Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel.
Abstract
1. Introduction
2. Results
2.1. Effects of Treatments on Phytohormones and Physiological–Biochemical Parameters
2.2. Transcriptome Sequencing and De Novo Assembly
2.3. Functional Annotation of Unigenes
2.4. Differential Expressed Gene (DEG) Analysis
2.5. GO Enrichment Analysis of Differentially Expressed Genes
2.6. KEGG Pathway Enrichment Analysis of DEGs
2.7. Validation of the Expression of DEGs by qRT-PCR
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Plant Materials
4.3. Physiological and Biochemical Parameter Measurements
4.4. RNA Extraction and Transcriptome Sequencing
4.5. De Novo Assembly and Functional Annotation
4.6. Differentially Expressed Gene (DEG) Identification and Enrichment Analysis
4.7. Quantitative Real-Time PCR (qRT-PCR) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narsai, R.; Gouil, Q.; Secco, D.; Srivastava, A.; Karpievitch, Y.V.; Liew, L.C.; Lister, R.; Lewsey, M.G.; Whelan, J. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol. 2017, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, H.; Shen, Y.Y.; Wang, J.B. Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant Mol. Biol. 2013, 81, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.P.; Wang, B.; Tian, L.; Wang, S.X.; Zhang, J.; Guo, S.L.; Zhang, H.C.; Xu, L.R.; Chen, Y.H. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol. Plant 2020, 168, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Ali, M.F.; Kawashima, T. Insights into dynamic coenocytic endosperm development: Unraveling molecular, cellular, and growth complexity. Curr. Opin. Plant Biol. 2024, 81, 102566. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xiang, T.; Zheng, Q.; Kuang, X.; Kong, Q.; Zhou, J.; Wang, H.; Zhou, L.; Feng, S.; Yuan, M.; et al. Deciphering the evolutionary imprints of Camellia oleifera Abel.: Delineating its distinct phylogeographic structure and demographic history through microsatellite and plastid fragment. BMC Plant Biol. 2025, 25, 526. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Jin, L.H.; Liu, Q.N.; Zhao, K.X.; Lin, L.K.; Zheng, J.Y.; Li, C.; Chen, B.; Shen, Y.H. Recent advances in the extraction, composition analysis and bioactivity of Camellia (Camellia oleifera Abel.) oil. Trends Food Sci. Technol. 2024, 143, 104211. [Google Scholar] [CrossRef]
- Long, W.; Yao, X.; Wang, K.; Sheng, Y.; Lv, L. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination. BMC Plant Biol. 2022, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Sun, D.; Nie, Y.; Wang, Q.; Zhang, T.; Wang, R.; Li, F.; Zhao, X.; Gao, C. Analysis and evaluation of Camellia oleifera Abel. Germplasm fruit traits from the high-altitude areas of East Guizhou Province, China. Sci. Rep. 2024, 14, 18440. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Wang, K.L.; Zhou, C.F.; Xie, Y.H.; Yao, X.H.; Yin, H.F. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Int. J. Mol. Sci. 2018, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.H.; Li, Z.; Zhou, J.Q.; Gu, Y.Y.; Tan, X.F. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biol. 2021, 21, 348. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.F.; Song, Q.L.; Ji, K.; Gong, S.F.; Wang, L.K.; Chen, L.; Zhang, J.; Yuan, D.Y. Full-Length Transcriptome from Camellia oleifera Seed Provides Insight into the Transcript Variants Involved in Oil Biosynthesis. J. Agric. Food Chem. 2020, 68, 14670–14683. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Huang, H.; Ma, X.J.; Hu, Z.K.; Li, J.Y.; Yin, H.F. Characterizations of MYB Transcription Factors in Camellia oleifera Reveal the Key Regulators Involved in Oil Biosynthesis. Horticulturae 2022, 8, 742. [Google Scholar] [CrossRef]
- Yang, L.E.; Peng, D.L.; Li, Z.M.; Huang, L.; Yang, J.; Sun, H. Cold stratification, temperature, light, GA3, and KNO3 effects on seed germination of Primula beesiana from Yunnan, China. Plant Divers. 2020, 42, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Meng, Y.J.; Shuai, H.W.; Liu, W.G.; Du, J.B.; Liu, J.; Yang, W.Y. Dormancy and germination: How does the crop seed decide? Plant Biol. 2015, 17, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chu, Q.; Guo, X.; Shao, W.; Shang, N.; Luo, K.; Li, X.; Chen, H.; Cheng, Q.; Mo, F.; et al. Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination. Dev. Cell. 2024, 59, 2320–2332.e5. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lv, Z.; Wang, Y.; Li, C.; Jia, Y.; Zhu, Y.; Cao, M.; Zhou, Y.; Zeng, X.; Wang, Z.; et al. Identification of miRNAs Mediating Seed Storability of Maize during Germination Stage by High-Throughput Sequencing, Transcriptome and Degradome Sequencing. Int. J. Mol. Sci. 2022, 23, 12339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, H.; Xie, K.; Liu, C.; Li, L.; Liu, L.; Han, X.; Jiao, C.; Wan, Z.; Sha, A. Characterization of Drought-Responsive Transcriptome During Seed Germination in Adzuki Bean (Vigna angularis L.) by PacBio SMRT and Illumina Sequencing. Front. Genet. 2020, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tian, M.; Wang, C.; Zhang, Y. Transcriptome sequencing and differential gene expression analysis reveal the mechanisms involved in seed germination and protocorm development of Calanthe tsoongiana. Gene 2021, 772, 145355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, W.; Wang, X.; Duan, Y.; Li, Y.; Wang, Y.; Jiang, Q.; Liao, B.; Zhou, S.; Li, Y. Genome-Wide Analyses of MADS-Box Genes Reveal Their Involvement in Seed Development and Oil Accumulation of Tea-Oil Tree (Camellia oleifera). Int. J. Genom. 2024, 2024, 3375173. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.P.; Zuo, Z.; Cao, L.N.; Huang, J.H.; Sun, X.; Zhang, P.; Yang, C.J.; Li, L.X.; Xu, Z.R.; Liu, G.J. Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar. BMC Plant Biol. 2019, 19, 279. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shang, W.; Li, L.; Song, Y.; Wang, G.; Shi, L.; Shen, Y.; Sun, Y.; He, S.; Wang, Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int. J. Mol. Sci. 2023, 24, 10715. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Diao, P.F.; Kong, L.Q.; Yu, R.N.; Zhang, M.; Zuo, T.T.; Fan, Y.Y.; Niu, Y.D.; Yan, F.; Wuriyanghan, H. Ethylene Enhances Seed Germination and Seedling Growth Under Salinity by Reducing Oxidative Stress and Promoting Chlorophyll Content via ETR2 Pathway. Front. Plant Sci. 2020, 11, 1066. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Cda, S.; Piedade, M.T.; Tiné, M.A.; Rossatto, D.R.; Parolin, P.; Buckeridge, M.S. The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Ann. Bot. 2009, 104, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Dogra, V.; Ahuja, P.S.; Sreenivasulu, Y. Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. J. Proteomics. 2013, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense. Front. Plant Sci. 2021, 18, 772810. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Dong, L.; Sun, S.; Wang, K.; Zou, Y.; Gao, Y.; Gong, T.; Hu, G.; Qin, L. Metabonomics and physiology revealed the critical function of 5-Phosphoribosylamine and antioxidant enzymes in enhancing aged oat seed germination. BMC Plant Biol. 2025, 25, 28. [Google Scholar] [CrossRef] [PubMed]
- Gul, F.; Khan, I.U.; Rutherford, S.; Dai, Z.C.; Li, G.L.; Du, D.L. Plant growth promoting rhizobacteria and biochar production from Parthenium hysterophorus enhance seed germination and productivity in barley under drought stress. Front. Plant Sci. 2023, 14, 1175097. [Google Scholar] [CrossRef] [PubMed]
- Su, W.N.; Qiu, J.Q.; Soufan, W.; El Sabagh, A. Synergistic effects of melatonin and glycine betaine on seed germination, seedling growth, and biochemical attributes of maize under salinity stress. Physiol. Plant. 2024, 176, e14514. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Li, X.H.; Liu, Z.W.; Xu, Z.S.; Zhuang, J. De novo assembly and transcriptome characterization: Novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol. 2014, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Chabikwa, T.G.; Barbier, F.F.; Tanurdzic, M.; Beveridge, C.A. De novo transcriptome assembly and annotation for gene discovery in avocado, macadamia and mango. Sci. Data 2020, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Wang, L.X.; Liu, X.Y.; Hu, L.L.; Wang, S.H.; Cheng, X.Z. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. BMC Genet. 2017, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Niu, J.; Xu, X.L.; Xu, L.L.; Zhang, Y.B.; Fan, B.; Liang, X.H.; Zhang, L.J.; Yin, S.X.; Han, L.B. De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. Front. Plant Sci. 2015, 6, 610. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.T.; Wang, Z.L.; Zhu, Q.H.; Ye, M.; Ye, C.Y. A long road ahead to reliable and complete medicinal plant genomes. Nat. Commun. 2025, 16, 2150. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhu, Y.H.; Jia, H.Y.; Li, Y.J.; Han, Y.G.; Zheng, X.K.; Yue, X.; Zhao, L.; Feng, W.S. A chromosome-level genome assembly and annotation of the medicinal plant Lepidium apetalum. BMC Genom. Data 2024, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shao, T.; Xu, L.; Long, X.; Rengel, Z.; Zhang, Y. Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress. Sci. Rep. 2024, 14, 10981. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Song, H.Y.; Duan, Z.H.; Huo, H.Q.; Wang, X.L.; Wang, Y.J.; Chen, J.H.; Jin, L.; Lin, M.F. A global overview of transcriptome dynamics during the late stage of flower bud development in Camellia oleifera. BMC Plant Biol. 2025, 25, 247. [Google Scholar] [CrossRef] [PubMed]
- Dalal, M.; Sahu, S.; Tiwari, S.; Rao, A.R.; Gaikwad, K. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiol. Biochem. 2018, 130, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Xin, W.W.; Wang, S.F.; Zhang, X.; Dai, H.F.; Sun, R.R.; Frazier, T.; Zhang, B.H.; Wang, Q.L. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct. Integr. Genom. 2015, 15, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Tognolli, M.; Bairoch, A. The Swiss-Prot protein knowledgebase and ExPASy: Providing the plant community with high quality proteomic data and tools. Plant Physiol. Biochem. 2004, 42, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Svedberg, D.; Winiger, R.R.; Berg, A.; Sharma, H.; Tellgren-Roth, C.; Debrunner-Vossbrinck, B.A.; Vossbrinck, C.R.; Barandun, J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genom. 2024, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, J.N.; Ye, H.T.; Ding, M.Q.; Xu, F.W.; Wu, R.; Zhao, F.C.; Zhao, G.W. Transcriptome Analysis Revealed the Key Genes and Pathways Involved in Seed Germination of Maize Tolerant to Deep-Sowing. Plants 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yeo, H.J.; Park, Y.E.; Baek, S.A.; Kim, J.K.; Park, S.U. Transcriptome Analysis and Metabolic Profiling of Lycoris radiata. Biology 2019, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Shahid, M.Q.; Ghouri, F.; Ercişli, S.; Baloch, F.S.; Nie, F. Transcriptome analysis and annotation: SNPs identified from single copy annotated unigenes of three polyploid blueberry crops. PLoS ONE 2019, 14, e0216299. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Ni, X.Y.; Yan, M.J.; Meng, Q.H.; He, J.Y. Physiological and transcriptome analysis reveals the mechanism of Gymnocarpos przewalskii response to drought stress. BMC Plant Biol. 2025, 25, 155. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.M.; Chen, Y.H.; Zhou, G.F.; Liu, G.D. Foliar application of myo-inositol inhibits the growth of trifoliate orange (Poncirus trifoliata) seedlings by inducing alterations in cell wall structure and energy metabolism disorders. Trees 2024, 38, 1391–1402. [Google Scholar] [CrossRef]
- Kong, Q.; Yang, Y.Z.; Guo, L.; Yuan, L.; Ma, W. Molecular Basis of Plant Oil Biosynthesis: Insights Gained from Studying the WRINKLED1 Transcription Factor. Front. Plant Sci. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Tuo, D.H.; Wu, J.W.; Zou, J.; Dong, G.Q.; Zeng, W.Y.; Li, J.H.; Du, D.X. Analysis of Hormone Regulation on Seed Germination of Coix Based on Muli-Omics Analysis. Plants 2023, 12, 2700. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, Z.; Yin, Y.L.; Xu, X.; Wu, W.W.; Li, L.J. Transcriptome sequencing and analysis during seed growth and development in Euryale ferox Salisb. BMC Genom. 2018, 19, 343. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Hématy, K.; Höfte, H. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 2012, 63, 381–407. [Google Scholar] [CrossRef] [PubMed]
- Joliot, P.; Johnson, G.N. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. USA 2011, 108, 13317–13322. [Google Scholar] [CrossRef] [PubMed]
- Mouille, G.; Robin, S.; Lecomte, M.; Pagant, S.; Höfte, H. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J. 2003, 35, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Harholt, J.; Suttangkakul, A.; Vibe Scheller, H. Biosynthesis of pectin. Plant Physiol. 2010, 153, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Cherkaoui, M.; Lollier, V.; Geairon, A.; Bouder, A.; Larré, C.; Rogniaux, H.; Jamet, E.; Guillon, F.; Francin-Allami, M. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int. J. Mol. Sci. 2019, 21, 239. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Fang, H.; Wang, R.; Wang, G.; Ning, Y. Phenylalanine ammonia lyases mediate broad-spectrum resistance to pathogens and insect pests in plants. Sci. Bull. 2020, 65, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, H.; Li, Z.; Yue, S. Evolution of phenylalanine ammonia-lyase protein family from algae to angiosperm. Funct. Integr. Genom. 2025, 25, 40. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, W.; Zhang, L.; Wu, D.; Fu, G.; Yang, M.; Wu, K.; Wu, Z.; Deng, Q.; Zhu, J.; et al. Negative regulation of CcPAL2 gene expression by the repressor transcription factor CcMYB4-12 modulates lignin and capsaicin biosynthesis in Capsicum chinense fruits. Int. J. Biol. Macromol. 2024, 280 Pt 1, 135592. [Google Scholar] [CrossRef] [PubMed]
- Shad, M.A.; Li, X.; Rao, M.J.; Luo, Z.; Li, X.; Ali, A.; Wang, L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int. J. Mol. Sci. 2024, 25, 10001. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cao, J.; Liu, X.M.; Wang, L.N.; Zhang, W.W.; Ye, J.B.; Xu, F.; Cheng, S. Cloning and functional analysis of Gb4CL1 and Gb4CL2 from Ginkgo biloba. Plant Genome 2024, 17, e20440. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yin, C.M.; Xiang, L.; Jiang, W.T.; Xu, S.Z.; Mao, Z.Q. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biol. 2020, 20, 448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Cun, Z.; Chen, J.W. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC Plant Biol. 2020, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Liang, G.; Li, S.; Liu, W. Adequate water supply enhances seedling growth and metabolism in Festuca kryloviana: Insights from physiological and transcriptomic analys. BMC Plant Biol. 2024, 24, 714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Song, X.; Yang, Y.; Li, Y.; Zhu, Z.; Hou, J.; Wang, W.; Wu, J.; Chen, G.; et al. BcLhcb2.1, a Light-harvesting chlorophyll a/b-binding protein from Wucai, plays a positive regulatory role in the response to Abiotic Stress. Sci. Hortic. 2025, 339, 113759. [Google Scholar] [CrossRef]
- Hao, L.; Shi, X.; Wen, S.; Chen, J.; Luo, K.; Chen, Y.; Yue, S.; Yang, C.; Sun, Y.; Zhang, Y. The varying responses of leaves and roots and the link between sugar metabolic genes and the SWEET family in Dendrobium officinale under salt stress. BMC Genom. 2024, 25, 1172. [Google Scholar] [CrossRef] [PubMed]
- Waadt, R.; Seller, C.A.; Hsu, P.K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Karalija, E.; Ibragić, S.; Dahija, S.; Šamec, D. Transgenerational Memory of Phenotypic Traits in Plants: Epigenetic Regulation of Growth, Hormonal Balance, and Stress Adaptation. Curr. Issues Mol. Biol. 2025, 47, 404. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathne, A.S.; Liu, F.; Zou, Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. Plants 2025, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Guo, W.; Wang, S.; Wang, Y.; Kong, D.; Li, W. Transcriptome analysis unveiled the genetic basis of rapid seed germination strategies in alpine plant Rheum pumilum. Sci. Rep. 2024, 14, 19194. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qiu, S.M.; Xue, T.T.; Yuan, Y.D. Physiology and transcriptome of Eucommia ulmoides seeds at different germination stages. Plant Signal. Behav. 2024, 19, 2329487. [Google Scholar] [CrossRef] [PubMed]
- Suksa-Ard, P.; Nuanlaong, S.; Pooljun, C.; Azzeme, A.M.; Suraninpong, P. Decoding the Transcriptomics of Oil Palm Seed Germination. Plants 2024, 13, 2680. [Google Scholar] [CrossRef] [PubMed]
- Tognacca, R.S.; Ljung, K.; Botto, J.F. Unveiling Molecular Signatures in Light-Induced Seed Germination: Insights from PIN3, PIN7, and AUX1 in Arabidopsis thaliana. Plants 2024, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Yu, S.; Pan, Y.; Wang, J.; Kay, S.A. The interplay between the circadian clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. Proc. Natl. Acad. Sci. USA 2024, 121, e2316825121. [Google Scholar] [CrossRef] [PubMed]
- Andryka-Dudek, P.; Ciacka, K.; Wiśniewska, A.; Bogatek, R.; Gniazdowska, A. Nitric Oxide-Induced Dormancy Removal of Apple Embryos Is Linked to Alterations in Expression of Genes Encoding ABA and JA Biosynthetic or Transduction Pathways and RNA Nitration. Int. J. Mol. Sci. 2019, 20, 1007. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, B.; Liu, L.; Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017, 68, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, H.; Li, L.; Zhai, Q.; Qi, L.; Zhou, W.; Liu, X.; Li, H.; Zheng, W.; Sun, J.; et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 2012, 24, 2898–2916. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calvo, P.; Chini, A.; Fernández-Barbero, G.; Chico, J.M.; Gimenez-Ibanez, S.; Geerinck, J.; Eeckhout, D.; Schweizer, F.; Godoy, M.; Franco-Zorrilla, J.M.; et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 2011, 23, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.A.; Wang, Y.; Timko, M.P. A compendium of transcription factor and transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genom. 2017, 18, 898. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.J.; Napoli, R.S.; Parish, R.W.; Li, S.F. MYB-bHLH-TTG1 in a multi-tiered pathway regulates Arabidopsis seed coat mucilage biosynthesis genes including PECTIN METHYLESTERASE INHIBITOR14 required for homogalacturonan demethylesterification. Plant Cell Physiol. 2023, 64, 906–919. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, J.; Huang, Q.; Peng, L.; Huang, Z.; Li, W.; Sun, S.; He, Y.; Wang, Z. OsNAC3 regulates seed germination involving abscisic acid pathway and cell elongation in rice. New Phytol. 2024, 241, 650–664. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Zhang, S.B.; Lei, P.; Eh, T.J.; Zhang, Y.; Jin, G.Z.; Dong, K.; Xu, Q.J.; Luo, Q.X.; Meng, F.J. Proteomic characterization of the different stages of seed germination in Cupressus gigantea. Seed Sci. Res. 2024, 34, 137–147. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, S.M.; Xue, T.T.; Yuan, Y.D. Physiology and transcriptome of Sapindus mukorossi seeds at different germination stages. Genomics 2024, 116, 110822. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q.; Wang, W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 2001, 127, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Maehly, A.C.; Chance, B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1954, 1, 357–424. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed]
Germination Stage | CTK (µg/L) | IAA (µg/L) | Chl a (mg/g FW) | Chl b (mg/g FW) | Chl a + Chl b (mg/g FW) | Soluble Sugar (mg/g FW) | Sucrose (mg/g FW) | Protein (mg/g FW) | Starch (mg/mg prot) | SOD (U/mg prot) | POD (ΔOD470/min/mg prot) | APX (μmol/min/mg prot) | CAT (μmoL/min/mg prot) | MDA (nmol/mg prot) | H2O2 (μmol/mg prot) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G0 | 4.14 ± 0.11 c | 4.65 ± 0.17 d | 0.002 ± 0.000 a | 0.005 ± 0.003 a | 0.007 ± 0.003 a | 61.86 ± 1.16 c | 95.79 ± 1.39 e | 4.14 ± 0.06 d | 1.82 ± 0.03 e | 3.84 ± 0.02 e | 0.25 ± 0.00 e | 0.12 ± 0.00 c | 0.17 ± 0.02 d | 0.16 ± 0.011 c | 0.06 ± 0.00 e |
G1 | 4.65 ± 0.05 b | 5.08 ± 0.17 d | 0.002 ± 0.000 a | 0.009 ± 0.002 a | 0.011 ± 0.002 a | 64.91 ± 0.97 c | 117.03 ± 1.14 c | 10.78 ± 0.04 a | 1.93 ± 0.03 d | 10.24 ± 0.03 b | 0.34 ± 0.01 d | 0.32 ± 0.01 a | 0.84 ± 0.01 c | 0.31 ± 0.01 b | 1.17 ± 0.01 a |
G2 | 4.69 ± 0.03 b | 6.01 ± 0.17 c | 0.003 ± 0.002 a | 0.011 ± 0.003 a | 0.014 ± 0.005 a | 75.73 ± 1.18 a | 130.43 ± 0.67 a | 8.33 ± 0.08 b | 2.50 ± 0.01 b | 27.48 ± 0.07 a | 1.95 ± 0.02 a | 0.32 ± 0.02 a | 1.36 ± 0.02 b | 0.71 ± 0.07 a | 0.83 ± 0.01 b |
G3 | 5.32 ± 0.19 a | 6.95 ± 0.22 b | 0.004 ± 0.000 a | 0.011 ± 0.001 a | 0.015 ± 0.001 a | 72.02 ± 1.14 b | 121.46 ± 0.72 b | 6.38 ± 0.11 c | 2.05 ± 0.02 c | 9.31 ± 0.14 c | 1.74 ± 0.02 b | 0.13 ± 0.00 c | 10.72 ± 0.01 a | 0.81 ± 0.01 a | 0.61 ± 0.01 c |
G4 | 5.48 ± 0.10 a | 8.12 ± 0.18 a | 0.005 ± 0.003 a | 0.017 ± 0.008 a | 0.022 ± 0.011 a | 62.37 ± 0.38 c | 107.79 ± 0.65 d | 4.32 ± 0.06 d | 4.22 ± 0.05 a | 5.48 ± 0.10 d | 0.50 ± 0.01 c | 0.18 ± 0.00 b | 1.17 ± 0.18 b | 0.22 ± 0.00 bc | 0.40 ± 0.01 d |
Compare | All DEGs | Up DEGs | Down DEGs |
---|---|---|---|
G1 vs. G0 | 1708 | 1474 | 234 |
G2 vs. G0 | 6505 | 5636 | 869 |
G3 vs. G0 | 8206 | 7045 | 1161 |
G4 vs. G0 | 10,250 | 8221 | 2029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, C.; Zhang, Y.; He, Z.; Chen, L.; Xun, C.; Ma, Y.; Yuan, X.; Xu, Y.; Wang, R. Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel. Plants 2025, 14, 2283. https://doi.org/10.3390/plants14152283
Zhang Z, Liu C, Zhang Y, He Z, Chen L, Xun C, Ma Y, Yuan X, Xu Y, Wang R. Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel. Plants. 2025; 14(15):2283. https://doi.org/10.3390/plants14152283
Chicago/Turabian StyleZhang, Zhen, Caixia Liu, Ying Zhang, Zhilong He, Longsheng Chen, Chengfeng Xun, Yushen Ma, Xiaokang Yuan, Yanming Xu, and Rui Wang. 2025. "Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel." Plants 14, no. 15: 2283. https://doi.org/10.3390/plants14152283
APA StyleZhang, Z., Liu, C., Zhang, Y., He, Z., Chen, L., Xun, C., Ma, Y., Yuan, X., Xu, Y., & Wang, R. (2025). Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel. Plants, 14(15), 2283. https://doi.org/10.3390/plants14152283