Effects of Zinc and Organic Fertilizer Amendments, Applied Individually or in Combination, on Cadmium Uptake by Wheat Grown in Alkaline Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pot Experiment
2.3. Cd and Zn Concentration Analyses
2.4. Statistical Analysis
3. Result
3.1. Temporal Variation in Cd Contents at Different Growth Stages
3.2. Temporal Variation in Zn Contents
3.3. Dynamics of DTPA-Extractable Cd and Zn in Rhizosphere Soil
3.4. Translocation Factor of Cd and Zn
3.5. Correlation Analysis and Potential of Entry for Cd and Zn
4. Discussion
4.1. Effect of Zn on Cd Accumulation in Wheat
4.2. Effect of Organic Fertilizer on Cd Accumulation in Wheat
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.-G.; Hu, Q.; Zhao, F.-J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Wang, C.-C.; Zhang, Q.-C.; Yan, C.-A.; Tang, G.-Y.; Zhang, M.-Y.; Ma, L.Q.; Gu, R.-H.; Xiang, P. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. Sci. Total Environ. 2023, 882, 163361. [Google Scholar] [CrossRef]
- Peng, H.; Chen, Y.L.; Weng, L.P.; Ma, J.; Ma, Y.L.; Li, Y.T.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.Y.; Song, C.Q.; Ye, S.J.; Cheng, C.X.; Gao, P.C. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.L.; Yang, X.E. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Wang, F.; Bao, K.; Huang, C.; Zhao, X.; Han, W.; Yin, Z. Adsorption and pH values determine the distribution of cadmium in terrestrial and marine soils in the nansha area, pearl river delta. Int. J. Environ. Res. Public Health 2022, 19, 793. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Dotterl, S.; Xu, J.; Garland, G.; Liu, X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. J. Hazard. Mater. 2024, 476, 135123. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, J.; Hu, Y.; Fang, Y.; Zhang, H.; Xing, L.; Wang, Y.; Zeng, G. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments. J. Hazard. Mater. 2019, 366, 210–218. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q.; Zheng, S.Q.; Xiao, R.; Guo, Y. Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Environ. Sci. Pollut. R. 2019, 26, 13762–13772. [Google Scholar] [CrossRef]
- Wan, Y.N.; Huang, Q.Q.; Wang, Q.; Yu, Y.; Su, D.C.; Qiao, Y.H.; Li, H.F. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef] [PubMed]
- Grüter, R.; Costerousse, B.; Mayer, J.; Mäder, P.; Thonar, C.; Frossard, E.; Schulin, R.; Tandy, S. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat. Sci. Total Environ. 2019, 669, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ouyang, Y.; Pan, W.; Wang, Y.; Li, Y. Effects of organic manure on wheat yield and accumulation of heavy metals in a soil—Wheat system. Agronomy 2024, 14, 2143. [Google Scholar] [CrossRef]
- Yan, M.; Li, Q.; Tian, Z.; He, Q.; Xu, Y.; Liu, X.; Chen, Q.; Gu, Y.; Zou, L.; Zhao, K.; et al. Co-application of cadmium-immobilizing bacteria and organic fertilizers alter the wheat root soil chemistry and microbial communities. Ecotox Environ. Safe 2024, 287, 117288. [Google Scholar] [CrossRef]
- Zhen, H.Y.; Jia, L.; Huang, C.D.; Qiao, Y.H.; Li, J.; Li, H.F.; Chen, Q.; Wan, Y.A. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 2020, 263, 114552. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, B.; Liu, H.T.; Liang, X.D.; Ma, W.L.; Shi, Z.Y.; Yang, S.Q. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. Ecotox Environ. Safe 2019, 183, 109562. [Google Scholar] [CrossRef]
- Singh, P.; Shukla, A.K.; Behera, S.K.; Tiwari, P.K. Zinc application enhances superoxide dismutase and carbonic anhydrase activities in zinc-efficient and zinc-inefficient wheat genotypes. J. Soil Sci. Plant Nutr. 2019, 19, 477–487. [Google Scholar] [CrossRef]
- Khan, Z.S.; Rizwan, M.; Hafeez, M.; Ali, S.; Javed, M.R.; Adrees, M. The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environ. Sci. Pollut. R. 2019, 26, 19859–19870. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, C.; Jiao, Q.J.; Li, G.Z.; Alyemeni, M.N.; Ahmad, P.; Shah, T.R.; Fahad, S.; Zhang, J.J.; Zhao, Y.; et al. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. J. Hazard. Mater. 2023, 458, 131933. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Wang, Y.; Wang, J.; Liu, H.; Gao, W.; Qin, S.; Sui, F.; Fu, H.; Zhao, P. Supplementing two wheat genotypes with ZnSO4 and ZnO nanoparticles showed differential mitigation of Cd phytotoxicity by reducing Cd absorption, preserving root cellular ultrastructure, and regulating metal-transporter gene expression. Plant Physiol. Biochem. 2024, 206, 108199. [Google Scholar] [CrossRef]
- Perveen, S.; Saeed, M.; Parveen, A.; Javed, M.T.; Zafar, S.; Iqbal, N. Modulation of growth and key physiobiochemical attributes after foliar application of zinc sulphate (ZnSO4) on wheat (Triticum aestivum L.) under cadmium (Cd) stress. Physiol. Mol. Biol. Plants 2020, 26, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Ishaq, W.; Farid, G.; Shaheen, M.R.; Imran, M.; Geng, M.; Hussain, S. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Ecotox Environ. Safe 2015, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Mai, T.; Uktta, M.; Sekine, M.; Higuchi, T. Distributions of iron, manganese, copper and zinc in various composts and amended soils. Environ. Technol. 2003, 24, 1517–1525. [Google Scholar] [CrossRef]
- Zinati, G.M.; Li, Y.; Bryan, H.H. Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2001, 36, 229–243. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Soil and Sediment-Determination of Aqua Regia Extracts of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2016.
- Abedi, T.; Mojiri, A. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef]
- Aiqing, Z.; Zhang, L.; Ning, P.; Chen, Q.; Wang, B.; Zhang, F.; Yang, X.; Zhang, Y. Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit. Rev. Food Sci. Nutr. 2022, 62, 7917–7928. [Google Scholar] [CrossRef]
- Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef]
- Ming, H.; Naidu, R.; Sarkar, B.; Lamb, D.T.; Liu, Y.J.; Megharaj, M.; Sparks, D. Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 2016, 268, 60–68. [Google Scholar] [CrossRef]
- Stomph, T.J.; Choi, E.Y.; Stangoulis, J.C.R. Temporal dynamics in wheat grain zinc distribution: Is sink limitation the key? Ann. Bot. 2011, 107, 927–937. [Google Scholar] [CrossRef]
- Singh, B.; Erenoğlu, B.; Neumann, G.; Römheld, V.; von Wirén, N. Role of phytosiderophores in zinc efficiency of wheat. In Durchwurzelung, Rhizodeposition und Pflanzenverfügbarkeit von Nährstoffen und Schwermetallen: 12. Borkheider Seminar zur Ökophysiologie des Wurzelraumes; Merbach, W., Hütsch, B.W., Wittenmayer, L., Augustin, J., Eds.; Vieweg+Teubner: Wiesbaden, Germany, 2002; pp. 52–60. [Google Scholar]
- Walter, A.; Römheld, V.; Marschner, H.; Mori, S. Is the release of phytosiderophores in zinc-deficient wheat plants a response to impaired iron utilization? Physiol. Plant 1994, 92, 493–500. [Google Scholar] [CrossRef]
- Gupta, C.K.; Singh, B. Uninhibited biosynthesis and release of phytosiderophores in the presence of heavy metal (HM) favors HM remediation. Environ. Sci. Pollut. R. 2017, 24, 9407–9416. [Google Scholar] [CrossRef]
- Azhar, M.; Rehman, M.Z.U.; Ali, S.; Qayyum, M.F.; Naeem, A.; Ayub, M.A.; ul Haq, M.A.; Iqbal, A.; Rizwan, M. Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals. Chemosphere 2019, 227, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Grüter, R.; Costerousse, B.; Bertoni, A.; Mayer, J.; Thonar, C.; Frossard, E.; Schulin, R.; Tandy, S. Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages. Sci. Total Environ. 2017, 599, 1330–1343. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Xu, Z.; Li, S.; Yang, Z.; Ling, W.; Wu, Z.; Gao, J.; Wang, Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. J. Environ. Manag. 2024, 365, 121599. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Wang, X.; Zhang, Y.; Zhang, M.; Wang, K.; Xie, P.; Ji, H. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci. Total Environ. 2020, 711, 135229. [Google Scholar] [CrossRef]
- Yang, Z.B.; Guo, W.Q.; Cheng, Z.; Wang, G.Y.; Xian, J.R.; Yang, Y.X.; Liu, L.X.; Xu, X.X. Possibility of using combined compost-attapulgite for remediation of Cd contaminated soil. J. Clean. Prod. 2022, 368, 133216. [Google Scholar] [CrossRef]
- Zhang, C.J.; Clark, G.J.; Patti, A.F.; Bolan, N.; Cheng, M.M.; Sale, P.W.G.; Tang, C.X. Contrasting effects of organic amendments on phytoextraction of heavy metals in a contaminated sediment. Plant Soil 2015, 397, 331–345. [Google Scholar] [CrossRef]
- Kumar, V.; Radziemska, M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: A review. Environ. Geochem. Health 2022, 44, 3725–3742. [Google Scholar] [CrossRef]
- Ondrasek, G.; Begic, H.B.; Zovko, M.; Filipovic, L.; Merino-Gergichevich, C.; Savic, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar] [CrossRef]
- Antoniadis, V.; Alloway, B.J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 2002, 117, 515–521. [Google Scholar] [CrossRef]
Item | Total Cd (mg/kg) | Total Zn (mg/kg) | pH | Cation Exchange Capacity cmol/kg | Organic Matter (g/kg) | Available P (mg/kg) | Available K (mg/kg) | Alkaline Hydrolysis N (mg/kg) |
---|---|---|---|---|---|---|---|---|
Soil | 0.91 | 82.6 | 8.5 | 19.5 | 11.9 | 20.8 | 187.0 | 52.0 |
OF | 0.63 | 643.8 | 7.9 | 55.1 | 494.3 | 1.3 × 103 | 1.5 × 104 | 5.9 × 103 |
Treatment | Control | OF | L-Zn | H-Zn | OF-L-Zn | OF-H-Zn | |
---|---|---|---|---|---|---|---|
TFCd root-stem | Jointing | 1.12 ± 0.20 | 1.54 ± 0.13 | 0.94 ± 0.04 | 0.78 ± 0.03 | 0.81 ± 0.05 | 0.59 ± 0.05 |
Heading | 0.24 ± 0.02 | 0.31 ± 0.06 | 0.20 ± 0.05 | 0.32 ± 0.02 | 0.51 ± 0.08 | 0.48 ± 0.04 | |
Filling | 0.58 ± 0.03 | 0.48 ± 0.03 | 0.55 ± 0.04 | 0.56 ± 0.05 | 0.57 ± 0.02 | 0.49 ± 0.07 | |
Mature | 0.53 ± 0.04 | 0.47 ± 0.05 | 0.42 ± 0.02 | 0.49 ± 0.02 | 0.53 ± 0.06 | 0.50 ± 0.06 | |
TFZn root-stem | Jointing | 0.59 ± 0.06 | 1.46 ± 0.30 | 1.86 ± 0.42 | 1.12 ± 0.10 | 0.85 ± 0.09 | 0.70 ± 0.06 |
Heading | 0.26 ± 0.01 | 0.38 ± 0.06 | 0.37 ± 0.01 | 0.48 ± 0.01 | 0.53 ± 0.02 | 0.41 ± 0.04 | |
Filling | 0.32 ± 0.07 | 0.40 ± 0.01 | 0.46 ± 0.03 | 0.51 ± 0.03 | 0.59 ± 0.08 | 0.45 ± 0.07 | |
Mature | 0.31 ± 0.05 | 0.31 ± 0.01 | 0.47 ± 0.02 | 0.62 ± 0.10 | 0.28 ± 0.02 | 0.49 ± 0.06 | |
TFCd stem-leaf | Heading | 0.58 ± 0.06 | 0.83 ± 0.05 | 1.04 ± 0.20 | 0.71 ± 0.06 | 0.66 ± 0.07 | 0.90 ± 0.05 |
Filling | 0.88 ± 0.13 | 0.83 ± 0.08 | 0.93 ± 0.10 | 0.93 ± 0.10 | 0.66 ± 0.06 | 0.91 ± 0.23 | |
Mature | 0.84 ± 0.04 | 1.07 ± 0.12 | 1.11 ± 0.08 | 1.06 ± 0.12 | 0.77 ± 0.09 | 0.71 ± 0.01 | |
TFZn stem-leaf | Heading | 0.91 ± 0.07 | 0.78 ± 0.11 | 0.77 ± 0.06 | 0.64 ± 0.07 | 0.64 ± 0.08 | 0.62 ± 0.11 |
Filling | 2.19 ± 0.46 | 1.15 ± 0.20 | 0.98 ± 0.01 | 0.85 ± 0.07 | 0.43 ± 0.06 | 0.84 ± 0.20 | |
Mature | 1.45 ± 0.07 | 1.21 ± 0.07 | 1.12 ± 0.18 | 0.97 ± 0.03 | 0.79 ± 0.03 | 0.68 ± 0.04 | |
TFCd stem-grain | Filling | 0.50 ± 0.01 | 0.53 ± 0.03 | 0.55 ± 0.07 | 0.59 ± 0.04 | 0.55 ± 0.09 | 0.60 ± 0.03 |
Mature | 0.61 ± 0.05 | 0.67 ± 0.01 | 0.58 ± 0.03 | 0.55 ± 0.05 | 0.66 ± 0.06 | 0.54 ± 0.05 | |
TFZn stem-grain | Filling | 4.05 ± 0.67 | 3.40 ± 0.67 | 1.99 ± 0.04 | 1.81 ± 0.11 | 2.10 ± 0.14 | 2.38 ± 0.07 |
Mature | 5.29 ± 0.83 | 6.49 ± 0.54 | 2.99 ± 0.16 | 2.69 ± 0.35 | 3.31 ± 0.21 | 3.24 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Kong, L.; Wan, Y.; Wang, Q.; Zhuang, Z.; Li, H. Effects of Zinc and Organic Fertilizer Amendments, Applied Individually or in Combination, on Cadmium Uptake by Wheat Grown in Alkaline Soil. Plants 2025, 14, 2525. https://doi.org/10.3390/plants14162525
Liu J, Kong L, Wan Y, Wang Q, Zhuang Z, Li H. Effects of Zinc and Organic Fertilizer Amendments, Applied Individually or in Combination, on Cadmium Uptake by Wheat Grown in Alkaline Soil. Plants. 2025; 14(16):2525. https://doi.org/10.3390/plants14162525
Chicago/Turabian StyleLiu, Jiang, Lingxuan Kong, Yanan Wan, Qi Wang, Zhong Zhuang, and Huafen Li. 2025. "Effects of Zinc and Organic Fertilizer Amendments, Applied Individually or in Combination, on Cadmium Uptake by Wheat Grown in Alkaline Soil" Plants 14, no. 16: 2525. https://doi.org/10.3390/plants14162525
APA StyleLiu, J., Kong, L., Wan, Y., Wang, Q., Zhuang, Z., & Li, H. (2025). Effects of Zinc and Organic Fertilizer Amendments, Applied Individually or in Combination, on Cadmium Uptake by Wheat Grown in Alkaline Soil. Plants, 14(16), 2525. https://doi.org/10.3390/plants14162525