Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Argania spinosa Husk Extracts
2.2. Antioxidant Activity of Argania spinosa Husk Extracts
2.3. Hypoglycaemic and Hypolipidemic Effect of Argania spinosa Husk Extracts
3. Materials and Methods
3.1. Plants Material
3.2. Extraction of Plant Material
3.3. LC-ESI/HRMS/MS Analysis
3.4. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.5. Antioxidant Activity
3.5.1. Radical Scavenging Potential
3.5.2. β-Carotene Bleaching Test
3.5.3. FRAP Test
3.6. Carbohydrate Hydrolyzing Enzymes Inhibitory Activities
3.7. Lipase Inhibitory Activity Test
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hallouch, O.; Ibourki, M.; Bijla, L.; Oubannin, S.; Asbbane, A.; Mazar, A.; Prasad Devkota, K.; Guillaume, D.; Goh, K.W.; Bouyahya, A.; et al. A review on the utilization of the by-products generated during the production of Argan oil. J. Agric. Food Res. 2025, 20, 101770. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Husk. J. Ethnopharmacol. 1999, 67, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Ouhaddou, H.; Boubaker, H.; Msanda, F.; El Mousadik, A. An ethnobotanical study of medicinal plants of the Agadir Ida Ou Tanane province (southwest Morocco). J. Appl. Biosci. 2014, 84, 7707–7722. [Google Scholar] [CrossRef]
- Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol. 2017, 198, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Moukal, A. L’arganier, Argania spinosa L. (Husk), usage thérapeutique, cosmétique et alimentaire. Phytothérapie 2004, 2, 135–141. [Google Scholar] [CrossRef]
- Abouri, M.; El Mousadik, A.; Msanda, F.; Boubaker, H.; Saadi, B.; Cherifi, K. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int. J. Med. Plants Res. 2012, 1, 99–123. [Google Scholar]
- El Kabouss, A.; Charrouf, Z.; Faid, M.; Garneau, F.X.; Collin, G. Chemical composition and antimicrobial activity of the leaf essential oil of Argania spinosa L. Husk. J. Essent. Oil Res. 2002, 14, 147–149. [Google Scholar] [CrossRef]
- Boukhobza, M.; Pichon-Prun, N. L’arganier ressource économique et médicinale pour le Maroc. Phytothérapie 1988, 27, 21–26. [Google Scholar]
- Soheir, K.; Sirine, H. Enquête Ethnobotanique sur l’Utilisation Traditionnelle des Cosmétiques Naturels en Algérie. Ph.D. Thesis, Université D’Oran, Oran, Algeria, 2019. [Google Scholar]
- Oubannin, S.; Bijla, L.; Gagour, J.; Hajir, J.; Ait Aabd, N.; Sakar, E.; Salama, M.A.; Gharby, S. A comparative evaluation of proximate composition, elemental profiling and oil physicochemical properties of black cumin (Nigella sativa L.) seeds and argan (Argania spinosa L. Husk) kernels. Chem. Data Collect. 2022, 41, 100920. [Google Scholar] [CrossRef]
- Vuono, L.F.; Sicari, V.; Mincione, A.; Tundis, R.; Pino, R.; Badalamenti, N.; Bruno, M.; Sottile, F.; Piacente, S.; Settanni, L.; et al. Reuse of almond skin to formulate a new gluten- and lactose-free bakery product. Foods 2024, 13, 3796. [Google Scholar] [CrossRef]
- Bottone, A.; Cerulli, A.; Durso, G.; Masullo, M.; Montoro, P.; Napolitano, A.; Piacente, S. Plant Specialized Metabolites in Hazelnut (Corylus avellana) Kernel and Byproducts: An Update on Chemistry, Biological Activity, and Analytical Aspects. Planta Med. 2019, 85, 840–855. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, P.; Wu, C.L.; Chang, H.T.; Chang, S.T. Antioxidant activity of the ethanolic ex-tract from the bark of Chamaecyparis obtusa var. formosana. J. Sci. Food Agric. 2008, 88, 1400–1405. [Google Scholar] [CrossRef]
- Azizi, S.; Dalli, M.; Roubi, M.; Moon, S.; Berrichi, A.; Maleb, A.; Kim, S.H.; Gseyra, N.; Kim, B. Insights on Phytochemistry and Pharmacological Properties of Argania spinosa L. Skeels: A Comprehensive Review. ACS Omega 2024, 9, 36043–36065. [Google Scholar] [CrossRef] [PubMed]
- Joguet, N.; Maugard, T. Characterization and quantification of phenolic compounds of Argania spinosa leaves by HPLC-PDA-ESI-MS analyses and their antioxidant activity. Chem. Nat. Compd. 2013, 48, 1069–1071. [Google Scholar] [CrossRef]
- Khallouki, F.; Haubner, R.; Ricarte, I.; Erben, G.; Klika, K.; Ulrich, C.M.; Owen, R.W. Identification of polyphenolic compounds in the flesh of Argan (Morocco) fruits. Food Chem. 2015, 179, 191–198. [Google Scholar] [CrossRef]
- Khallouki, F.; Voggel, J.; Breuer, A.; Klika, K.D.; Ulrich, C.M.; Owen, R.W. Comparison of the major polyphenols in mature Argan fruits from two regions of Morocco. Food Chem. 2017, 221, 1034–1040. [Google Scholar] [CrossRef]
- Chafchaouni-Moussaoui, I.; Charrouf, Z.; Guillaume, D. Triterpenoids from Argania spinosa: 20 years of research. Nat. Prod. Commun. 2013, 8, 43–46. [Google Scholar] [CrossRef]
- Henry, M.; Kowalczyk, M.; Maldini, M.; Piacente, S.; Stochmal, A.; Oleszek, W. Saponin inventory from Argania spinosa kernel cakes by liquid chromatography and mass spectrometry. Phytochem. Anal. 2013, 24, 616–622. [Google Scholar] [CrossRef]
- Alaoui, A.; Charrouf, Z.; Soufiaoui, M.; Carbone, V.; Malorni, A.; Pizza, C.; Piacente, S. Triterpenoid saponins from the shells of Argania spinosa seeds. J. Agric. Food Chem. 2002, 50, 4600–4603. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Cerulli, A.; Dirsch, V.M.; Heiss, E.H.; Masullo, M.; Piacente, S. LC-MS- and 1H NMR-Based Metabolomics to Highlight the Impact of Extraction Solvents on Chemical Profile and Antioxidant Activity of Daikon Sprouts (Raphanus sativus L.). Antioxidants 2023, 12, 1542. [Google Scholar] [CrossRef]
- Bialy, Z.; Jurzysta, M.; Oleszek, W.; Piacente, S.; Pizza, C. Saponins in alfalfa (Medicago sativa L.) root and their structural elucidation. J. Agric. Food Chem. 1999, 47, 3185–3192. [Google Scholar] [CrossRef]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene assay revisited. application to characterize and quantify antioxidant and prooxidant activities in a microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef]
- El Monfalouti, H.; Charrouf, Z.; Belviso, S.; Ghirardello, D.; Scursatone, B.; Guillaume, D.; Denhez, C.; Zeppa, G. Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels). Eur. J. Lipid Sci. Technol. 2012, 114, 446–452. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Mariniello, L.; D’Agostino, A.; D’Agostino, M.; Cammarota, M.; Schiraldi, C.; Porta, R. Argan (Argania spinosa L.) Seed Oil Cake as a Potential Source of Protein-Based Film Matrix for Pharmaco-Cosmetic Applications. Int. J. Mol. Sci. 2022, 23, 8478. [Google Scholar] [CrossRef] [PubMed]
- El Idrissi, Y.; El Moudden, H.; Harhar, H.; Zarrouk, A.; Tabyaoui, M. Comparison and correlation of phytochemical content with antioxidant potential of different parts of Argan tree, Argania spinosa L. Casp. J. Environ. Sci. 2020, 19, 261–266. [Google Scholar]
- Alaoui, A.; Sahri, N.; Mahdi, I.; Fahsi, N.; El Herradi, E.H.; Sobeh, M. Argan: Phytochemical pro-filing and evaluation of the antioxidant, hypoglycemic, and antibacterial properties of its fruit pulp extracts. Heliyon 2023, 10, e23612. [Google Scholar] [CrossRef]
- Guan, H.; Zhang, W.; Liu, H.; Jiang, Y.; Li, F.; Wang, D.; Liu, Y.; He, F.; Wu, M.; Ivan Neil Waterhouse, G.; et al. Simultaneous binding of quercetin and catechin to FOXO3 enhances IKKα transcription inhibition and suppression of oxidative stress-induced acute alcoholic liver injury in rats. J. Adv. Res. 2025, 67, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.I.; Wiesenborn, D.P.; Kim, Y.S. Antioxidant activity of phenolic compounds from canola (Brassica napus) seed. Food Sci. Biotechnol. 2014, 23, 1753–1760. [Google Scholar] [CrossRef]
- Wansi, J.D.; Chiozem, D.D.; Tcho, A.T.; Toze, F.A.; Devkota, K.P.; Ndjakou, B.L.; Wandji, J.; Sewald, N. Antimicrobial and antioxidant effects of phenolic constituents from Klainedoxa gabonensis. Pharm. Biol. 2010, 48, 1124–1129. [Google Scholar] [CrossRef]
- Kokanova-Nedialkova, Z.; Nedialkov, P.; Kondeva-Burdina, M.; Simeonova, R. Hepatoprotective activity of a purified methanol extract and saponins from the roots of Chenopodium bonus-henricus L. Z. Naturforsch. C J. Biosci. 2019, 74, 329–337. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory effect of roasted/unroasted Argania spinosa seeds oil on α- glucosidase, α-amylase and intestinal glucose absorption activities. S. Afr. J. Bot. 2020, 135, 413–420. [Google Scholar] [CrossRef]
- Kamal, R.; Kharbach, M.; Heyden, Y.V.; Yu, H.; Bouklouze, A.; Cherrah, Y.; Alaoui, K. In Vitro & In Vivo Anti-Hyperglycemic Potential of Saponins Cake and Argan Oil from Argania spinosa. Foods 2021, 10, 1078. [Google Scholar] [CrossRef]
No. | Name | Rt | Delta ppm | Molecular Formula | [M-H]− | [(M + FA)-H]− | MS/MS | Methanol Extracts | Intensity in methanol Extract | Acetone Extract | Intensity in Acetone Extract |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | procyanidin B1 | 9.05 | 2.61 | 577.1356 | C30H26O12 | 289.0714, 407.0765 | X | 3.16 × 106 | - | - | |
2 | coumaroyl-O-glucoside | 9.62 | 1.07 | 325.0929 | C15H18O8 | 145.0283 | X | 1.81 × 106 | X | 1.51 × 106 | |
3 | caffeoyl-O-glucoside | 9.70 | 3.64 | 341.0879 | C15H18O9 | 161.0340 | X | 5.0 × 104 | - | - | |
4 | catechin | 9.76 | 3.75 | 289.0717 | C15H14O6 | 179.0334, 203.0704, 245.0814 | X | 2.15 × 106 | X | 9.32 × 104 | |
5 | procyanidin B2 | 9.88 | 1.87 | 577.1351 | C30H26O12 | 289.0714, 407.0765 | X | 9.25 × 106 | - | - | |
6 | feruloyl-O-glucoside | 10.03 | 2.82 | 355.1034 | C16H20O9 | 175.0390 | X | 2.71 × 104 | X | 4.61 × 105 | |
7 | sinapoyl-O-glucoside | 10.18 | 3.63 | 385.1143 | C17H22O10 | 205.0497 | X | 9.27 × 105 | X | 8.96 × 105 | |
8 | epicatechin | 10.41 | 2.47 | 289.0714 | C15H14O6 | 179.0336, 203.0709, 245.082 | X | 2.66 × 107 | X | 1.88 × 106 | |
9 | procyanidin C1 | 10.55 | −1.79 | 865.1994 | C45H38O18 | 289.0714, 407.0765 | X | 5.46 × 105 | - | - | |
10 | rutin arabinoside | 10.68 | 2.28 | 741.1889 | C32H38O20 | 301.0329 | X | 1.34 × 106 | X | 2.40 × 106 | |
11 | quercetin glucoarabinoside | 11.16 | 2.11 | 595.1306 | C26H28O16 | 301.0472, 445.0772 | X | 1.03 × 106 | X | 1.26 × 106 | |
12 | quercetin-3-O-rhamnoglucoside | 11.54 | 2.53 | 609.1465 | C27H30O16 | 301.0376, 463.0874 | X | 7.23 × 106 | X | 7.96 × 106 | |
13 | quercetin-3-O-glucoside | 12.01 | 2.76 | 463.0884 | C21H20O12 | 301.0344 | X | 1.64 × 107 | X | 4.40 × 107 | |
14 | quercetin-3-O-arabinoside | 12.71 | 1.97 | 433.07724 | C20H18O11 | 301.0347 | X | 9.25 × 106 | X | 6.60 × 107 | |
15 | 3-O-β-[β-D-glucopyranosyl-(1->3)-β-D-glucopyranosyl]-28-O-{α-L-rhamnopyranosyl-(1->3)-β-D-xylopyranosyl-[(1->f4)-α-L-rhamnopyranosyl-(1->2)-α-L-arabinopyranosyl}-16α-hydroxyprotobassic acid. | 13.87 | −0.69 | 1545.6945 | C70H114O37 | 483.1714, 519.3321, 843.4385 | X | 4.56 × 106 | X | 2.98 × 104 | |
16 | arganine A | 14.15 | −1.70 | 1399.6361 | C64H104O33 | 519.3326, 843.4382 | X | 3.09 × 107 | X | 7.60 × 105 | |
17 | arganine B | 14.31 | −0.19 | 1385.6217 | C63H102O33 | 469.1568, 519.3329, 843.4392 | X | 2.30 × 105 | X | 5.21 × 104 | |
18 | arganine C | 14.32 | 0.04 | 1237.5848 | C58H94O28 | 519.3343, 681.3847 | X | 9.26 × 104 | X | 4.91 × 104 | |
19 | quercetin glycosinapate | 14.45 | 2.39 | 669.1466 | C32H30O16 | 301.0342, 463.0880 | X | 3.60 × 105 | X | 4.98 × 106 | |
20 | butyroside B | 14.50 | 0.56 | 1223.5698 | C57H92O28 | 519.3328, 681.3845 | X | 1.33 × 105 | - | - | |
21 | quercetin glycocoumarate | 14.67 | 1.84 | 609.1250 | C30H26O14 | 301.0350, 463,0879 | X | 2.83 × 106 | X | 1.22 × 107 | |
22 | 3-O-β-[β-D-glucopyranosyl-(1->3)-β-D-glucopyranosyl]-28-O-{α-L-rhamnopyranosyl-(1->3)-β-D-xylopyranosyl-[(1->3)-α-L-rhamnopyranosyl]-(1->4)-R-L-rhamnopyranosyl-(1->2)-α-Larabinopyranosyl] protobassic acid. | 15.00 | −0.03 | 1529.7036 | C70H114O36 | 483.1722, 503.3382, 827.4445 | X | 1.63 × 106 | - | - | |
23 | arganine D | 15.22 | −0.88 | 1383.6415 | C64H104O32 | 503.3375, 665.3900, 827.4495 | X | 2.34 × 107 | X | 2.12 × 105 | |
24 | arganine E | 15.33 | 0.64 | 1369.6279 | C63H102O32 | 503.3375, 665.3912 | X | 2.05 × 106 | - | - | |
25 | arganine J | 15.42 | 0.37 | C62H100O30 | 1369.6235 | 487.2912 | X | 1.17 × 106 | - | - | |
26 | mi-saponin A | 15.47 | 0.01 | 1221.5898 | C58H94O27 | 503.3382, 665.3906 | X | 1.99 × 106 | - | - | |
27 | arganine G | 15.55 | −1.58 | C47H76O19 | 989.4971 | 487.3105 | X | 1.12 × 105 | X | 5.77 × 104 | |
28 | arginine F | 15.66 | 2.02 | 1207.5767 | C57H92O27 | 1253.5797 | 503.3325, 665.3908 | X | 1.06 × 106 | - | - |
29 | butyroside C | 16.13 | 0.95 | 1235.5703 | C58H92O28 | 503.3365, 679.3692, | X | 5.64 × 106 | X | 1.42 × 105 | |
30 | quercetin | 16.16 | 3.82 | 301.0354 | C15H10O7 | 151.003, 178.9977 | X | 1.74 × 105 | X | 5.69 × 106 | |
31 | zanhic acid | 17.69 | 0.71 | 517.3163 | C30H46O7 | 499.3049 | - | - | X | 5.52 × 106 | |
32 | 16-α-Hydroxyprotobassic acid | 17.89 | 1.71 | 519.3325 | C30H48O7 | 457.3333, 501.3228 | - | - | X | 7.56 × 106 | |
33 | medicagenic acid | 18.24 | 2.14 | 501.3221 | C30H46O6 | 425.3045, 483.3114 | - | - | X | 1.22 × 107 | |
34 | protobassic acid | 18.69 | 1.60 | 503.3375 | C30H48O6 | 453.3019, 485.3273 | - | - | X | 5.42 × 106 | |
35 | 2,3-dihydroxy-30-norolean-12,20(29)-dien--23,28-dioic acid | 19.09 | 2.32 | 485.2909 | C29H42O6 | 425.2694, 467.2805 | - | - | X | 6.52 × 106 | |
36 | medicagenic acid isomer | 19.30 | 1.30 | 501.3217 | C30H46O6 | 441.3011, 483.3122 | - | - | X | 3.80 × 107 | |
37 | protobassic acid isomer | 19.72 | 1.66 | 503.3375 | C30H48O6 | 441.3369, 485.3273 | - | - | X | 6.80 × 106 | |
38 | 2,3-dihydroxy-23-oxo-30-norolean-12,20(29)-dien-28-oic acid | 21.11 | 2.62 | 469.2961 | C29H42O5 | 451.2854 | - | - | X | 2.14 × 106 | |
39 | bassic acid | 21.60 | 2.61 | 485.3274 | C30H46O5 | 467.3168 | - | - | X | 6.20 × 106 | |
40 | bayogenin | 22.02 | 1.37 | 487.3425 | C30H48O5 | 409.3071, 457.3319 | - | X | 1.97 × 107 | ||
41 | bayogenin isomer | 22.46 | 2.17 | 487.3429 | C30H48O5 | 469.3329 | - | - | X | 8.52 × 106 | |
42 | maslinic acid | 28.06 | 1.70 | 471.3477 | C30H48O4 | 359.8896 | - | - | X | 4.48 × 106 | |
43 | oleanolic acid | 32.95 | 2.13 | 455.3529 | C30H48O3 | - | - | X | 5.25 × 105 |
Extract | FRAP Test | β-Carotene Bleaching Test | DPPH Test | ABTS Test | |
---|---|---|---|---|---|
t = 30 min | t = 60 min | ||||
μM Fe (II)/g | IC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | |
CH3OH | 54.88 ± 8.32 a | 41.36 ± 5.23 b | 29.14 ± 3.70 b | 198.34 ± 12.67 b | 302.23 ± 14.71 a |
(CH3)2CO | 36.37 ± 4.06 b | 26.68 ± 3.64 a | 13.82 ± 2.40 a | 226.77 ± 13.01 a | 436.33 ± 15.90 b |
Sign. | ** | ** | ** | ** | ** |
Ascorbic acid, | - | - | - | 5.03 ± 0.82 | 1.78 ± 0.13 |
BHT | 63.44 ± 2.86 | ||||
Propyl gallate | 1.04 ± 0.05 | 0.09 ± 0.07 |
Extract | α-Amylase | α-Glucosidase | Lipase |
---|---|---|---|
IC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | |
CH3OH | 25.24 ± 3.90 b | 27.42 ± 4.11 b | 19.21 ± 5.05 a |
(CH3)2CO | 18.93 ± 2.68 a | 12.37 ± 3.66 a | 23.67 ± 4.41 b |
Sign. | * | ** | * |
Acarbose | 52.75 ± 1.25 | 35.43 ± 1.12 | - |
Orlistat | - | - | 37.87 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerulli, A.; Badalamenti, N.; Sottile, F.; Bruno, M.; Piacente, S.; Ilardi, V.; Tundis, R.; Pino, R.; Loizzo, M.R. Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel. Plants 2025, 14, 2288. https://doi.org/10.3390/plants14152288
Cerulli A, Badalamenti N, Sottile F, Bruno M, Piacente S, Ilardi V, Tundis R, Pino R, Loizzo MR. Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel. Plants. 2025; 14(15):2288. https://doi.org/10.3390/plants14152288
Chicago/Turabian StyleCerulli, Antonietta, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino, and Monica Rosa Loizzo. 2025. "Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel" Plants 14, no. 15: 2288. https://doi.org/10.3390/plants14152288
APA StyleCerulli, A., Badalamenti, N., Sottile, F., Bruno, M., Piacente, S., Ilardi, V., Tundis, R., Pino, R., & Loizzo, M. R. (2025). Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel. Plants, 14(15), 2288. https://doi.org/10.3390/plants14152288