Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland
Abstract
1. Introduction
2. Results
2.1. δ13CORG and δ15NORG Values of Investigated Plants in Different Surface Water Habitats
2.2. Relationships Between Water Physicochemical Variables and Isotopic Signal of Plants
3. Discussion
3.1. δ13C and δ15N Values of Submerged Macrophytes from Rivers and Lakes as Indicators of Environmental Change in Aquatic Ecosystems
3.2. Influence of Physicochemical Indicators on the Formation of Isotopic Signatures in Macrophytes
3.3. Physiological Factors Influencing the Variability of the δ13C Isotope Signal in Submerged Macrophytes
3.4. An Ecophysiological and Ecosystem-Level Approach to δ15N
4. Materials and Methods
4.1. Study Area
4.2. Physicochemical Analysis of Water and Sediment Parameters
4.3. Isotopic Analysis of Plant Material
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lampert, W.; Sommer, U. Limnoecology: The Ecology of Lakes and Streams; Department of Biology, University of Oxford: Oxford, UK, 2007. [Google Scholar]
- Różańska-Boczula, M.; Sender, J. Exploring the Relationships between Macrophyte Groups and Environmental Conditions in Lake Ecosystems. Sci. Rep. 2025, 15, 11162. [Google Scholar] [CrossRef] [PubMed]
- Onaindia, M.; Amezaga, I.; Garbisu, C.; García-Bikuña, B. Aquatic Macrophytes as Biological Indicators of Environmental Conditions of Rivers in North-Eastern Spain. Ann. Limnol.-Int. J. Limnol. 2005, 41, 175–182. [Google Scholar] [CrossRef]
- Jusik, S.; Szoszkiewicz, K.; Kupiec, J.M.; Lewin, I.; Samecka-Cymerman, A. Development of Comprehensive River Typology Based on Macrophytes in the Mountain-Lowland Gradient of Different Central European Ecoregions. Hydrobiologia 2015, 745, 241–262. [Google Scholar] [CrossRef]
- Schneider, S.; Melzer, A. The Trophic Index of Macrophytes (TIM)—A New Tool for Indicating the Trophic State of Running Waters. Int. Rev. Hydrobiol. 2003, 88, 49–67. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Ferreira, T.; Korte, T.; Baattrup-Pedersen, A.; Davy-Bowker, J.; O’Hare, M. European River Plant Communities: The Importance of Organic Pollution and the Usefulness of Existing Macrophyte Metrics. Hydrobiologia 2006, 566, 211–234. [Google Scholar] [CrossRef]
- Pietruczuk, K.; Szoszkiewicz, K. Ocena Stanu Ekologicznego Rzek i Jezior w Wielkopolsce Na Podstawie Makrofitów Zgodnie z Wymaganiami Ramowej Dyrektywy Wodnej. Nauk. Przyr. Technol. 2009, 3, 1–8. [Google Scholar]
- The European Parliament. EU Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; The European Parliament: Strasbourg, France, 2000. [Google Scholar]
- Gong, X.; Xu, Z.; Peng, Q.; Tian, Y.; Hu, Y.; Li, Z.; Hao, T. Spatial Patterns of Leaf Δ13C and Δ15N of Aquatic Macrophytes in the Arid Zone of Northwestern China. Ecol. Evol. 2021, 11, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Maberly, S.C.; Berthelot, S.A.; Stott, A.W.; Gontero, B. Adaptation by Macrophytes to Inorganic Carbon down a River with Naturally Variable Concentrations of CO2. J. Plant Physiol. 2015, 172, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Ngayila, N.; Botineau, M.; Baudu, M.; Basly, J.P. Myriophyllum Alterniflorum DC. Effect of Low Concentrations of Copper and Cadmium on Somatic and Photosynthetic Endpoints: A Chemometric Approach. Ecol. Indic. 2009, 9, 307–312. [Google Scholar] [CrossRef]
- Pronin, E.; Banaś, K.; Chmara, R.; Ronowski, R.; Merdalski, M.; Santoni, A.-L.; Mathieu, O. Characteristics of Stable Carbon and Nitrogen Isotopes in Different Ecological Plant Groups and Sediments Collected from 14 Softwater Lakes in Poland. Water 2024, 16, 3403. [Google Scholar] [CrossRef]
- Pronin, E.; Wrosz, Z.; Banaś, K.; Merdalski, M. Following the Footsteps of Macrophytes: Potential Application of Isotope Signals in Pollution Monitoring: A Case Study of Northern Polish Rivers. Ecohydrol. Hydrobiol. 2025, 100650. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 7th ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 9783319197159. [Google Scholar]
- Leś, E.; Biedroń, I.; Team, B.; Hrytsyshyni, A.; Hrytsyshyni, P.; Ivanova, T.; Merisaar, M.; Nygaard, T.; Senova, O.; Svedäng, M.; et al. Największe Wyzwania w Gospodarce Wodnej w Regionie Morza Bałtyckiego. In Funkcjonowanie I Ochrona Wód Płynących; Czerniawski, R., Bilski, P., Eds.; Uniwersytet Szczeciński: Szczecin, Poland, 2023; pp. 77–91. [Google Scholar]
- Soszka, H. Methodological Problems Related to the Assessment of the Eutrophication Degree of Lakes for the Designation Needs of Nitrate-Sensitive Zones. Woda-Sr.-Obsz. Wiej. 2009, 9, 151–159. (In Polish) [Google Scholar]
- Bochenek, D.; Gorzkowska, E.; Hejne, J.; Kafara, E.; Kiełczykowska, A.; Marciniak, K.; Nowakowska, B.; Siewiera, W.; Wroński, M.; Wrzosek, A. Ochrona Środowiska 2024; Martyna, W., Ed.; GUS: Amsterdam, The Netherlands, 2024; ISBN 0867-3217. [Google Scholar]
- Loga, M.; Wierzchołowska-Dziedzic, A. Probability of Misclassifying Biological Elements in Surface Waters. Environ. Monit. Assess. 2017, 189, 647. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Phillips, G.; Birk, S.; Free, G.; Kelly, M.G.; Willby, N.J. Deriving Nutrient Criteria to Support ‘good’ Ecological Status in European Lakes: An Empirically Based Approach to Linking Ecology and Management. Sci. Total Environ. 2019, 650, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Pronin, E.; Banaś, K.; Chmara, R.; Ronowski, R.; Merdalski, M.; Santoni, A.-L.; Mathieu, O. Do Stable Carbon and Nitrogen Isotope Values of Nitella Flexilis Differ between Softwater and Hardwater Lakes? Aquat. Sci. 2023, 85, 79. [Google Scholar] [CrossRef]
- King, L.; Maberly, S.C.; De Ville, M.M.; Kitschke, M.; Gibson, C.E.; Jones, R.I. Nitrogen Stable Isotope Ratios of Lake Macrophytes in Relation to Growth Form and Nutrient-Limitation. Fundam. Appl. Limnol. 2009, 175, 307–315. [Google Scholar] [CrossRef]
- Pronin, E.; Wrosz, Z.; Banaś, K.; Merdalski, M. Izotopy Stabilne Azotu i Węgla Zanurzonych Roślin Wodnych Rzek Jako Potencjalny Wskaźnik Dopływu Zanieczyszczeń [Stable Isotopes of Nitrogen and Carbon of Submerged River Aquatic Plants as a Potential Indicator of Pollutant Input]. In Funkcjonowanie I Ochrona Wód Płynących; Czerniawski, R., Bilski, P., Eds.; Uniwersytet Szczeciński: Szczecin, Poland, 2023; pp. 153–166. [Google Scholar]
- Guo, H.R.; Wu, Y.; Hu, C.C.; Liu, X.Y. Elevated Nitrate Preference Over Ammonium in Aquatic Plants by Nitrogen Loadings in a City River. J. Geophys. Res. Biogeosciences 2022, 127, e2021JG006614. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon Isotopes in Photosynthesis. Bioscience 1988, 38, 328–336. [Google Scholar] [CrossRef]
- Staehr, P.A.; Testa, J.M.; Kemp, W.M.; Cole, J.J.; Sand-Jensen, K.; Smith, S.V. The Metabolism of Aquatic Ecosystems: History, Applications, and Future Challenges. Aquat. Sci. 2012, 74, 15–29. [Google Scholar] [CrossRef]
- Blindow, I.; Hargeby, A.; Hilt, S. Facilitation of Clear-Water Conditions in Shallow Lakes by Macrophytes: Differences between Charophyte and Angiosperm Dominance. Hydrobiologia 2014, 737, 99–110. [Google Scholar] [CrossRef]
- Pełechata, A.; Kufel, L.; Pukacz, A.; Strzałek, M.; Biardzka, E.; Brzozowski, M.; Kaczmarek, L.; Pełechaty, M. Climate Features or the Composition of Submerged Vegetation? Which Factor Has a Greater Impact on the Phytoplankton Structure in Temperate Lakes? Ecol. Indic. 2023, 146, 109840. [Google Scholar] [CrossRef]
- Merdalski, M.; Banaś, K.; Ronowski, R. Environmental Factors Affecting Pondweeds in Water Bodies of Northwest Poland. Biodivers. Res. Conserv. 2019, 56, 13–28. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology Lake and River Ecosystems, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2001; ISBN 9780127447605. [Google Scholar]
- Jabłońska, E.; Wiśniewska, M.; Marcinkowski, P.; Grygoruk, M.; Walton, C.R.; Zak, D.; Hoffmann, C.C.; Larsen, S.E.; Trepel, M.; Kotowski, W. Catchment-Scale Analysis Reveals High Cost-Effectiveness of Wetland Buffer Zones as a Remedy to Non-Point Nutrient Pollution in North-Eastern Poland. Water 2020, 12, 629. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland Buffer Zones for Nitrogen and Phosphorus Retention: Impacts of Soil Type, Hydrology and Vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewska-Madura, K.; Kozak, A.; Dera, M.; Gołdyn, R. Internal Loading of Phosphorus from Bottom Sediments of Two Meso-Eutrophic Lakes. Int. J. Environ. Res. 2019, 13, 235–251. [Google Scholar] [CrossRef]
- Pronin, E.; Merdalski, M.; Ronowski, R.; Banaś, K. Variation of Carbon and Nitrogen Stable Isotope Composition in Leaves and Roots of Littorella uniflora (L.) Asch. in Relation to Water PH and Nutrient Availability. Aquat. Bot. 2025, 196, 103832. [Google Scholar] [CrossRef]
- Pronin, E.; Pełechaty, M.; Apolinarska, K.; Pukacz, A.; Frankowski, M. Sharp Differences in the δ13C Values of Organic Matter and Carbonate Encrustations but Not in Ambient Water DIC between Two Morphologically Distinct Charophytes. Hydrobiologia 2016, 773, 177–191. [Google Scholar] [CrossRef]
- Apolinarska, K.; Pełechaty, M.; Pronin, E. Discrepancies between the Stable Isotope Compositions of Water, Macrophyte Carbonates and Organics, and Mollusc Shells in the Littoral Zone of a Charophyte-Dominated Lake (Lake Lednica, Poland). Hydrobiologia 2016, 768, 1–17. [Google Scholar] [CrossRef]
- Pronin, E.; Banaś, K.; Chmara, R.; Ronowski, R.; Merdalski, M.; Santoni, A.-L.; Mathieu, O. Lobelia Lakes’ Vegetation and Its Photosynthesis Pathways Concerning Water Parameters and the Stable Carbon Isotopic Composition of Plants’ Organic Matter. Plants 2024, 13, 2529. [Google Scholar] [CrossRef] [PubMed]
- Sensuła, B.; Böttger, T.; Pazdur, A.; Piotrowska, N.; Wagner, R. Carbon and Oxygen Isotope Composition of Organic Matter and Carbonates in Recent Lacustrine Sediments. Geochronometria 2006, 25, 77–94. [Google Scholar]
- Pronin, E.; Panettieri, M.; Torn, K.; Rumpel, C. Stable Carbon Isotopic Composition of Dissolved Inorganic Carbon (DIC) as a Driving Factor of Aquatic Plants Organic Matter Build-up Related to Salinity. Ecol. Indic. 2019, 99, 230–239. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; García, A.; Chivas, A.R. Carbon Stable Isotope Composition of Charophyte Organic Matter in a Small and Shallow Spanish Water Body as a Baseline for Future Trophic Studies. J. Limnol. 2015, 75, 226–235. [Google Scholar] [CrossRef]
- Chappuis, E.; Seriñá, V.; Martí, E.; Ballesteros, E.; Gacia, E. Decrypting Stable-Isotope (Δ13C and Δ15N) Variability in Aquatic Plants. Freshw. Biol. 2017, 62, 1807–1818. [Google Scholar] [CrossRef]
- Thompson, H.A.; White, J.R.; Pratt, L.M. Spatial Variation in Stable Isotopic Composition of Organic Matter of Macrophytes and Sediments from a Small Arctic Lake in West Greenland. Arct. Antarct. Alp. Res. 2018, 50, e1420282. [Google Scholar] [CrossRef]
- Osmond, C.B.; Valaane, N.; Haslam, S.M.; Uotila, P.; Roksandic, Z. Comparisons of Δ13C Values in Leaves of Aquatic Macrophytes from Different Habitats in Britain and Finland; Some Implications for Photosynthetic Processes in Aquatic Plants. Oecologia 1981, 50, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Griffiths, H.; Reed, M.L.; Raven, J.A.; Griffiths, N.M. Inorganic Carbon Assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L. Oecologia 1984, 61, 115–121. [Google Scholar] [CrossRef] [PubMed]
- National Programme for Environmental Regeneration of Soils Through Liming National Programme for Environmental Regeneration of Soils Through Liming. 2023. Available online: https://www.gov.pl/web/nfosigw/ogolnopolski-program-regeneracji-srodowiskowej-gleb-poprzez-ich-wapnowanie (accessed on 5 March 2025). (In Polish)
- Rai, P.K. (Ed.) River Conservation and Water Resource Management; Springer Nature Singapore Pte Ltd.: Singapore, 2023; ISBN 9789819926046. [Google Scholar]
- Ruttner, F. Fundamentals of Limnology, 2nd ed.; University of Toronto Press: Toronto, ON, Canada, 1953; ISBN 9781487573669. [Google Scholar]
- van Donk, E.; van de Bund, W.J. Impact of Submerged Macrophytes Including Charophytes on Phyto- and Zooplankton Communities: Allelopathy versus Other Mechanisms. Aquat. Bot. 2002, 72, 261–274. [Google Scholar] [CrossRef]
- Skwierawski, A. Stan Zanieczyszczenia Renaturyzowanego Jeziora Sawąg Związkami Azotu i Fosforu. Proc. ECOpole 2012, 6, 567–575. (In Polish) [Google Scholar] [CrossRef]
- Heredia, C.; Guédron, S.; Point, D.; Perrot, V.; Campillo, S.; Verin, C.; Espinoza, M.E.; Fernandez, P.; Duwig, C.; Achá, D. Anthropogenic Eutrophication of Lake Titicaca (Bolivia) Revealed by Carbon and Nitrogen Stable Isotopes Fingerprinting. Sci. Total Environ. 2022, 845, 157286. [Google Scholar] [CrossRef] [PubMed]
- Chmara, R.; Pronin, E.; Szmeja, J. Functional Macrophyte Trait Variation as a Response to the Source of Inorganic Carbon Acquisition. PeerJ 2021, 9, e12584. [Google Scholar] [CrossRef] [PubMed]
- Cousins, A.B.; Badger, M.R.; von Caemmerer, S. Carbonic Anhydrase and Its Influence on Carbon Isotope Discrimination during C4 Photosynthesis. Insights from Antisense RNA in Flaveria Bidentis. Plant Physiol. 2006, 141, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Van Loosdrecht, M.C.M.; Wolf, G. Carbon Isotope Fractionation in Developing Natural Phototrophic Biofilms. Biogeosciences Discuss. 2007, 4, 69–98. [Google Scholar]
- Boston, H.L.; Adams, M.S.; Pienkowski, T.P. Utilization of Sediment CO2 by Selected North American Isoetids. Ann. Bot. 1987, 60, 485–494. [Google Scholar] [CrossRef]
- Alonso-Cantabrana, H.; von Caemmerer, S. Carbon Isotope Discrimination as a Diagnostic Tool for C 4 Photosynthesis in C 3-C 4 Intermediate Species. J. Exp. Bot. 2016, 67, 3109–3121. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.J. Carbon Isotope Compositions of Terrestrial C3 Plants as Indicators of (Paleo)Ecology and (Paleo)Climate. Proc. Natl. Acad. Sci. USA 2010, 107, 19691–19695. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Li, W.; Madsen, T.V.; Maberly, S.C.; Bowes, G. Photosynthetic Inorganic Carbon Acquisition in 30 Freshwater Macrophytes. Aquat. Bot. 2017, 140, 48–54. [Google Scholar] [CrossRef]
- Asamoto, C.K.; Rempfert, K.R.; Luu, V.H.; Younkin, A.D.; Kopf, S.H. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. Environ. Sci. Technol. 2021, 55, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Foscari, A.; Leonarduzzi, G.; Id, G.I. N uptake, Assimilation and Isotopic Fractioning Control δ 15N Dynamics in Plant DNA: A Heavy Labelling Experiment on Brassica napus L. PLoS ONE 2021, 16, e0247842. [Google Scholar] [CrossRef] [PubMed]
- Santesteban, L.G.; Loidi, M.; Urretavizcaya, I.; Galar, M. Nitrogen Isotope Ratio (δ15N): A Nearly Unexplored Indicator That Provides Useful Information in Viticulture. OENO One 2024, 58, 1–12. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, H.; Li, Y.; Shao, J.; Liang, X. Effects of High Nitrogen Concentrations on the Growth of Submersed Macrophytes at Moderate Phosphorus Concentrations Water Research Effects of High Nitrogen Concentrations on the Growth of Submersed Macrophytes at Moderate Phosphorus Concentrations. Water Res. 2015, 83, 385–395. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 10 January 2022).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. R Package “Corrplot”: Visualization of a Correlation Matrix. Statistician 2017, 56, 316–324. [Google Scholar]
- Wickham, H. Ggplot2; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 253–258. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. R Package, Version 1.0.7; Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. CRAN: Contributed Packages. Available online: https://cran.r-project.org/package=factoextra (accessed on 10 January 2025).
- Dinno, A. Package ‘dunn.Test’. CRAN Repos. 2024, 1–7, CRAN: Contributed Packages. Available online: https://CRAN.R-project.org/package=dunn.test (accessed on 10 January 2025).
- Jollife, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrosz, Z.; Banaś, K.; Merdalski, M.; Pronin, E. Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland. Plants 2025, 14, 2261. https://doi.org/10.3390/plants14152261
Wrosz Z, Banaś K, Merdalski M, Pronin E. Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland. Plants. 2025; 14(15):2261. https://doi.org/10.3390/plants14152261
Chicago/Turabian StyleWrosz, Zofia, Krzysztof Banaś, Marek Merdalski, and Eugeniusz Pronin. 2025. "Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland" Plants 14, no. 15: 2261. https://doi.org/10.3390/plants14152261
APA StyleWrosz, Z., Banaś, K., Merdalski, M., & Pronin, E. (2025). Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland. Plants, 14(15), 2261. https://doi.org/10.3390/plants14152261