Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata
Abstract
1. Introduction
2. Material and Methods
2.1. Sampling and Study Area
2.2. Photosynthetic Activity
2.2.1. CO2 Assimilation and Quantification
2.2.2. In Vivo Chlorophyll a Fluorescence
2.2.3. Maximum Quantum Yield (Fv/Fm)
2.2.4. Electron Transport Rate (ETR)
Non-Photochemical Quenching (NPQ)
2.3. Biochemical Indicators
2.3.1. Pigment Content
2.3.2. Total Phenolic Compounds (PC)
2.3.3. DPPH Total Antioxidant Capacity
2.3.4. Quantification of Thiobarbituric Acid Reactive Substances (TBARSs)
2.3.5. Total Reactive Oxygen Species (ROSs)
2.4. Stoichiometry (C:N Ratios)
2.5. Total Proteins (TPs), Lipids (TLs), and Carbohydrates (TCs)
2.6. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Photosynthetic Activity
3.2.1. CO2 Assimilation
3.2.2. In Vivo Chlorophyll a Fluorescence
3.3. Biochemical Responses
3.4. Stoichiometry (C:N)
3.5. Total Proteins, Lipids and Carbohydrates
3.6. Multivariable Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. Climate Change 2023: Synthesis Report: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Masson-Delmotte, V.; Pörtner, H.O.; Skea, J.; Zhai, P.; Roberts, D.; Shukla, P.R.; Pirani, A.; Pidcock, R.; Chen, Y.; Lonnoy, E.; et al. Resumen para responsables de políticas. In Calentamiento Global de 1,5 °C, Informe Especial del IPCC Sobre los Impactos del Calentamiento Global de 1,5 °C con Respecto a los Niveles Preindustriales y las Trayectorias Correspondientes que Deberían Seguir las Emisiones Mundiales de Gases de Efecto Invernadero, en el Contexto del Reforzamiento de la Respuesta Mundial a la Amenaza del Cambio Climático, el Desarrollo Sostenible y los Esfuerzos por Erradicar la Pobreza; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Gao, G.; Beardall, J.; Jin, P.; Gao, L.; Xie, S.; Gao, K. A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene. J. Appl. Ecol. 2022, 59, 1686–1699. [Google Scholar] [CrossRef]
- Howard, J.; Sutton-Grier, A.E.; Smart, L.S.; Lopes, C.C.; Hamilton, J.; Kleypas, J.; Simpson, S.; McGowan, J.; Pessarrodona, A.; Alleway, H.K.; et al. Blue carbon pathways for climate mitigation: Known, emerging and unlikely. Mar. Policy 2023, 156, 105788. [Google Scholar] [CrossRef]
- Hall, J.R.; Albert, G.; Twigg, I.M.; Baltar, F.; Hepburn, C.D.; Martin, G. The production of dissolved organic carbon by macroalgae and its consumption by marine bacteria: Implications for coastal ecosystems. Front. Mar. Sci. 2022, 9, 934229. [Google Scholar] [CrossRef]
- Chandrani, S.; Drishanu, D.; Vaishnavi, G.; Gunaseelan, S.; Ashokkumar, B.; Uma Wayne, K.; Varalakshmi, P. Role of macroalgal blue carbon ecosystems in climate change mitigation. Sci. Total Environ. 2025, 958, 177751. [Google Scholar] [CrossRef]
- Watanabe, K.; Yoshida, G.; Hori, M.; Umezawa, Y.; Moki, H.; Kuwae, T. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 2020, 17, 2425–2440. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, K. Effects of climate change factors on marine macroalgae: A review. Adv. Mar. Biol. 2021, 88, 91–136. [Google Scholar] [CrossRef] [PubMed]
- Filbee-Dexter, K.; Pessarrodona, A.; Pedersen, M.F.; Wernberg, T.; Duarte, C.M.; Assis, J.; Bekkby, T.; Burrows, M.T.; Carlson, D.F.; Gattuso, J.P.; et al. Carbon exports from seaweed forests to deep ocean sinks. Nat. Geosci. 2024, 17, 552–559. [Google Scholar] [CrossRef]
- Canvin, M.C.; Borrero-Santiago, A.R.; Brook, T.; Gupta, M.; Knoop, J.; Menage, G.; Moore, P.J.; O’Connor, N.E.; Ricart, A.M.; Smale, D.A. Can the Emerging European Seaweed Industry Contribute to Climate Change Mitigation by Enhancing Carbon Sequestration? Rev. Aquac. 2025, 17, e70004. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients 2020, 12, 3085. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, K.; Ji, D.; Wang, W.; Xu, Y.; Chen, C.; Xie, C. Release of dissolved and particulate organic matter by marine macroalgae and its biogeochemical implications. Algal. Res. 2020, 52, 102096. [Google Scholar] [CrossRef]
- Dolliver, J.; O’Connor, N. Whole system analysis is required to determine the fate of macroalgal carbon: A systematic review. J. Phycol. 2022, 58, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Handayani, T.; Zulpikar, F.; Kusnadi, A. The roles of macroalgae in climate change mitigation: Opportunities and challenges for marine-based carbon donor. IOP Conf. Ser. Earth Environ. Sci. 2022, 1119, 012014. [Google Scholar] [CrossRef]
- Pessarrodona, A.; Franco-Santos, R.M.; Wright, L.S.; Vanderklift, M.A.; Howard, J.; Pidgeon, E.; Wernberg, T.; Filbee-Dexter, K. Carbon sequestration and climate change mitigation using macroalgae: A state of knowledge review. Biol. Rev. 2023, 98, 1945–1971. [Google Scholar] [CrossRef]
- Sarkar, P.; Bandyopadhyay, T.K.; Gopikrishna, K.; Tiwari, O.N.; Bhunia, B.; Muthuraj, M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. Bioresour. Technol. 2024, 413, 131489. [Google Scholar] [CrossRef]
- Ramos, E.; Guinda, X.; Puente, A.; de la Hoz, C.F.; Juanes, J.A. Changes in the distribution of intertidal macroalgae along a longitudinal gradient in the northern coast of Spain. Mar. Environ. Res. 2020, 157, 104930. [Google Scholar] [CrossRef]
- Gao, G.; Liu, W.; Zhao, X.; Gao, K. Ultraviolet radiation stimulates activity of CO2 concentrating mechanisms in a bloom-forming diatom under reduced CO2 availability. Front. Microbiol. 2021, 12, 651567. [Google Scholar] [CrossRef] [PubMed]
- Celis-Plá, P.S.M.; Trabal, A.; Navarrete, C.; Troncoso, M.; Moenne, F.; Zúñiga, A.; Figueroa, F.L.; Sáez, C.A. Daily changes on seasonal ecophysiological responses of the intertidal brown macroalga Lessonia spicata: Implications of climate change. Front. Plant Sci. 2022, 13, 941061. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Lavery, P.; Serrano, O.; Marbà, N.; Masque, P.; Duarte, C.M. Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biol. Lett. 2018, 14, 20180236. [Google Scholar] [CrossRef]
- Wu, J.; Keller, D.P.; Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: An Earth system modeling study. Earth Syst. Dyn. 2023, 14, 185–221. [Google Scholar] [CrossRef]
- Li, H.; Feng, X.; Xiong, T.; Shao, W.; Wu, W.; Zhang, Y. Particulate organic carbon released during macroalgal growth has significant carbon sequestration potential in the ocean. Environ. Sci. Technol. 2023, 57, 19723–19731. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007, 1767, 414–421. [Google Scholar] [CrossRef]
- Allorent, G.; Petroutsos, D. Photoreceptor-dependent regulation of photoprotection. Curr. Opin. Plant Biol. 2017, 37, 102–108. [Google Scholar] [CrossRef]
- Verdura, J.; Santamaría, J.; Ballesteros, E.; Smale, D.A.; Cefalì, M.E.; Golo, R.; de Caralt, S.; Vergés, A.; Cebrian, E. Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwave. J. Ecol. 2021, 109, 1758–1773. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; King, N.G.; Moore, P.J.; Sen Gupta, A.; Thomsen, M.S.; Wernberg, T.; Smale, D.A. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 2023, 15, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Valdazo, J.; Coca, J.; Haroun, R.; Bergasa, O.; Viera-Rodríguez, M.A.; Tuya, F. Local and global stressors as major drivers of the drastic regression of brown macroalgae forests in an oceanic island. Reg. Environ. Change 2024, 24, 65. [Google Scholar] [CrossRef]
- Franke, K.; Kroth, F.; Karsten, U.; Bartsch, I.; Iñiguez, C.; Graiff, A. Varying photosynthetic quotients strongly influence net kelp primary production and seasonal differences increase under warming. Front. Mar. Sci. 2024, 11, 1455706. [Google Scholar] [CrossRef]
- Wright, L.S.; Pessarrodona, A.; Foggo, A. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. Glob. Change Biol. 2022, 28, 5514–5531. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Soares, C.; Figueiredo, I.; Sousa, B.; Torres, A.C.; Sousa-Pinto, I.; Veiga, P.; Rubal, M.; Fidalgo, F. Fucoid Macroalgae Have Distinct Physiological Mechanisms to Face Emersion and Submersion Periods in Their Southern Limit of Distribution. Plants 2021, 10, 1892. [Google Scholar] [CrossRef]
- Lalegerie, F.; Gager, L.; Stiger-Pouvreau, V.; Connan, S. The stressful life of red and brown seaweeds on the temperate intertidal zone: Effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2020; Volume 95, pp. 247–287. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Nitschke, U.; Stengel, D.B. Acclimation potential and biochemical response of four temperate macroalgae to light and future seasonal temperature scenarios. Algal Res. 2021, 54, 102190. [Google Scholar] [CrossRef]
- Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants 2021, 10, 1431. [Google Scholar] [CrossRef]
- Sáez, C.A.; Troncoso, M.; Navarrete, C.; Rodríguez-Rojas, F.; Navarro, N.; Trabal, A.; Lavergne, C.; Pardo, D.; Brown, M.T.; Gómez, I.; et al. Photoprotective responses of three intertidal Antarctic macroalgae to short-term temperature stress. Front. Mar. Sci. 2023, 10, 1223853. [Google Scholar] [CrossRef]
- Gómez, I.; Español, S.; Véliz, K.; Huovinen, P. Spatial distribution of phlorotannins and its relationship with photosynthetic UV tolerance and allocation of storage carbohydrates in blades of the kelp Lessonia spicata. Mar. Biol. 2016, 163, 110. [Google Scholar] [CrossRef]
- Zúñiga, A.; Sáez, C.A.; Trabal, A.; Figueroa, F.L.; Pardo, D.; Navarrete, C.; Rodríguez-Rojas, F.; Moenne, F.; Celis-Plá, P.S.M. Seasonal photoacclimation and vulnerability patterns in the brown macroalga Lessonia spicata (Ochrophyta). Water 2021, 13, 6. [Google Scholar] [CrossRef]
- González, A.; Beltrán, J.; Hiriart-Bertrand, L.; Flores, V.; de Reviers, B.; Correa, J.A.; Santelices, B. Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J. Phycol. 2012, 48, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, S.; Mendez, F.; Calderon, M.S.; Bahamonde, F.; Rodríguez, J.P.; Ojeda, J.; Marambio, J.; Gorny, M.; Mansilla, A. A new record of kelp Lessonia spicata (Suhr) Santelices in the Sub-Antarctic Channels: Implications for the conservation of the “huiro negro” in the Chilean coast. PeerJ 2019, 7, e7610. [Google Scholar] [CrossRef] [PubMed]
- Migné, A.; Gevaert, F.; Creach, A.; Spilmont, N.; Chevalier, E.; Davoult, D. Photosynthetic activity of intertidal microphytobenthic communities during emersion: In situ measurements of chlorophyll fluorescence (PAM) and CO2 flux (IRGA). J. Phycol. 2007, 43, 864–873. [Google Scholar] [CrossRef]
- Davey, P.; Lawson, T. Measurements of Carbon Assimilation in Aquatic Systems. In Photosynthesis: Methods and Protocols; Springer: New York, NY, USA, 2024; pp. 95–120. [Google Scholar] [CrossRef]
- Stock, S.C.; Koester, M.; Boy, J.; Godoy, R.; Nájera, F.; Matus, F.; Merino, C.; Abdallah, K.; Leuschner, C.; Spielvogel, S.; et al. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Sci. Total Environ. 2021, 781, 146748. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.; Bouzon, Z.L.; Hall-Spencer, J.M.; Schmidt, E.C.; Korbee, N.; Figueroa, F.L. Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta). Mar. Environ. Res. 2016, 115, 89–97. [Google Scholar] [CrossRef]
- Schreiber, U.; Hormann, H.; Neubauer, C.; Klughammer, C. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 1995, 22, 209–220. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Conde-Alvarez, R.; Gómez, I. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth. Res. 2003, 75, 259–275. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Domínguez-González, B.; Korbee, N. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 2014, 97, 30–38. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Peeters, J.C.H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 1988, 42, 199–215. [Google Scholar] [CrossRef]
- Ritchie, R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sáez, C.A.; González, A.; Contreras, R.A.; Moody, A.J.; Moenne, A.; Brown, M.T. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories. Environ. Pollut. 2015, 199, 130–138. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Hernández, G.; Morales, D.; Pereira-Rojas, J.; Díaz, M.J.; Blanco-Murillo, F.; Sola, I.; Rámila, C.; González, C.; González, K.; Sánchez-Lizaso, J.L.; et al. The halotolerant white sea anemone Anthothoe chilensis, highly abundant in brine discharges zones, as a promising biomonitoring species for evaluating the impacts of desalination plants. Desalination 2024, 581, 117612. [Google Scholar] [CrossRef]
- Slocombe, S.P.; Ross, M.; Thomas, N.; McNeill, S.; Stanley, M.S. A rapid and general method for measurement of protein in micro-algal biomass. Bioresour. Technol. 2013, 129, 51–57. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Underwood, A.J. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521556963. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 12 July 2025).
- Anderson, M.J. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E; Plymouth Marine Laboratory: Plymouth, UK, 2008; 214p. [Google Scholar]
- Krause-Jensen, D.; Duarte, C.M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 2016, 9, 737–742. [Google Scholar] [CrossRef]
- Lian, Y.; Wang, R.; Zheng, J.; Chen, W.; Chang, L.; Li, C.; Yim, S.C. Carbon sequestration assessment and analysis in the whole life cycle of seaweed. Environ. Res. Lett. 2023, 18, 074013. [Google Scholar] [CrossRef]
- Ould, E.; Caldwell, G.S. The potential of seaweed for carbon capture. CABI Rev. 2022, 17, 1–9. [Google Scholar] [CrossRef]
- Duarte, C.M.; Gattuso, J.P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M.F.; Middelburg, J.J.; Burrows, M.T.; Krumhansl, K.A.; Wernberg, T.; et al. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 2022, 31, 1422–1439. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; et al. The value of ecosystem services in global marine kelp forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Pessarrodona, A.; King, N.; Burrows, M.T.; Yunnie, A.; Vance, T.; Moore, P. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 2020, 10, 12161. [Google Scholar] [CrossRef]
- Pessarrodona, A.; Assis, J.; Filbee-Dexter, K.; Burrows, M.T.; Gattuso, J.P.; Duarte, C.M.; Krause-Jensen, D.; Moore, P.J.; Wernberg, T. Global seaweed productivity. Sci. Adv. 2022, 8, eabn2465. [Google Scholar] [CrossRef]
- Schmitz, C.; Ramlov, F.; de Lucena, L.A.F.; Uarrota, V.; Batista, M.B.; Sissini, M.N.; Oliveira, I.; Briani, B.; Martins, C.D.L.; Nunes, J.M.D.C.; et al. UVR and PAR absorbing compounds of marine brown macroalgae along a latitudinal gradient of the Brazilian coast. J. Photochem. Photobiol. B Biol. 2018, 178, 165–174. [Google Scholar] [CrossRef]
- Gordalina, M.; Pinheiro, H.M.; Mateus, M.; da Fonseca, M.M.R.; Cesário, M.T. Macroalgae as protein sources—A review on protein bioactivity, extraction, purification and characterization. Appl. Sci. 2021, 11, 7969. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Álvarez-Gómez, F.; Bonomi-Barufi, J.; Vega, J.; Massocato, T.F.; Gómez-Pinchetti, J.L.; Korbee, N. Interactive effects of solar radiation and inorganic nutrients on bio-filtration, biomass production, photosynthetic activity and the accumulation of bioactive compounds in Gracilaria cornea (Rhodophyta). Algal Res. 2022, 68, 102890. [Google Scholar] [CrossRef]
- Tait, L.W.; Schiel, D.R. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages. PLoS ONE 2013, 8, e74413. [Google Scholar] [CrossRef]
- Ito, M.; Scotti, M.; Franz, M.; Barboza, F.R.; Buchholz, B.; Zimmer, M.; Guy-Haim, T.; Wahl, M. Effects of temperature on carbon circulation in macroalgal food webs are mediated by herbivores. Mar. Biol. 2019, 166, 158. [Google Scholar] [CrossRef]
- Chabrerie, A.; Arenas, F. What if the upwelling weakens? Effects of rising temperature and nutrient depletion on coastal assemblages. Oecologia 2024, 205, 365–381. [Google Scholar] [CrossRef]
- López-Figueroa, F.; Rüdiger, W. Stimulation of nitrate net uptake and reduction by red and blue light and reversion by far-red light in the green alga Ulva rigida. J. Phycol. 1991, 27, 389–394. [Google Scholar] [CrossRef]
- Viñegla, B.; Segovia, M.; Figueroa, F.L. Effect of artificial UV radiation on carbon and nitrogen metabolism in the macroalgae Fucus spiralis L. and Ulva olivascens Dangeard. Hydrobiologia 2006, 560, 31–42. [Google Scholar] [CrossRef]
- Gao, K.S.; Wu, Y.P.; Li, G.; Wu, H.Y.; Villafañe, V.E.; Helbling, E.W. Solar UV-radiation drives CO2-fixation in marine phytoplankton: A double-edged sword. Plant Physiol. 2007, 144, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Saini, K.C.; Ojah, H.; Sahoo, R.; Gupta, K.; Kumar, A.; Bast, F. Abiotic stress in algae: Response, signaling and transgenic approaches. J. Appl. Phycol. 2022, 34, 1843–1869. [Google Scholar] [CrossRef]
- Migné, A.; Delebecq, G.; Davoult, D.; Spilmont, N.; Menu, D.; Gévaert, F. Photosynthetic activity and productivity of intertidal macroalgae: In situ measurements, from thallus to community scale. Aquat. Bot. 2015, 123, 6–12. [Google Scholar] [CrossRef]
- Wu, H.; Feng, J.; Li, X.; Zhao, C.; Liu, Y.; Yu, J.; Xu, J. Effects of increased CO2 and temperature on the physiological characteristics of the golden tide blooming macroalgae Sargassum horneri in the Yellow Sea, China. Mar. Pollut. Bull. 2019, 146, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qin, Z.; Zhang, J.; Lin, Q.; Ni, G.; Tan, Y.; Zou, D. Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes. Algal Res. 2020, 46, 101797. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Bonomi-Barufi, J.; Celis-Plá, P.S.; Nitschke, U.; Arenas, F.; Connan, S.; Abreu, M.H.; Malta, E.J.; Conde-Álvarez, R.; Chow, F.; et al. Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution. J. Exp. Bot. 2021, 72, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Twigg, G.; Fedenko, J.; Hurst, G.; Stanley, M.S.; Hughes, A.D. A review of the current potential of European brown seaweed for the production of biofuels. Energy Sustain. Soc. 2024, 14, 21. [Google Scholar] [CrossRef]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Res. 2022, 64, 102683. [Google Scholar] [CrossRef]
- Bonomi-Barufi, J.; Figueroa, F.L.; Korbee, N.; Momoli, M.M.; Martins, A.P.; Colepicolo, P.; Van Sluys, M.A.; Oliveira, M.C. How macroalgae can deal with radiation variability and photoacclimation capacity: The example of Gracilaria tenuistipitata (Rhodophyta) in laboratory. Algal Res. 2020, 50, 102007. [Google Scholar] [CrossRef]
- Endo, H.; Moriyama, H.; Okumura, Y. Photoinhibition and photoprotective responses of a brown marine macroalga acclimated to different light and nutrient regimes. Antioxidants 2023, 12, 357. [Google Scholar] [CrossRef]
- Hanelt, D.; Li, J.; Nultsch, W. Tidal dependence of photoinhibition of photosynthesis in marine macrophytes of the South China Sea. Bot. Acta 1994, 107, 66–72. [Google Scholar] [CrossRef]
- Goss, R.; Lepetit, B. Biodiversity of NPQ. J. Plant Physiol. 2015, 172, 13–32. [Google Scholar] [CrossRef]
Season | Dayle Cycle | Temperature (°C) | pH | Salinity | PAR (µmol m−2 s−1) | UVA (W m−2) |
---|---|---|---|---|---|---|
Autumn | 10:00 | 12.9 ± 0.1 c | 7.9 ± 0.1 | 34.4 ± 0.1 | 335.37 ± 8.99 ab | 4.77 ± 0.09 a |
14:00 | 13.6 ± 0.1 e | 8.1 ± 0.1 | 34.4 ± 0.1 | 989.16 ± 19.04 cd | 10.0 ± 0.1 a | |
18:00 | 13.2 ± 0.1 d | 8.1 ± 0.1 | 34.3 ± 0.1 | 332.58 ± 14.48 bc | 4.54 ± 0.21 a | |
Winter | 10:00 | 12.0 ± 0.1 c | 7.8 ± 0.1 | 34.5 ± 0.1 | 269.12 ± 8.63 ab | 4.66 ± 0.10 c |
14:00 | 13.2 ± 0.1 d | 8.0 ± 0.1 | 34.7 ± 0.1 | 375.10 ± 11.93 ab | 5.61 ± 0.13 d | |
18:00 | 13.4 ± 0.1 de | 8.1 ± 0.1 | 34.7 ± 0.1 | 0.24 ± 0.04 a | 4.25 ± 0.21 a | |
Spring | 10:00 | 12.5 ± 0.1 b | 7.7 ± 0.1 | 36.0 ± 0.1 | 457.01 ± 16.48 ab | 2.70 ± 0.08 b |
14:00 | 13.6 ± 0.1 e | 8.4 ± 0.1 | 35.6 ± 0.1 | 1323.7 ± 23.3 d | 11.3 ± 1.7 a | |
18:00 | 13.4 ± 0.1 de | 8.2 ± 0.1 | 36.3 ± 0.1 | 228.56 ± 6.39 ab | 4.21 ± 0.07 a | |
Summer | 10:00 | 12.5 ± 0.1 b | 7.8 ± 0.1 | 34.9 ± 0.1 | 224.26 ± 12.44 ab | 2.70 ± 0.14 a |
14:00 | 14.3 ± 0.1 f | 8.0 ± 0.1 | 34.9 ± 0.1 | 1259.7 ± 30.8 d | 9.77 ± 0.09 a | |
18:00 | 14.9 ± 0.1 g | 8.2 ± 0.1 | 34.9 ± 0.1 | 134.28 ± 12.05 cd | 1.99 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncoso, M.; Fleming, Z.L.; Figueroa, F.L.; Korbee, N.; Durán, R.; Navarrete, C.; Rivera, C.; Celis-Plá, P.S.M. Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata. Plants 2025, 14, 2341. https://doi.org/10.3390/plants14152341
Troncoso M, Fleming ZL, Figueroa FL, Korbee N, Durán R, Navarrete C, Rivera C, Celis-Plá PSM. Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata. Plants. 2025; 14(15):2341. https://doi.org/10.3390/plants14152341
Chicago/Turabian StyleTroncoso, Macarena, Zoë L. Fleming, Félix L. Figueroa, Nathalie Korbee, Ronald Durán, Camilo Navarrete, Cecilia Rivera, and Paula S. M. Celis-Plá. 2025. "Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata" Plants 14, no. 15: 2341. https://doi.org/10.3390/plants14152341
APA StyleTroncoso, M., Fleming, Z. L., Figueroa, F. L., Korbee, N., Durán, R., Navarrete, C., Rivera, C., & Celis-Plá, P. S. M. (2025). Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata. Plants, 14(15), 2341. https://doi.org/10.3390/plants14152341