Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators
Abstract
1. Introduction
2. Results
2.1. Significant Different Proliferation Rates of R. canina Explants in Response to Six In Vitro Culture Formulations Combined with PGRs
2.2. Suitable Combinations of Culture Media Formulations, PGR Types, and Concentrations can Induce Qualified In Vitro R. canina Flowers
3. Discussion
4. Materials and Methods
4.1. Plant Material Collection, Sterilization, and Initial Establishment
4.2. Six Various Culture Media Formulations Were Prepared for the In Vitro Proliferation Stage
4.3. In Vitro Rooting and Ex Vitro Plant Acclimatization
4.4. In Vitro Cultures and Growth Conditions
4.5. Experimental Design and Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Nutrient Concentrations of the Six Plant Tissue Culture Basal Media Used in the Experiments
Basal Medium | B5 | MS | VS | WPM | DKW | SH |
Macronutrient components (mgL−1) | ||||||
KNO3 | 2500 | 1900 | 1900 | - | - | |
K2SO4 | - | - | - | 990 | 1559 | |
NH4NO3 | - | 1650 | 1650 | 400 | 1416 | |
Ca(NO3)2.4H2O | - | - | - | 556 | 1948 | |
NH4H2PO4 | - | - | - | - | - | |
NaH2PO4.H2O | 150 | - | - | - | - | |
(NH4)2.SO4 | 134 | - | - | - | - | |
MgSO4.7H2O | 250 | 370 | 370 | 370 | 740 | |
KH2PO4 | - | 170 | 170 | 170 | 265 | |
CaCl2.2H2O | 150 | 440 | 440 | 96 | 149 | |
Micronutrient components (mgL−1) | ||||||
H3BO3 | 3 | 6.2 | 6.2 | 6.2 | 48 | |
KI | 0.75 | 0.83 | 0.83 | - | - | |
MnSO4.H2O | 10 | 16.9 | 16.9 | 22.3 | 33.5 | |
ZnSO4.7H2O | 2 | 10.6 | 10.6 | 8.6 | - | |
Zn(NO3)2.6H2O | - | - | - | - | 17 | |
CuSO4.5H2O | 0.039 | 0.025 | 0.025 | 0.25 | 0.25 | |
Na2MoO4.2H2O | 0.25 | 0.25 | 0.25 | 0.25 | 0.39 | |
CoCl2.2H2O | 0.025 | 0.025 | 0.025 | - | - | |
NiSO4.6H2O | - | - | - | - | 0.005 | |
FeSO4.7H2O | 27.8 | 27.8 | 27.8 | 27.8 | 33.8 | |
Na2EDTA | 37.3 | 37.3 | 37.3 | 37.3 | 45.4 | |
Vitamins and Organics (mgL−1) | ||||||
Myo-inositol | 100 | 100 | 100 | 100 | 100 | |
Nicotinic acid | 1 | 0.5 | 0.5 | 0.5 | 1 | |
Pyridoxine-HCl | 1 | 0.5 | 0.5 | - | 0.5 | |
Thiamine-HCl | 10 | 0.1 | 0.1 | 1.6 | 2 | |
Glycine | - | 2 | 2 | - | 20 | |
L-Glutamine | - | - | - | - | 250 | |
Sucrose (gL−1) | 30 | 30 | 30 | 30 | 30 | 30 |
pH | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 | 5.8 |
References
- Davoudi Pahnekolayi, M.; Samiei, L.; Tehranifar, A.; Shoor, M. The effect of medium and plant growth regulators on micropropagation of Dog rose (Rosa canina L.). J. Plant Mol. Breed. 2015, 3, 61–71. [Google Scholar] [CrossRef]
- Davoudi Pahnekolayi, M.; Tehranifar, A.; Samiei, L.; Shoor, M. Optimizing culture medium ingredients and micrografting devices can promote in vitro micrografting of cut roses on different rootstocks. Plant Cell Tiss. Organ Cult. (PCTOC) 2019, 137, 265–274. [Google Scholar] [CrossRef]
- Nguyen, T.H.N.; Schulz, D.; Winkelmann, T.; Debener, T. Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep. 2017, 36, 1493–1505. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Van Le, B. A simple, economical, and high efficient protocol to produce in vitro miniature rose. In Vitro Cell. Dev. Biol.-Plant 2020, 56, 362–365. [Google Scholar] [CrossRef]
- Matos, A.V.C.D.S.D.; Oliveira, B.S.D.; Oliveira, M.E.B.S.D.; Cardoso, J.C. AgNO3 improved micropropagation and stimulate in vitro flowering of rose (Rosa × hybrida) cv. Sena. J. Ornam. Hortic. 2021, 27, 33–40. [Google Scholar] [CrossRef]
- Aliabad, K.K.; Rezaee, A.; Homayoonfar, F.; Zamani, E. The Influence of Growth Regulators on In-Vitro Culture of Rosa hybrida. J. Comput. Theor. Nanosci. 2019, 16, 2990–2994. [Google Scholar] [CrossRef]
- Shah, M.H.; Rahman, R.U.; Mahmood, A.; Usman, M.; Bibi, S. Morphological Characterization, Multivariate Analysis, and Micropropagation of Hybrid Rose (Rosa indica L.) Germplasm. Pak. J. Agric. Sci. 2021, 58, 51–59. [Google Scholar]
- Ljubojević, M.; Božanić Tanjga, B. Rose (Rosa × hybrida L.) Breeding—An Old Flower for a New Age. In Breeding of Ornamental Crops: Annuals and Cut Flowers; Springer: Cham, Switzerland, 2025; pp. 591–638. [Google Scholar]
- Canlı, F.; Kazaz, S. Biotechnology of roses: Progress and future prospects. Turk. J. For. 2009, 10, 167–183. [Google Scholar]
- Pati, P.K.; Kaur, N.; Sharma, M.; Ahuja, P.S. In vitro propagation of rose. In Protocols for In Vitro Propagation of Ornamental Plants; Humana Press: Totowa, NJ, USA, 2009; pp. 163–176. [Google Scholar]
- Silva, T.D.; Chagas, K.; Batista, D.S.; Felipe, S.H.S.; Louback, E.; Machado, L.T.; Fernandes, A.M.; Buttrós, V.H.T.; Koehler, A.D.; Farias, L.M.; et al. Morphophysiological in vitro performance of Brazilian ginseng (Pfaffia glomerata (Spreng.) Pedersen) based on culture medium formulations. In Vitro Cell. Dev. Biol. Plant 2019, 55, 454–467. [Google Scholar] [CrossRef]
- Chhalgri, M.A.; Khan, M.T.; Nizamani, G.S.; Yasmeen, S.; Khan, I.A.; Aslam, M.M.; Rajpar, A.A.; Tayyaba, T.; Nizamani, F.; Nizamani, M.R.; et al. Effect of plant growth hormones on shoot and root regeneration in rose under in vitro conditions. Adv. Life Sci. 2020, 8, 93–97. [Google Scholar]
- Hassanein, A.M.A.; Mahmoud, I.M.A. Essential factors for in vitro regeneration of rose and a protocol for plant regeneration from leaves. Hortic. Sci. 2018, 45, 83–91. [Google Scholar] [CrossRef]
- Ambros, E.V.; Vasilyeva, O.Y.; Novikova, T.I. Effects of in vitro propagation on ontogeny of Rosa canina L. micropropagated plants as a promising rootstock for ornamental roses. Plant Cell Biotechnol. Mol. Biol. 2016, 17, 72–78. [Google Scholar]
- Bosh, A.; Moieni, A.; Dehghani, H.; Movahedi, Z. In Vitro Propagation of Damask Rose Using the Temporary Immersion System. J. Plant Physiol. Breed. (JPPB) 2016, 6, 9–18. [Google Scholar]
- Mitrofanova, I.; Brailko, V.; Lesnikova-Sedoshenko, N.; Mitrofanova, O. Clonal micropropagation and some physiology aspects of essential oil roses valuable cultivars regeneration in vitro. Agric. For. Poljopr. Sumar. 2016, 62, 73–81. [Google Scholar] [CrossRef]
- Ali, M.; Baloch, S.K.; Seema, N.; Yaeen, S.; Kaleri, A.A.; Kaleri, R.R.; Nizamani, G.S.; Subhapoto, G.F.; Kaleri, M.A.; Shahani, F.; et al. Influence of phytohormones on callus indication and micrpropagation on rose (Rosa indica L.). J. Basic. Appl. 2018, 14, 9–11. [Google Scholar] [CrossRef]
- Chauhan, U.; Singh, A.K.; Godani, D.; Handa, S.; Gupta, P.S.; Patel, S.; Joshi, P. Some natural extracts from plants as low-cost alternatives for synthetic PGRs in rose micropropagation. J. Appl. Hortic. 2018, 20, 103–111. [Google Scholar] [CrossRef]
- Khaskheli, A.J.; Khaskheli, M.I.; Khaskheli, M.A.; Shar, T.; Ahmad, W.; Lighari, U.A.; Makan, F.H. Proliferation, multiplication and improvement of micro-propagation system for mass clonal production of rose through shoot tip culture. Am. J. Plant Sci. 2018, 9, 296–310. [Google Scholar] [CrossRef]
- Mirzaei, S.; Zare, A.G.; Jafary, S. Evaluating micro-propagation of Kashan damask rose, Yasooj aromatic rose and their hybrid. Int. J. Environ. Agric. Biotech. 2019, 4, 1407–1413. [Google Scholar] [CrossRef]
- Ha, N.T.M.; Do, C.M.; Hoang, T.T.; Dai, N.g.o.; Nhut, D.T. The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L.‘Baby Love’) plantlets cultured in vitro. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 141, 393–405. [Google Scholar] [CrossRef]
- Ibrahim, M.; Agarwal, M.; Yang, J.O.; Abdulhussein, M.; Du, X.; Hardy, G.; Ren, Y. Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties. Plants 2019, 8, 35. [Google Scholar] [CrossRef]
- Abiri, R.; Maziah, M.; Shaharuddin, N.A.; Yusof, Z.N.B.; Atabaki, N.; Hanafi, M.M.; Sahebi, M.; Azizi, P.; Kalhori, N.; Valdiani, A. Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. Int. J. Environ. Sci. Technol. 2017, 14, 1091–1108. [Google Scholar] [CrossRef]
- Amer, A.M.; Mohamed, G.M.; Hussein, M.H.; Sedik, M.Z.; Aly, U.I. Effect of some of the natural organic sources on rice tissue culture. Egypt. Pharm. J. 2017, 16, 152. [Google Scholar] [CrossRef]
- Mandal, S.; Parsai, A.; Tiwari, P.K.; Nataraj, M. The effect of additional additives on the axillary shoot micropropagation of medicinal plant Aegle marmelos (L.) Corrêa. World News Nat. Sci. 2021, 34, 54–71. [Google Scholar]
- Wojtania, A.; Matysiak, B. In vitro propagation of Rosa ‘Konstancin’ (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Hortic. 2018, 30, 259–267. [Google Scholar] [CrossRef]
- Azmi, N.S.; Ahmad, R.; Ibrahim, R. Fluorescent light (FL), red led and blue LED spectrums effects on in vitro shoots multiplication. J. Technol. 2016, 78, 93–97. [Google Scholar] [CrossRef]
- Arab, M.M.; Yadollahi, A.; Eftekhari, M.; Ahmadi, H.; Akbari, M.; Khorami, S.S. Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network-genetic algorithm. Sci. Rep. 2018, 8, 9977. [Google Scholar] [CrossRef]
- Fadhaladeen, L.H.; Toma, R.S. Effect of Carbon Source in Woody Plant Medium with Different Salt Strengths on Oak (Quercus aegilops L.) Micropropagation. J. Plant Prod. 2019, 10, 751–756. [Google Scholar] [CrossRef]
- Lozzi, A.; Abdelwahd, R.; Mentag, R.; Abousalim, A. Development of a new culture medium and efficient protocol for in vitro micropropagation of Ceratonia siliqua L. In Vitro Cell Dev. Biol. Plant 2019, 55, 615–624. [Google Scholar] [CrossRef]
- Malik, M.; Warchoł, M.; Kwaśniewska, E.; Pawłowska, B. Biochemical and morphometric analysis of Rosa tomentosa and Rosa rubiginosa during application of liquid culture systems for in vitro shoot production. J. Hortic. Sci. Biotechnol. 2017, 92, 606–613. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Shirdel, M.; Motallebi-Azar, A.; Masiha, S.; Mortazavi, N.; Matloobi, M.; Sharafi, Y. Effects of inorganic nitrogen source and NH4+:NO3− ratio on proliferation of dog rose (Rosa canina). J. Med. Plants Res. 2011, 5, 4605–4609. [Google Scholar]
- Martins, V.; Garcia, A.; Costa, C.; Sottomayor, M.; Gerós, H. Calcium-and hormone-driven regulation of secondary metabolism and cell wall enzymes in grape berry cells. J. Plant Physiol. 2018, 231, 57–67. [Google Scholar] [CrossRef]
- Van der Salm, T.P.; Van der Toorn, C.J.; Hänisch ten Cate, C.H.; Dubois, L.A.; De Vries, D.P.; Dons, H.J. Importance of the iron chelate formula for micropropagation of Rosa hybrida L.‘Moneyway’. Plant Cell Tiss Organ Cult 1994, 37, 73–77. [Google Scholar] [CrossRef]
- Minyaka, E.; Niemenak, N.; Sangare, A.; Omokolo, D.N. Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Cult. 2008, 94, 149–160. [Google Scholar] [CrossRef]
- Pasternak, T.P.; Steinmacher, D. Plant growth regulation in cell and tissue culture in vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Thor, K. Calcium—Nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm ‘Barhee’. Can. J. Plant Sci. 2019, 100, 357–364. [Google Scholar] [CrossRef]
- D’onofrio, C.; Morini, S. Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: I. Effects on somatic embryo and root regeneration. In Vitro Cell. Dev. Biol. Plant 2002, 38, 366–372. [Google Scholar] [CrossRef]
- Guo, G.; Xiao, J.; Jeong, B.R. Iron source and medium pH affect nutrient uptake and pigment content in Petunia hybrida ‘Madness Red’cultured in vitro. Int. J. Mol. Sci. 2022, 23, 8943. [Google Scholar] [CrossRef]
- Kang, H.H.; Naing, A.H.; Xu, J.; Chung, M.Y.; Lee, S.Y.; Han, J.S.; Kim, C.K. Influence of basal medium formulations and silver nanoparticles on in vitro plant growth in gerbera. J. Plant Biotechnol. 2023, 50, 183–189. [Google Scholar] [CrossRef]
- Pahnekolayi, M.D.; Tehranifar, A.; Samiei, L.; Shoor, M. Micropropagation of Rosa canina through axillary shoot proliferation. J. Ornam. Plants 2014, 1, 45–51. [Google Scholar]
- Nizamani, F.; Nizamani, G.S.; Nizamani, M.R.; Ahmed, S.; Ahmed, N. Propagation of rose (Rosa hybrida L.) under tissue culture technique. Int. J. Biol. Res. 2016, 1, 23–27. [Google Scholar]
- Zawadzka, M.; Orlikowska, T. Increase in the quality of raspberry cultures under the influence of FeEDDHA. In Proceedings of the V International Symposium on In Vitro Culture and Horticultural Breeding, Debrecen, Hungary, 12 September 2024; pp. 161–164. [Google Scholar] [CrossRef]
- Nikbakht, A.; Kafi, M.; Mirmasoumi, M.; Babalar, M. Micropropagation of Damask rose (Rosa damascena Mill.) cvs Azaran and Ghamsar. Int. J. Agric. Biol. 2005, 7, 535–538. [Google Scholar]
- Carelli, B.P.; Echeverrigaray, S. An improved system for the in vitro propagation of rose cultivars. Sci. Hortic. 2002, 92, 69–74. [Google Scholar] [CrossRef]
- Kaviani, B.; Deltalab, B.; Kulus, D.; Khoddamzadeh, A.A.; Roque-Borda, C.A. In Vitro Shoot Multiplication and Rooting of ‘Kashan’ and ‘Hervy Azerbaijan’ Damask Rose (Rosa damascena Mill.) Genotypes for Cosmetic and Ornamental Applications. Plants 2024, 13, 1364. [Google Scholar] [CrossRef]
- Zeng, S.; Liang, S.; Zhang, Y.Y.; Wu, K.L.; Teixeira da Silva, J.A.; Duan, J. In vitro flowering red miniature rose. Biol. Plant. 2013, 57, 401–409. [Google Scholar] [CrossRef]
- Hong, L.T.M.; Trinh, T.C.; Bui, V.T.; Tran, H.T. Roles of plant growth regulators on flowering of rose (Rosa hybrida L.’Red Rose’). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 947, No. 1; p. 012039. [Google Scholar] [CrossRef]
- Yuan, M.; Weng, S.; Ma, Y.; Wu, R.; Kang, X.; Du, L. Study on physiological and biochemical characteristics during in vitro flowering of Rosa ‘Yametsu-Hime’. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 157, 13. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, L.; Ye, Q.S. High frequency early flowering from in vitro seedlings of Dendrobium nobile. Sci. Hortic. 2009, 122, 328–331. [Google Scholar] [CrossRef]
- Saxena, S.N.; Kaushik, N.; Sharma, R. Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biol. Plant. 2008, 52, 181–183. [Google Scholar] [CrossRef]
- Ali, M.A.; Mangrio, G.S. Effect of phytohormones and their diverse concentrations on regeneration of Rose (Rosa hybrida L.). Trakia J. Sci. 2020, 18, 46–51. [Google Scholar] [CrossRef]
- Bimal, R.; Kiran, N. In Vitro Flower Bud Formation, Plant Regeneration and Morphogenetic Studies in Local Scented Cultivar of Rosa indica. J. Ornam. Plants 2014, 4, 9–18. [Google Scholar]
Treatments | Proliferated No. of Shoots | Shoot Height (cm) | Shoot Diameter (cm) |
---|---|---|---|
WPM + Control | 1.00 ± 0.00 f | 1.30 ± 0.329 ghij | 0.307 ± 0.004 e |
WPM + 1.5 mgL−1 BAP | 2.25 ± 0.50 d | 1.32 ± 0.125 fghi | 0.282 ± 0.005 f |
WPM + 3 mgL−1 BAP | 1.00 ± 0.00 f | 0.85 ± 0.129 kl | 0.257 ± 0.005 g |
WPM + 4 mgL−1 BAP | 1.00 ± 0.00 f | 0.42 ± 0.050 mn | 0.232 ± 0.005 h |
WPM + 1.5 mgL−1 Kin | 1.25 ± 0.50 ef | 1.45 ± 0.129 fgh | 0.280 ± 0.00 f |
WPM + 3 mgL−1 Kin | 1.00 ± 0.00 f | 0.60 ± 0.141 lmn | 0.255 ± 0.005 g |
WPM + 4 mgL−1 Kin | 1.00 ± 0.00 f | 0.325 ± 0.095 no | 0.230 ± 0.00 h |
DKW + Control | 1.00 ± 0.00 f | 5.20 ± 0.226 a | 0.487 ± 0.008 a |
DKW + 1.5 mgL−1 BAP | 5.00 ± 0.816 a | 3.15 ± 0.129 c | 0.442 ± 0.005 b |
DKW + 3 mgL−1 BAP | 2.25 ± 0.50 d | 2.15 ± 0.132 e | 0.352 ± 0.012 d |
DKW + 4 mgL−1 BAP | 1.50 ± 0.57 e | 1.45 ± 0.310 fgh | 0.312 ± 0.005 e |
DKW + 1.5 mgL−1 Kin | 2.00 ± 0.00 d | 2.57 ± 0.095 d | 0.430 ± 0.00 c |
DKW + 3 mgL−1 Kin | 1.00 ± 0.00 f | 1.07 ± 0.095 ijk | 0.347 ± 0.005 d |
DKW + 4 mgL−1 Kin | 1.00 ± 0.00 f | 1.05 ± 0.057 ijk | 0.307 ± 0.005 e |
MS + Control | 1.00 ± 0.00 f | 3.07 ± 0.088 c | 0.265 ± 0.011 g |
MS + 1.5 mgL−1 BAP | 2.75 ± 0.50 c | 1.95 ± 0.57 e | 0.208 ± 0.008 i |
MS + 3 mgL−1 BAP | 1.50 ± 0.57 e | 1.37 ± 0.43 fgh | 0.185 ± 0.005 jk |
MS + 4 mgL−1 BAP | 1.25 ± 0.50 ef | 1.00 ± 0.00 jk | 0.162 ± 0.005 mn |
MS + 1.5 mgL−1 Kin | 2.00 ± 0.00 d | 1.52 ± 0.309 fg | 0.207 ± 0.005 i |
MS + 3 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.180 ± 0.00 jk |
MS + 4 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.160 ± 0.00 mn |
VS + Control | 1.00 ± 0.00 f | 4.07 ± 0.088 b | 0.265 ± 0.011 g |
VS + 1.5 mgL−1 BAP | 4.25 ± 0.50 b | 2.77 ± 0.320 d | 0.210 ± 0.008 i |
VS + 3 mgL−1 BAP | 2.25 ± 0.50 d | 1.62 ± 0.434 f | 0.185 ± 0.005 jk |
VS + 4 mgL−1 BAP | 1.50 ± 0.57 e | 1.00 ± 0.00 jk | 0.162 ± 0.005 mn |
VS + 1.5 mgL−1 Kin | 2.00 ± 0.00 d | 1.62 ± 0.150 f | 0.207 ± 0.005 i |
VS + 3 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.180 ± 0.00 jk |
VS + 4 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.160 ± 0.00 mn |
SH + Control | 1.00 ± 0.00 f | 0.67 ± 0.046 lm | 0.205 ± 0.011 i |
SH + 1.5 mgL−1 BAP | 1.00 ± 0.00 f | 0.45 ± 0.57 mn | 0.187 ± 0.005 j |
SH + 3 mgL−1 BAP | 1.00 ± 0.00 f | 0.125 ± 0.050 o | 0.175 ± 0.005 kl |
SH + 4 mgl−1 BAP | 1.00 ± 0.00 f | 0.125 ± 0.050 o | 0.152 ± 0.009 mn |
SH + 1.5 mgL−1 Kin | 1.00 ± 0.00 f | 0.45 ± 0.057 mn | 0.182 ± 0.005 jk |
SH + 3 mgL−1 Kin | 1.00 ± 0.00 f | 0.125 ± 0.050 o | 0.167 ± 0.005 lm |
SH + 4 mgL−1 Kin | 1.00 ± 0.00 f | 0.125 ± 0.050 o | 0.115 ± 0.010 o |
B5 + Control | 1.00 ± 0.00 f | 2.07 ± 0.088 e | 0.157 ± 0.008 mn |
B5 + 1.5 mgL−1 BAP | 2.25 ± 0.50 d | 1.45 ± 0.251 fgh | 0.087 ± 0.005 p |
B5 + 3 mgL−1 BAP | 1.00 ± 0.00 f | 1.17 ± 0.206 hij | 0.077 ± 0.005 p |
B5 + 4 mgL−1 BAP | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.062 ± 0.005 q |
B5 + 1.5 mgL−1 Kin | 1.25 ± 0.50 ef | 1.52 ± 0.309 fg | 0.087 ± 0.005 p |
B5 + 3 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.077 ± 0.005 p |
B5 + 4 mgL−1 Kin | 1.00 ± 0.00 f | 1.00 ± 0.00 jk | 0.62 ±0.005 q |
Source of Variants | Green Leaf Percentage (%) |
---|---|
Plant Culture Media | |
WPM | 63.21 ± 7.05 d |
DKW | 97.25 ± 3.38 b |
MS | 79.31 ± 8.58 c |
VS | 100.00 ± 0.00 a |
SH | 27.62 ± 2.80 e |
B5 | 73.31 ± 5.85 c |
Cytokinin type | |
Control | 80.79 ± 24.11 a |
BAP | 73.65 ± 25.54 b |
Kin | 71.02 ± 24.74 c |
Cytokinin concentration (mgL−1) | |
0 | 80.79 ± 24.11 a |
1.5 | 75.97 ± 25.05 b |
3 | 72.35 ± 24.90 c |
4 | 68.68 ± 25.31 d |
Treatments | Flower Number | Flower Stem Number | Flower Stem Length (cm) | Flower Stem Diameter (cm) | Flower Diameter (cm) |
---|---|---|---|---|---|
WPM + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 1.5 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 3 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 4 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 1.5 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 3 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
WPM + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
DKW + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
DKW + 1.5 mgL−1 BAP | 3.50 ± 0.577 a | 3.50 ± 0.577 a | 1.80 ± 0.244 a | 0.442 ± 0.005 a | 0.975 ± 0.095 a |
DKW + 3 mgL−1 BAP | 1.50 ± 0.577 c | 1.50 ± 0.577 c | 0.97 ± 0.125 b | 0.352 ± 0.012 b | 0.450 ± 0.057 cd |
DKW + 4 mgL−1 BAP | 0.50 ± 0.577 d | 0.50 ± 0.577 e | 0.225 ± 0.263 fg | 0.157 ± 0.181 c | 0.175 ± 0.206 f |
DKW + 1.5 mgL−1 Kin | 1.50 ± 0.577 c | 1.50 ± 0.577 c | 0.875 ± 0.095 bc | 0.430 ± 0.00 a | 0.450 ± 0.057 cd |
DKW + 3 mgL−1 Kin | 0.50 ± 0.577 d | 0.50 ± 0.577 e | 0.20 ± 0.230 gh | 0.347 ± 0.005 b | 0.325 ± 0.050 e |
DKW + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MS + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
MS + 1.5 mgL−1 BAP | 2.75 ± 0.500 b | 2.50 ± 0.577 b | 0.80 ± 0.081 c | 0.210 ± 0.008 c | 0.675 ± 0.095 b |
MS + 3 mgL−1 BAP | 1.00 ± 0.00 e | 1.00 ± 0.00 d | 0.40 ± 0.081 e | 0.185 ± 0.005 c | 0.500 ± 0.00 c |
MS + 4 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.0 ± 0.0 e | 0.00 ± 0.00 i |
MS + 1.5 mgL−1 Kin | 1.50 ± 0.577 c | 1.50 ± 0.577 c | 0.325 ± 0.050 ef | 0.207 ± 0.005 c | 0.400 ± 0.081 d |
MS + 3 mgL−1 Kin | 0.50 ± 0.577 d | 0.50 ± 0.577 e | 0.100 ± 0.115 hi | 0.090 ± 0.103 d | 0.100 ± 0.115 gh |
MS + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
VS + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
VS + 1.5 mgL−1 BAP | 3.50 ± 0.577 a | 1.75 ± 0.500 c | 0.900 ± 0.081 bc | 0.210 ± 0.008 c | 0.275 ± 0.095 e |
VS + 3 mgL−1 BAP | 1.50 ± 0.577 c | 1.50 ± 0.577 c | 0.675 ± 0.050 d | 0.185 ± 0.005 c | 0.175 ± 0.050 f |
VS + 4 mgL−1 BAP | 0.50 ± 0.577 d | 0.50 ± 0.577 e | 0.225 ± 0.263 fg | 0.082 ± 0.095 d | 0.050 ± 0.057 hi |
VS + 1.5 mgL−1 Kin | 1.50 ± 0.577 c | 1.50 ± 0.577 c | 0.325 ± 0.050 ef | 0.207 ± 0.005 c | 0.125 ± 0.050 fg |
VS + 3 mgL−1 Kin | 0.50 ± 0.577 d | 0.50 ± 0.577 e | 0.100 ± 0.115 hi | 0.090 ± 0.103 d | 0.050 ± 0.057 hi |
VS + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 i | 0.00 ± 0.00 i |
SH + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 1.5 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 3 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 4 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 1.5 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 3 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
SH + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + Control | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 1.5 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 3 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 4 mgL−1 BAP | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 1.5 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 3 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
B5 + 4 mgL−1 Kin | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 i | 0.00 ± 0.00 e | 0.00 ± 0.00 i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davoudi Pahnekolayi, M.; Parchianloo, Z.; Babouyehdarabi, M.; Ghasemi, M. Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators. Plants 2025, 14, 2606. https://doi.org/10.3390/plants14162606
Davoudi Pahnekolayi M, Parchianloo Z, Babouyehdarabi M, Ghasemi M. Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators. Plants. 2025; 14(16):2606. https://doi.org/10.3390/plants14162606
Chicago/Turabian StyleDavoudi Pahnekolayi, Mahboubeh, Zahra Parchianloo, Majid Babouyehdarabi, and Meysam Ghasemi. 2025. "Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators" Plants 14, no. 16: 2606. https://doi.org/10.3390/plants14162606
APA StyleDavoudi Pahnekolayi, M., Parchianloo, Z., Babouyehdarabi, M., & Ghasemi, M. (2025). Superior In Vitro Responses of a Native Rose Genotype to Driver Kuniyuki Walnut (DKW) Medium in a Comparative Study Using Natural and Synthetic Plant Growth Regulators. Plants, 14(16), 2606. https://doi.org/10.3390/plants14162606