Potential of Pine Bark to Replace Perlite in Coir-Based Substrates: Effects on Nutrient Uptake, Growth, and Phytochemicals in Lettuce Under Two Salinity Levels
Abstract
1. Introduction
2. Results
2.1. Initial Growing Media Physicochemical Characteristics
2.2. Leachate EC and pH
2.3. Growing Media pH and EC
2.4. Leaf Nutrient Concentration
2.5. Photosynthetic Pigments
2.6. Plant Growth and Yield
2.7. Phytochemical Accumulation
3. Discussion
4. Materials and Methods
4.1. Growth Conditions and Substrates
4.2. Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Blok, C.; Eveleens, B.; Van Winkel, A. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 1305, 369–376. [Google Scholar] [CrossRef]
- Defra. Towards Sustainable Growing Media: A Roadmap for the Horticultural Sector. Department for Environment, Food and Rural Affairs. UK 2011. Available online: https://assets.publishing.service.gov.uk/media/5a7c9843e5274a7b7e3217eb/pb13867-towards-sustainable-growing-media.pdf (accessed on 15 March 2025).
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Sdao, A.E.; Gruda, N.S.; De Lucia, B. Beyond Peat: Wood Fiber and Two Novel Organic Byproducts as Growing Media—A Systematic Review. Plants 2025, 14, 1945. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry-A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Technical Evaluation Report: Perlite Handling and Production. Agricultural Marketing Service. 2024. Available online: https://www.ams.usda.gov/sites/default/files/media/2024TechnicalReportPerliteHandling.pdf (accessed on 2 April 2025).
- Domeño, I.; Irigoyen, N.; Muro, J. Evolution of organic matter and drainages in wood fibre and coconut fibre substrates. Scientia Hortic. 2009, 122, 269–274. [Google Scholar] [CrossRef]
- Rodriguez, J.C.; Cantliffe, D.J.; Shaw, N.L.; Karchi, Z. Soilless media and containers for greenhouse production of ‘Galia’ type muskmelon. HortScience 2006, 41, 1200–1205. [Google Scholar] [CrossRef]
- Vinci, G.; Mattia, R. Hydroponic cultivation: Life cycle assessment of substrate choice. Brit. Food J. 2019, 121, 1801–1812. [Google Scholar] [CrossRef]
- Thompson, R.; Delcour, I.; Berckmoes, E.; Stavridou, E. The Fertigation Bible; FERTINNOWA, EU, 2018. pp. 9–23. Available online: https://projectbluearchive.blob.core.windows.net/media/Default/Imported%20Publication%20Docs/The%20Fertigation%20Bible.pdf (accessed on 25 March 2025).
- Grillas, S.; Lucas, M.; Bardopoulou, E.; Sarafopoulos, S.; Voulgari, M. Perlite-based soilless culture systems: Current commercial aplications and prospects. Acta Hortic. 2001, 548, 105–114. [Google Scholar] [CrossRef]
- Londra, P.A. Simultaneous determination of water retention curve and unsaturated hydraulic conductivity of substrates using a steady-state laboratory method. HortScience 2010, 45, 1106–1112. [Google Scholar] [CrossRef]
- Martínez, P.F.; Roca, D. Sustratos para el cultivo sin suelo. Materiales, propiedades y manejo. In Sustratos, Manejo del Clima, Automatización y Control en Sistemas de Cultivo sin Suelo; Flórez, R.V.J., Ed.; Editorial Universidad Nacional de Colombia: Bogotá, Colombia, 2011; pp. 37–77. Available online: http://hdl.handle.net/20.500.11939/3894 (accessed on 6 March 2025).
- Altland, J.E.; Locke, J.C.; Krause, C.R. Influence of pine bark particle size and pH on cation exchange capacity. Hortic. Technol. 2014, 24, 554–559. [Google Scholar] [CrossRef]
- Huang, J.; Fisher, P.R.; Argo, W.R.; Jeong, K.Y.; Altland, J. Macronutrient solubility in response to the pH of soilless container substrates. J. Soil Sci. Plant Nutr. 2025, 25, 3224–3240. [Google Scholar] [CrossRef]
- Jackson, B.E.; Wright, R.D.; Alley, M.M. Comparison of fertilizer nitrogen availability, nitrogen immobilization, substrate carbon dioxide efflux, and nutrient leaching in peat-lite, pine bark, and pine tree substrates. HortScience 2009, 44, 781–790. [Google Scholar] [CrossRef]
- Gruda, N.S.; Hirschler, O.; Stuart, J. Peat reduction in horticulture—An overview of Europe. Acta Hortic. 2024, 1391, 545–560. [Google Scholar] [CrossRef]
- Gruda, N.; Rau, B.; Wright, R.D. Laboratory bioassay and greenhouse evaluation of a pine tree substrate used as a container substrate. Europ. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar] [CrossRef]
- Gruda, N.S.; Gallegos-Cedillo, V.M.; Nájera, C.; Catalina, E.G.; Ochoa, J.; Fernández, J.A. Advancing Protected Cultivation: A Pathway for Nutrient-Rich Vegetables. Crit. Rev. Plant Sci. 2025, 44, 88–116. [Google Scholar] [CrossRef]
- Gruda, N.S.; Dong, J.; Li, X. From salinity to nutrient-rich vegetables: Strategies for quality enhancement in protected cultiva-tion. Crit. Rev. Plant Sci. 2024, 43, 327–347. [Google Scholar] [CrossRef]
- Sgherri, C.; Peìrez-Loìpez, U.; Micaelli, F.; Miranda-Apodaca, J.; Mena-Petite, A.; MunÞoz-Rueda, A.; Quartacci, M.F. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiol. Biochem. 2017, 115, 269–278. [Google Scholar] [CrossRef]
- Santander, C.; Vidal, G.; Ruiz, A.; Vidal, C.; Cornejo, P. Salinity eustress increases the biosynthesis and accumulation of phenolic compounds that improve the functional and antioxidant quality of red lettuce. Agronomy 2022, 12, 598. [Google Scholar] [CrossRef]
- Adams, P. Aspectos de la nutrición mineral en cultivos sin suelo en relación al suelo. In Tratado de Cultivo sin Suelo; Urrestarazu, G.M., Ed.; Editorial Mundi-Prensa: Madrid, Spain, 2004; pp. 81–111. [Google Scholar]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Bunt, B.R. Media and Mixes for Container-Grown Plants, A Manual on the Preparation and Use of Growing Media for Pot Plants, 2nd ed.; Springer Science & Business Media: London, UK, 2012; pp. 86–93. [Google Scholar] [CrossRef]
- Alarcón, A.L. Tecnología Para Cultivos de Alto Rendimiento; Novedades: Agrícolas, Spain, 2000; p. 459. [Google Scholar]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Barcelos, C.; Machado, R.M.; Alves Pereira, I.; Ferreira, R.; Bryla, D.R. Effects of substrate type on plant growth and nitrogen and nitrate concentration in spinach. Int. J. Plant Biol. 2016, 7, 44–47. [Google Scholar] [CrossRef]
- Singh, H.; Dunn, B. Electrical Conductivity and pH Guide for Hydroponics; Oklahoma Cooperative Extension Service HLA 6722: Stillwater, OK, USA, 2016; pp. 1–4. [Google Scholar]
- Silber, A.; Xu, G.; Wallach, R.; Yermiyahu, U. High fertigation frequency: The effects on uptake of nutrients, water and plant growth. Plant Soil 2003, 253, 467–477. [Google Scholar] [CrossRef]
- Scoggings, H.L.; Van Iersel, M.W. In situ probes for measurement of electrical conductivity of soilless substrates: Effects of temperature and substrate moisture content. HortScience 2006, 41, 210–214. [Google Scholar] [CrossRef]
- Jeong, K.; Nelson, P.V.; Frantz, J.M. Comparison of rhizon soil moisture sampler pour-through and saturated media extract extractions of container root substrate. Acta Hortic. 2012, 927, 981–987. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Ondrasek, G.; Romic, D.; Romic, M.; Tomic, F.; Mustac, I. Salt distribution in peat substrate grown with melon (Cucumis melo L.). Acta Hortic. 2008, 779, 307–312. [Google Scholar] [CrossRef]
- Valdés, R.; Miralles, J.; Ochoa, J.; Banón, S.; Sánchez-Blanco, M.J. The number of emitters alters salt distribution and root growth in potted gerbera. HortScience 2014, 49, 160–165. [Google Scholar] [CrossRef]
- De Rijck, G.; Schrevens, E. Distribution of nutrients and water in rockwool slabs. Sci. Hortic. 1998, 72, 277–285. [Google Scholar] [CrossRef]
- Awulachew, S.B.; Lemperiere, P.; Tulu, T. Training manual on agricultural water management. In Module 5: Irrigation Methods; ILRI Publications Unit: Addis Abeba, Ethiopia, 2009. [Google Scholar]
- Altland, J.E.; Buamscha, M.G. Nutrient availability from Douglas fir bark in response to substrate pH. HortScience 2008, 43, 478–483. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B. Suitability of sphagnum moss, coir, and Douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R.; Williams, E.; Smith, R.F. Establishing lettuce leaf nutrient optimum ranges through DRIS analysis. HortScience 2007, 42, 143–146. [Google Scholar] [CrossRef]
- Machado, R.M.; Alves-Pereira, I.; Alves, I.; Ferreira, R.M.; Gruda, N.S. Reusing coir-based substrates for lettuce growth, Nutrient content and phytonutrients accumulation. Horticulturae 2023, 9, 1080. [Google Scholar] [CrossRef]
- Ozgen, S.; Sekerci, S. Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Span. J. Agric. Res. 2011, 9, 801–809. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Gazula, A.; Scheerens, J.C.; French, D.G. Variety, shading, and growth stage effects on pigment concentrations in lettuce grown under contrasting temperature regimens. HortTechnology 2003, 13, 677–683. [Google Scholar] [CrossRef]
- Sapkota, S.; Sapkota, S.; Liu, Z. Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae 2019, 5, 72. [Google Scholar] [CrossRef]
- Katsoulas, N.; Voogt, W. Recent trends in salinity control for soilless growing systems management. Acta Hortic. 2014, 1034, 433–442. [Google Scholar] [CrossRef]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Gruda, N.S.; Samuolienė, G.; Dong, J.; Li, X. Environmental conditions and nutritional quality of vegetables in protected cultivation. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70139. [Google Scholar] [CrossRef]
- Marin, A.; Ferreres, F.; Barberá, G.G.; Gil, M.I. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season. J. Agric. Food Chem. 2015, 63, 1673–168181. [Google Scholar] [CrossRef]
- Fonteno, W.C.; Harden, C.T. Procedures for determining physical properties of horticultural substrates using the NCSU porometer. In Horticultural Substrates Laboratory; North Carolina State University: Raleigh, NC, USA, 2003. [Google Scholar]
- Spangenberg, A.; Gecchini, G.; Lamersdorf, N. Analyzing the performance of a micro soil solution sampling device in a laboratory examination and a field experiment. Plant Soil 1997, 196, 59–70. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 1987, 4, 3.1–3.8. [Google Scholar] [CrossRef]
- Costilow, R.N.; Cooper, D. Identity of proline dehydrogenase and D1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes. J. Bacteriol. 1978, 134, 139–146. [Google Scholar] [CrossRef]
- Lake, B.G. Preparation and characterization of microsomal fractions for studies on xenobiotic metabolism. In Biochemical Toxicology: A Practical Approach, 1st ed.; Snell, K., Mullock, B., Eds.; IRL Press: Oxford, UK, 1987; pp. 183–215. [Google Scholar]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.M.; Tang, Z.C. Plant tolerance physiology. In Experimental Guide for Modern Plant Physiology, 1st ed.; Tang, Z.C., Ed.; Science Press: Beijing, China, 1999; pp. 315–316. [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of the water supply of seedlings cultivated in different substrates and raising systems on the bio-morphological and plant-physiological parameters of lettuce. (In German: Einfluss der Wasserversorgung von Jungpflanzen angezogen in verschiedenen Substraten und Anzuchtsystemen auf biomorphologische und physiologische Merkmale von Kopfsalat). J. Appl. Bot. 2000, 74, 240–247. [Google Scholar]
- Bates, L.S. Rapid determination of free proline for water stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Hissin, A.; Hilf, P.A. Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebroug, N.J.; Farr, A.L.; Randell, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Mix | |||
---|---|---|---|
Parameter | C 1 + Comp + P | C + Comp + PB | Significance |
pH | 7.6 b 2 | 7.5 a | * |
Electrical conductivity (dS m−1) | 2.55 a | 3.01 b | *** |
Bulk density (g cm−3) | 0.08 b | 0.11 a | *** |
Mass wetness (g water/g substrate) | 5.22 a | 4.60 b | *** |
Total porosity (%) | 91.4 a | 89.7 b | * |
Moisture content (%, w/w) | 79.56 b | 81.06 a | * |
Sampling Location | pH | EC (dS m−1) |
---|---|---|
Center (near plant stem) | 7.0 b 1 | 0.84 b |
Lateral (perpendicular to the stem) | 7.9 a | 1.80 a |
Significance | ** | *** |
Treatments | Leaf Macronutrients (%) | Leaf Micronutrients (μg·g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Fe | B | Mn | Zn | Na 3 | |
Mix (M) | ||||||||||
C+ Comp + P 1 | 4.0 b 2 | 0.75 b | 6.29 b | 0.85 a | 0.29 a | 90.9 b | 34.6 b | 55.7 a | 67.3 a | 0.36 a |
C+ Comp + PB | 4.1 b | 0.67 b | 6.33 b | 0.81 a | 0.28 a | 106.6 a | 43.1 a | 52.5 a | 65.2 a | 0.38 a |
EC (dS m−1) | ||||||||||
1.5 | 3.6 c | 0.65 b | 6.01 b | 0.85 a | 0.28 a | 99.8 b | 35.9 b | 52.5 a | 63.7 a | 0.39 a |
2.5 | 4.5 a | 0.78 a | 6.60 a | 0.81 a | 0.29 a | 97.8 b | 41.8 a | 55.8 a | 68.7 a | 0.35 a |
Significance | ||||||||||
M | NS | NS | NS | NS | NS | * | * | NS | NS | NS |
EC | *** | ** | ** | NS | NS | NS | * | NS | NS | NS |
M x EC | NS | NS | * | NS | NS | NS | NS | NS | NS | NS |
Leaf Dry Weight | Leaves | Leaf Area | Head Fresh Yield | |
---|---|---|---|---|
Treatments | (g/Plant) | (n°/Plant) | (cm2/Plant) | (kg·m−2) |
Mix (M) | ||||
C 1 + Comp + P | 24.5 a 2 | 37.2 a | 8854.9 a | 9.5 a |
C + Comp + PB | 23.8 a | 37.4 a | 8486.9 a | 9.8 a |
EC (dS m−1) | ||||
1.5 | 23.9 a | 36.8 a | 8806.4 a | 9.7 a |
2.5 | 24.0 a | 37.8 a | 8534.8 a | 9.6 a |
Significance | ||||
M | NS | NS | NS | NS |
EC | NS | NS | NS | NS |
M x EC | NS | NS | NS | NS |
Treatments | TPC | WS-Protein 3 | AsA | GSH | Proline | PDH |
---|---|---|---|---|---|---|
(mg GAE/100 g FW) | (mg/100 g FW) | (nmol min−1/mg) | ||||
Mix (M) | ||||||
C + comp + P 1 | 27.69 a 2 | 195.9 a | 3.46 a | 1.22 a | 1.51 a | 29.40 a |
C + comp + PB | 22.48 a | 224.1 a | 3.10 a | 1.15 a | 1.44 a | 32.30 a |
EC (dS m−1) | ||||||
1.5 | 25.43 a | 214.3 a | 3.35 a | 1.20 a | 1.44 a | 28.02 a |
2.5 | 24.66 a | 205.7 a | 3.20 a | 1.17 a | 1.51 a | 27.55 a |
Significance | ||||||
M | 3 NS | NS | NS | NS | NS | NS |
EC | NS | NS | NS | NS | NS | NS |
M x EC | NS | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, G.C.; Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.A.; Gruda, N.S. Potential of Pine Bark to Replace Perlite in Coir-Based Substrates: Effects on Nutrient Uptake, Growth, and Phytochemicals in Lettuce Under Two Salinity Levels. Plants 2025, 14, 2577. https://doi.org/10.3390/plants14162577
Dias GC, Machado RMA, Alves-Pereira I, Ferreira RA, Gruda NS. Potential of Pine Bark to Replace Perlite in Coir-Based Substrates: Effects on Nutrient Uptake, Growth, and Phytochemicals in Lettuce Under Two Salinity Levels. Plants. 2025; 14(16):2577. https://doi.org/10.3390/plants14162577
Chicago/Turabian StyleDias, Gonçalo C., Rui M. A. Machado, Isabel Alves-Pereira, Rui A. Ferreira, and Nazim S. Gruda. 2025. "Potential of Pine Bark to Replace Perlite in Coir-Based Substrates: Effects on Nutrient Uptake, Growth, and Phytochemicals in Lettuce Under Two Salinity Levels" Plants 14, no. 16: 2577. https://doi.org/10.3390/plants14162577
APA StyleDias, G. C., Machado, R. M. A., Alves-Pereira, I., Ferreira, R. A., & Gruda, N. S. (2025). Potential of Pine Bark to Replace Perlite in Coir-Based Substrates: Effects on Nutrient Uptake, Growth, and Phytochemicals in Lettuce Under Two Salinity Levels. Plants, 14(16), 2577. https://doi.org/10.3390/plants14162577