Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages
Abstract
1. Introduction
2. Results
2.1. Intra-Specific Variation in Functional Traits
2.2. Influence of Forest Age and Diameter Class on Functional Traits
2.3. Principal Component Analysis (PCA) Under Standardized Functional Trait Data
2.4. Trait Correlations Across Ages and Diameter Class Classes
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Plot Design and Sampling Strategy
4.3. Trait Sampling and Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hohenegger, J. Species as the basic units in evolution and biodiversity: Recognition of species in the recent and ceological past as exemplified by larger foraminifera. Gondwana Res. 2014, 25, 707–728. [Google Scholar] [CrossRef]
- Buckley, Y.M.; Austin, A.; Bardgett, R.; Catford, J.A.; Hector, A.; Iler, A.; Mariotte, P. The plant ecology of nature-based solutions for people, biodiversity and climate. J. Ecol. 2024, 112, 2424–2431. [Google Scholar] [CrossRef]
- Anderegg, L.D.L. Why can’t we predict traits from the environment? New Phytol. 2023, 237, 1998–2004. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive la différence: Plant functional diversity ma tters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef] [PubMed]
- Falster, D.S.; Duursma, R.A.; FitzJohn, R.G. How functional traits influence plant growth and shade tolerance across the life cycle. Proc. Natl. Acad. Sci. USA 2018, 115, e6789–e6798. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Díaz, S.; Rifai, S.W.; Corral-Rivas, J.J.; Nava-Miranda, M.G.; González-M, R.; Hurtado-M, A.B.; Revilla, N.S.; Vilanova, E.; Almeida, E.; et al. Tropical forests in the Americas are changing too slowly to track climate change. Science 2025, 387, eadl5414. [Google Scholar] [CrossRef]
- Gremer, J.R. Looking to the past to understand the future: Linking evolutionary modes of response with functional and life history traits in variable environments. New Phytol. 2023, 237, 751–757. [Google Scholar] [CrossRef]
- He, P.; Lian, J.; Ye, Q.; Liu, H.; Zheng, Y.; Yu, K.; Zhu, S.; Li, R.; Yin, D.; Ye, W.; et al. How do functional traits influence tree demographic properties in a subtropical monsoon forest? Funct. Ecol. 2022, 36, 3200–3210. [Google Scholar] [CrossRef]
- Duan, X.; Jia, Z.; Li, J.; Wu, S. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob. Ecol. Conserv. 2022, 38, e02177. [Google Scholar] [CrossRef]
- Pan, L.; Wang, T.; Gavrikov, V.L.; Guo, X.; Mu, L.; Tang, Z. Trade-off strategies between growth and defense of spring ephemeral plants in early sprin. Front. Plant Sci. 2025, 16, 1503169. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Harrison, S.P.; Prentice, I.C.; Wright, I.J.; Peng, C.; Lin, G. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 2019, 221, 155–168. [Google Scholar] [CrossRef]
- Grime, J.P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J. Veg. Sci. 2006, 17, 255–260. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- He, J.S.; Wang, Z.; Wang, X.; Schmid, B.; Zuo, W.; Zhou, M.; Zheng, C.; Wang, M.; Fang, J. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytol. 2006, 170, 835–848. [Google Scholar] [CrossRef]
- Ji, W.; LaZerte, S.E.; Waterway, M.J.; Lechowicz, M.J. Functional ecology of congeneric variation in the leaf economics spectrum. New Phytol. 2020, 225, 196–208. [Google Scholar] [CrossRef]
- Gross, N.; Bagousse-Pinguet, Y.L.; Liancourt, P.; Berdugo, M.; Gotelli, N.J.; Maestre, F.T. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 2017, 1, 0132. [Google Scholar] [CrossRef] [PubMed]
- Heilmeier, H. Functional traits explaining plant responses to past and future climate changes. Flora 2019, 254, 1–11. [Google Scholar] [CrossRef]
- Palacio, F.X.; Fernández, G.J.; Ordano, M. Does accounting for within-individual trait variation matter for measuring functional diversity? Ecol. Indic. 2019, 102, 43–50. [Google Scholar] [CrossRef]
- He, Y.; Junker, R.R.; Xiao, J.; Lasky, J.R.; Cao, M.; Asefa, M.; Swenson, N.G.; Xu, G.; Yang, J.; Sedio, B.E. Genetic and environmental drivers of intraspecific variation in foliar metabolites in a tropical tree community. New Phytol. 2025, 246, 2551–2564. [Google Scholar] [CrossRef]
- Tusifujiang, Y.; Zhang, X.; Gong, L. The relative contribution of intraspecific variation and species turnover to the community-level foliar stoichiometric characteristics in different soil moisture and salinity habitats. PLoS ONE 2021, 16, e0246672. [Google Scholar] [CrossRef]
- Liu, H.; Yin, D.; He, P.; Cadotte, M.W.; Ye, Q. Linking plant functional traits to biodiversity under environmental change. Biol. Divers. 2024, 1, 22–28. [Google Scholar] [CrossRef]
- Laforest-Lapointe, I.; Martínez-Vilalta, J.; Retana, J. Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia 2014, 175, 1337–1348. [Google Scholar] [CrossRef]
- Yao, L.; Wu, C.; Wang, Z.; Jiang, B. Alpha and beta diversity of functional traits in subtropical evergreen broad-leaved secondary forest communities. Front. Plant Sci. 2024, 15, 1223351. [Google Scholar] [CrossRef]
- Albert, C.H.; Grassein, F.; Schurr, F.M.; Vieilledent, G.; Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 2011, 13, 217–225. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Chen, H.; Deng, M.; Xiao, H.; Dong, S.; Scheu, S.; Wang, S. Adult body mass influences multi-element stoichiometry in ground beetles. Soil. Biol. Biochem. 2025, 203, 109716. [Google Scholar] [CrossRef]
- Cope, O.L.; Burkle, L.A.; Croy, J.R.; Mooney, K.A.; Yang, L.H.; Wetzel, W.C. The role of timing in intraspecific trait ecology. Trends Ecol. Evol. 2022, 37, 997–1005. [Google Scholar] [CrossRef]
- Puglielli, G.; Bricca, A.; Chelli, S.; Petruzzellis, F.; Acosta, A.T.R.; Bacaro, G.; Bacaro, E.; Bernardo, L.; Bonari, G.; Bolpagni, R.; et al. Intraspecific variability of leaf form and function across habitat types. Ecol. Lett. 2024, 27, e14396. [Google Scholar] [CrossRef]
- Oktavia, D.; Park, J.W.; Jin, G. Life stages and habitat types alter the relationships of tree growth with leaf traits and soils in an old-growth temperate forest. Flora 2022, 293, 152104. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Y.; He, B.; Yang, Y.; Han, X.; Sun, T.; Lu, X. Environmental factors driving the succession and differentiation of ecological strategy spectrum in tropical lowland rain forest. Ecol. Indic. 2023, 147, 110002. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, B.; Lei, X.; Feng, L. Prediction of tree crown width in natural mixed forests using deeplearning algorithm. For. Ecosyst. 2023, 10, 100109. [Google Scholar] [CrossRef]
- Jia, L.; Jiang, Q.; Sun, J.; Robinson, D.; Yang, Z.; Yao, X.; Wang, X.; Dai, X.; Chen, T.; Wu, D.; et al. Contrasting depth-related fine root plastic responses to soil warming in a subtropical Chinese fir plantation. J. Ecol. 2024, 112, 1058–1073. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Y.; Chhin, S.; Liu, N.; Pang, H.; Zhang, J.; Zhu, G.; Zhang, X. Alleviating monoculture-induced soil degradation in Chinese fir plantations in southern China: Optimizing understory mixtures balances stoichiometry and microbial diversity. Ind. Crops Prod. 2025, 232, 121254. [Google Scholar] [CrossRef]
- Wang, H.; Duan, A.; Zhang, J. Intraspecific responses to climate change in Cunninghamia lanceolata (Lamb.) Hook.: Local may not be the best. For. Ecol. Manag. 2025, 590, 122784. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, N.; Liu, C.; Zhang, M.; Gao, C.; Yang, L.; Yao, L.; Zhang, X. Comparison of growth strategies and biomass allocation in Chinese fir provenances from the subtropical region of China. Forests 2025, 16, 687. [Google Scholar] [CrossRef]
- Lei, J.; Wu, H.; Li, X.; Guo, W.; Duan, A.; Zhang, J. Response of rhizosphere bacterial communities to near-natural forest management and tree species within Chinese fir plantations. Microbiol. Spectr. 2023, 11, e0232822. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cheng, S.; Zhou, J.; Tigabu, M.; Ma, X.; Li, M. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances. BMC Plant Biol. 2023, 23, 92. [Google Scholar] [CrossRef]
- Jian, M.P.; Yang, J.Y. Unveiling the adaptation strategies of woody plants in remnant forest patches to spatiotemporal urban expansion through leaf trait networks. For. Ecosyst. 2024, 11, 100186. [Google Scholar] [CrossRef]
- Li, Y.; Mo, Y.X.; Cui, H.L.; Zhang, Y.; Dossa, G.G.; Tan, Z.; Song, L. Intraspecific plasticity and co-variation of leaf traits facilitate Ficus tinctoria to acclimate hemiepiphytic and terrestrial habitats. Tree Physiol. 2024, 44, tpae007. [Google Scholar] [CrossRef]
- Lecerf, A.; Chauvet, E. Intraspecificvariability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl. Ecol. 2008, 9, 598–605. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, X.; Wang, S.; Feng, S.; Ning, Z.; Wang, R.; Chen, X.; Zhao, H.; Chen, M. Untangling the influence of abiotic and biotic factors on leaf C, N, and P stoichiometry along a desert-grassland transition zone in northern China. Sci. Total Environ. 2023, 884, 163902. [Google Scholar] [CrossRef]
- Messier, J.; Lechowicz, M.J.; McGill, B.J.; Violle, C.; Enquist, B.J. Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. J. Ecol. 2017, 105, 1775–1790. [Google Scholar] [CrossRef]
- Kuebbing, S.E.; Bradford, M.A. The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of non-native invasive plants on carbon mineralization of decomposing leaf litter. Funct. Ecol. 2019, 33, 1156–1171. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, M.; Webber, B.L.; Didham, R.K. Intraspecific leaf trait variation mediates edge effects on litter decomposition rate in fragmented forests. Ecology 2024, 105, e4260. [Google Scholar] [CrossRef]
- Osman, K.T. Physical Properties of Forest Soils. In Forest Soils; Springer International Publishing: Cham, Switzerland, 2013; pp. 19–44. [Google Scholar]
- Su, X.; Zheng, G.; Chen, H.Y.H. Understory diversity are driven by resource availability rather thanresource heterogeneity in subtropical forests. For. Ecol. Manag. 2022, 503, 119781. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Biotic Influences: Interactions Among Plants. In Plant Physiological Ecology; Springer International Publishing: Cham, Switzerland, 2019; pp. 615–648. [Google Scholar]
- Iida, Y.; Swenson, N.G. Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. Ecol. Res. 2020, 35, 947–966. [Google Scholar] [CrossRef]
- Engbersen, N.; Stefan, L.; Brooker, R.W.; Schöb, C. Using plant traits to understand the contribution of biodiversity effects to annual crop community productivity. Ecol. Appl. 2022, 32, e02479. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Sun, J.; Yao, X.; Wang, X.; Huang, J.; Xiong, D.; Chen, G. Fine root nutrient foraging ability in relation to carbon availability along achronosequence of Chinese fir plantations. For. Ecol. Manag. 2022, 507, 120003. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Qi, J.; Ma, K.; Zhang, Y. Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Moutain of Beijing. Acta Ecol. Sin. 2008, 28, 122–128. (In Chinese) [Google Scholar]
- Wu, A.; Hu, X.; Wang, F.; Guo, C.; Wang, H.; Chen, F.S. Nitrogen deposition and phosphorus addition alter mobility of trace elements in subtropical forests in China. Sci. Total Environ. 2021, 781, 146778. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef]
- Rao, Q.Y.; Chen, J.F.; Chou, Q.C.; Ren, W.; Cao, T.; Zhang, M.; Xiao, H.; Liu, Z.; Chen, J.; Su, H.; et al. Linking trait network parameters with plant growth across light gradients and seasons. Funct. Ecol. 2023, 37, 1732–1746. [Google Scholar] [CrossRef]
- Roche, P.; Díaz-Burlinson, N.; Gachet, S. Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecol. 2004, 174, 37–48. [Google Scholar] [CrossRef]
- Khan, A.; Yan, L.; Hasan, M.M.; Wang, W.; Xu, K.; Zou, G.; Liu, X.D.; Fang, X.W. Leaf traits and leaf nitrogen shift photosynthesis adaptive strategies among functional groups and diverse biomes. Ecol. Indic. 2022, 141, 109098. [Google Scholar] [CrossRef]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M.; Jordano, P.; Pearse, W.D. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Q.; An, B.; Wu, X.; Sun, L.; Wu, P.; Liu, B.; Ma, X. Effects of planting density on morphological and photosynthetic characteristics of leaves in different positions on Cunninghamia lanceolata saplings. Forests 2021, 12, 853. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Steege, H.ter.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Cañas, R.; De la Torre, F.; Pascual, M.; Avilam, C.; Cánovas, F. Nitrogen economy and nitrogen environmental interactions in conifers. Agronomy 2016, 6, 26. [Google Scholar] [CrossRef]
- Qi, M. Achievements, problems and countermeasures of clonal selection and breeding of Chinese Fir in China. World For. Res. 2007, 20, 50–55. (In Chinese) [Google Scholar]
- Mantel, S.; Dondeyne, S.; Deckers, S. World Reference Base for Soil Resources (WRB). In Encyclopedia of Soils in the Environment; Academic Press: Oxford, UK, 2014; pp. 206–217. [Google Scholar]
- Condit, R. (Ed.) Tropical Forest Census Plots: Methods and Results from Barro Colorado Lsland, Panama and a Comparison with Other Plots; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Zhu, Y.; Comita, L.S.; Hubbell, S.P.; Ma, K. Conspecific and phylogenetic density-dep endent survival differs across life stages in a tropical forest. J. Ecol. 2015, 103, 957–966. [Google Scholar] [CrossRef]
Stand Age | DBH Class | Statistics | Functional Traits | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LA | SLA | LDMC | CHL | LNC | LPC | TTD | WD | |||
15 years | Small Diameter Class (5 cm ≤ DBH < 13 cm) | Mean ± Se | 1.18 ± 0.24 A | 69.48 ± 15.30 A | 424.02 ± 61.42 A | 54.02 ± 7.21 A | 11.01 ± 0.61 A | 0.74 ± 0.02 A | 0.99 ± 0.05 A | 0.67 ± 0.11 A |
CV | 20.59% | 22.02% | 14.48% | 13.35% | 5.53% | 2.36% | 5.36% | 16.74% | ||
Medium Diameter Class (13 cm ≤ DBH < 25 cm) | Mean ± Se | 1.15 ± 0.22 Aa | 68.07 ± 14.27 Aa | 439.74 ± 66.91 Aa | 54.16 ± 7.67 Aa | 10.88 ± 0.64 Aa | 0.73 ± 0.02 Aa | 0.98 ± 0.10 Aa | 0.67 ± 0.11 Aa | |
CV | 19.22% | 20.96% | 15.21% | 14.16% | 5.89% | 2.82% | 10.09% | 16.62% | ||
30 years | Medium Diameter Class | Mean ± Se | 0.97 ± 0.17 Ab | 57.63 ± 10.84 Ab | 456.92 ± 61.25 Ab | 55.24 ± 8.88 Aa | 11.24 ± 1.51 Ab | 0.72 ± 0.09 Ab | 1.02 ± 0.09 Ab | 0.67 ± 0.10 Aa |
CV | 18.11% | 18.81% | 13.40% | 16.07% | 13.41% | 12.64% | 9.11% | 15.58% | ||
Large Diameter Class (DBH ≥ 25 cm) | Mean ± Se | 1.07 ± 0.19 Ba | 61.87 ± 12.80 Aa | 449.50 ± 69.64 Aa | 54.53 ± 7.53 Aa | 11.79 ± 1.16 Aa | 0.76 ± 0.08 Ba | 1.04 ± 0.09 Aa | 0.74 ± 0.08 Ba | |
CV | 17.71% | 20.70% | 15.49% | 13.81% | 9.87% | 9.87% | 8.46% | 10.31% | ||
50 years | Medium Diameter Class | Mean ± Se | 0.93 ± 0.18 Ab | 68.87 ± 13.41 Aa | 488.94 ± 81.73 Ac | 50.57 ± 11.78 Ab | 13.23 ± 0.82 Ac | 0.82 ± 0.04 Ac | 0.99 ± 0.13 Aa | 0.64 ± 0.13 Ab |
CV | 19.67% | 19.47% | 16.72% | 23.29% | 6.21% | 5.21% | 13.07% | 20.78% | ||
Large Diameter Class | Mean ± Se | 0.94 ± 0.19 Ab | 65.36 ± 15.11 Aa | 494.69 ± 82.50 Ab | 51.13 ± 11.67 Aa | 13.12 ± 0.94 Ab | 0.82 ± 0.04 Ab | 1.00 ± 0.14 Aa | 0.74 ± 0.13 Ba | |
CV | 20.20% | 23.11% | 16.68% | 22.82% | 7.14% | 5.21% | 14.47% | 17.25% | ||
Overall coefficient of variation CV | 21.66% | 21.19% | 16.05% | 18.12% | 12.22% | 9.31% | 11.10% | 17.88% |
Study Area | Characteristics of Stand | Information of Climate | Characteristics of Soil (0–30 cm) | |||
---|---|---|---|---|---|---|
Huangtan Forest Farm, Pan’an County, Zhejiang Province, China | ST | Artificial pure forest | CT | Subtropical monsoon climate | ST | Yellow soil |
pH | 7.3 | |||||
AT | 1973, 1993, and 2008 | MAP | 1650 mm | C | 34.89 g·kg−1 | |
MAT | 15.0 °C | N | 1.16 g·kg−1 | |||
PD | 3000 trees ha−1 (2-year-old plantings) | FFP | 193 d | P | 0.71 g·kg−1 | |
AAT | 4894.5 °C | K | 11.73 g·kg−1 | |||
Main vegetation under the forest | Aster ageratoides, Saxifraga stolonifera, Asparagus cochinchinensis, Ligustrum quihoui, Miscanthus sinensis, Lindera aggregata, and Akebia trifoliata et al. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Wu, C.; Sun, H.; Yao, L. Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages. Plants 2025, 14, 2675. https://doi.org/10.3390/plants14172675
Jiao J, Wu C, Sun H, Yao L. Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages. Plants. 2025; 14(17):2675. https://doi.org/10.3390/plants14172675
Chicago/Turabian StyleJiao, Jiejie, Chuping Wu, Honggang Sun, and Liangjing Yao. 2025. "Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages" Plants 14, no. 17: 2675. https://doi.org/10.3390/plants14172675
APA StyleJiao, J., Wu, C., Sun, H., & Yao, L. (2025). Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages. Plants, 14(17), 2675. https://doi.org/10.3390/plants14172675