 ns | 300.4 ns | 122.7 *** | 371.2 *** | |
I | 63.7 *** | 59.3 *** | 1.4 ns | 50.4 *** | ||
N | 3576.7 *** | 227.7 *** | 143.2 *** | 111.8 *** | ||
Y × I | 6.3 ns | 4.0 ns | 0.5 ns | 8.3 ** | ||
Y × N | 9.2 *** | 10.5 *** | 104.0 *** | 23.7 *** | ||
I × N | 0.7 ns | 1.2 ns | 0.1 ns | 0.1 ns | ||
Y × I × N | 2.2 ns | 1.4 ns | 1.4 ns | 1.8 ns |
Treatments | Items | Before Sowing | Jointing Stage | Heading Stage | 7 d After Anthesis | 14 d After Anthesis | Total |
---|---|---|---|---|---|---|---|
CIF | Irrigation amount (mm) | 75 | 75 | 150 | |||
Nitrogen application ratio (%) | 50 | 50 | 100 | ||||
MSF | Irrigation amount (mm) | 50 | 50 | 30 | 20 | 150 | |
Nitrogen application ratio (%) | 40 | 30 | 15 | 10 | 5 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Zhao, Y.; Zhang, L.; Hao, L.; Zhang, Z.; Lv, L.; Zhang, J. Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination. Plants 2025, 14, 2713. https://doi.org/10.3390/plants14172713
Zheng M, Zhao Y, Zhang L, Hao L, Zhang Z, Lv L, Zhang J. Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination. Plants. 2025; 14(17):2713. https://doi.org/10.3390/plants14172713
Chicago/Turabian StyleZheng, Mengjing, Yingjia Zhao, Lihua Zhang, Liyan Hao, Zhongyi Zhang, Lihua Lv, and Jingting Zhang. 2025. "Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination" Plants 14, no. 17: 2713. https://doi.org/10.3390/plants14172713
APA StyleZheng, M., Zhao, Y., Zhang, L., Hao, L., Zhang, Z., Lv, L., & Zhang, J. (2025). Micro-Sprinkling Fertigation Enhances Wheat Grain Yield and Nitrogen Use Efficiency by Reducing N Redundancy and Increasing Root–Water–Nitrogen Spatiotemporal Coordination. Plants, 14(17), 2713. https://doi.org/10.3390/plants14172713